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Abstract The existence of monopoles is a characteristic
signature of Kaluza–Klein multidimensional theories. The
topology of these solutions is extremely interesting. The
existence of a dipole solution, which we have associated
to a monopole–anti-monopole bound state, is the leitmotiv
of this investigation. The dipole in its lowest energy state,
which we here call also monopolium, is electromagnetically
inert in free space interacting only gravitationally. Monopo-
lium when interacting with time dependent magnetic fields
acquires a time dependent induced magnetic moment and
radiates. We have analyzed the most favorable astrophysi-
cal scenario for radiative monopolium and found that the
amount of radiation is so small that is not detectable by con-
ventional equipments. These findings suggest that Kaluza–
Klein monopolium, if existent, would be a candidate for a
primordial dark matter constituent.

1 Introduction

The nature of dark matter is one of the most relevant problems
of physics today. Cosmological experiments have determined
its abundance [1]. From observational and numerical simula-
tions we have some knowledge about its distribution in galac-
tic halos [2]. Still the nature of dark matter remains unknown.
Since the favorite explanations in the past, the weakly inter-
acting particles, have eluded detection it is worthwhile to
consider other possibilities.

Monopole physics took a dramatic turn when ’t Hooft [3]
and Polyakov [4] independently discovered that the SO(3)
Georgi–Glashow model [5] inevitably contains monopole
solutions. These topological monopoles appear naturally in
Grand Unified Theories and are impossible to create in
present day particle colliders because of their huge GUT
mass [6,7] and they are very rear in the universe since
inflation reduces their density dramatically [8,9]. ’t Hooft-
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Polyakov monopoles cannot built up dark matter because of
their incredibly strong interactions [10].

It has been a long time since Kaluza and Klein first inves-
tigated the idea of unification of gravitation and gauge the-
ories by exploring the possibility that the number of space-
time dimensions is greater than four [11,12]. The idea behind
Kaluza–Klein (KK) theories is that the world has more than
three spatial dimensions and some of them are curled up to
form a circle so small as to be unobservable. KK theories have
been the subject of revived interest in recent years since many
standard model extensions in extra dimensions yield KK the-
ories. KK theories contain a very rich topological structure,
which includes very heavy monopoles whose mass is of the
order of the Planck mass [13–17]. But most important for the
present study, they also contain other soliton solutions in dif-
ferent topological sectors. In particular, the dipole, which has
the quantum numbers of a monopole–anti-monopole bound
state. This state in conventional gauge theories was called
monopolium [18–20], and we kept the name here. In con-
ventional gauge theories monopolium has vacuum quantum
numbers and annihilates into more elementary constituents.
However, in KK theories monopolium does not belong to the
topological sector of the vacuum and therefore it is classically
stable [13,21,22]. That solitons of KK theories could supply
dark matter has been briefly discussed in the past [23]. The
aim of this paper is to show that monopolium, as it appears
in KK theories, if it survives inflation in sufficient numbers,
could be a candidate for a primordial constituent of dark mat-
ter, and thus its study would open a window into the physics
of more than four dimensions.

The presentation is based on the scenario discussed by
Gross, Perry and Sorkin (GPS) [13,14], which serves as a
toy model, but our results are based on properties which
arise in realistic scenarios. Let us describe them precisely.
A topology where the dipole does not have vacuum quantum
numbers [15–17,21,22]. The dipole structure, described in
terms of some parameter d (distance between center of the
poles), approaches the monopole–anti-monopole structure as
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d becomes large. This also occurs in topological schemes
with different topological sectors like in the Skyrme Model
[24]. The dipole can thus be interpreted as a bound state with
a mass smaller than twice the monopole mass. The parameter
d describes the magnetic moment of the dipole. The ground
state (smallest mass) dipole, i.e. when d → 0, has vanish-
ingly small dipole moment and therefore it is electromag-
netically neutral and thus has only gravitational interaction.
The GPS model has all these ingredients and therefore we
are going to use it as a toy model to develop the ideas and
get orders of magnitude for observables. However, the GPS
model has a peculiar way of realizing the equivalence princi-
ple, which we will discuss in some detail, and we will show
one mechanism for avoiding it.

In Sect. 2 we are going to recall some aspects of the
topology of the Kaluza–Klein theory in particular the exis-
tence of monopoles and dipoles. In Sect. 3 we analyze if the
dipole survives the inflationary process. In Sect. 4 we look for
possible electromagnetic observables of monopolium and in
Sect. 5 we discuss possible experimental observations. Their
size allows us to propose monopolium as a dark matter com-
ponent. We end by some concluding remarks.

2 Kaluza–Klein monopolium

Kaluza–Klein theories [11,12] contain topological solitons
which can be identified as magnetic monopoles satisfying the
Dirac quantization condition, eg = 1

2 [10]. We next recall
the structure of the KK monopoles by whose features can be
extended to models with more compact dimensions [25–30].

The simplest topological solution in the GPS model is a
magnetic monopole which arises from the generalization to
more dimensions of the Taub-NUT solitonic solution [15,16]
and is described by the following metric

ds2 = −dt2 + V (dx5 + 4m(1 − cos θ)dφ)2

+ 1

V
(dr2 + r2dθ2 + r2 sin2 θdφ2), (1)

where V−1 = 1+ 4m
r and r, θ, φ the spherical coordinates. At

large distances the gauge field from the GPS solution behaves
as a Dirac monopole [10]

Aφ ∼ 4m(1 − cos θ)

r sin θ
(2)

whose inertial mass M is,

M ∼ MPl

4
√

α
, (3)

where MPl is Planck’s mass and α the fine structure con-
stant. Note the non-perturbative character of this result in the
inverse dependence on the structure constant.

Fig. 1 Monopolium mass Md/M as a function of the distance between
the poles d/M

These KK monopoles have a characteristic, which distin-
guishes them from all other types of monopoles, that makes
them interesting and is the leitmotiv of the present inves-
tigation. In ordinary Yang–Mills theories one does not find
solitons which are stable magnetic dipoles because the super-
position of a monopole and an anti-monopole has the topol-
ogy of the vacuum and therefore nothing prevents them from
annihilating. The situation is quite different in KK theories.
The vacuum solution belongs to a different topological sector
than the monopole–anti-monopole solution [17]. Since one
cannot evolve smoothly from one type of solution to the other
the monopole–anti-monopole pair will not annihilate classi-
cally. In the GPS scenario, KK dipoles can be constructed by
the Kerr–Schwarzschild metric, which are regular solutions
in euclidean 3 + 1 dimensions, by compactifying the fourth
dimension [13]. This provides a very interesting topologi-
cal state which has no magnetic charge and behaves like a
magnetic dipole at large distances

Aφ ∼ 4Mdd sin θ

r2 , (4)

where Md is the dipole mass and d measures the distance
between the poles. For large d this solution coincides with
the product ansatz of the monopole–antimonopole solution.

The mass of this dipole state is determined by the follow-
ing equation,

Md = 2

⎛
⎝M − M2

d√
4M2

d + d2

⎞
⎠ , (5)

where we use the Planckian System of units h̄ = c = G = 1.
As can be seen in Fig. 1 its mass ranges naturally from
twice the monopole mass for large d when the poles are
far away from each other, to the monopole mass when the
poles are strongly coupled on top of each other. Thus a pair
of monopole–anti-monopole if they get close enough to feel
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a strong attraction will make a neutral dipole state which
we call monopolium. For d ∼ 0 this state is electromagneti-
cally inert and will only interact gravitationally. Monopolium
is classically stable and therefore may only decay quantum
mechanically in a tunnel type process being therefore very
long lived, i.e. almost stable. The model possesses other topo-
logical states of higher genus which at present are of no inter-
est for our discussion. This study can be generalized to higher
dimensions [25–30].

In the GPS model the inertial masses of monopole and
dipole are different from the gravitational mass which is
zero in a peculiar realization of the equivalence principle
[13]. These strange gravitational properties of the Kaluza–
Klein theory are connected with the existence of a pseudo-
Goldstone massless scalar field, a dreaded dilaton, as can be
seen from the equivalent low energy theory (LET) [13]

S = − 1

16πG

∫
d4x

(
R4 + 1

6
gμν

∂μσ ∂νσ

σ 2 + 1

4
σ FμνF

μν

)
(6)

where 	 ∼ log σ is the dilaton, which couples to gravity
and electromagnetism. Note that in the LET the masses of
the other particles get multiplied by a conformal factor μ̄ =
μσ−1/6.

It has been hinted perturbatively, that in a full calculation
quantum effects might provide the dilaton with a mass [31].
Given the scales involved that mass would be at the level of
the Planck mass and thus the dilaton field can be screened
out of the theory.

If we add a mass term to the above action 1
2 M

2	2, the
field equation for the scalar field becomes in the asymptotic
limit (r → ∞) of the spherical dipole metric [13],

ρ4

m2

(
(1 − 2 ρ)

d2	

dρ2 − 2
d	

dρ

)
−√

(1 − 2 ρ) M2 	 = 0 (7)

where ρ = m
r , m being a parameter of the metric and r the

spherical radial coordinate. In the asymptotic limit ρ → 0
and M is planckian. In the limit where the mass is effective,
r → ∞, i.e. ρ → 0, Eq. (7) leads to 	 ∼ exp (−mM

ρ
) → 0

and therefore σ → 1 and thus μ̄ = μ.
When the dilaton has no mass the equations of motion of a

test particle of mass μ̄ lead to a cancellation between the new-
tonian force 1

2 μ̄∂i (−g00)U 0U 0 and ∂i μ̄, where Uμ = dxμ

dτ

[13]. This cancellation is instrumental in the vanishing of the
gravitational mass. However, once a dilaton mass is incor-
porated, the 	 field vanishes and μ̄ becomes approximately
constant and there is no cancellation. Moreover since M will
be planckian the cancellation occurs for relatively small val-
ues of r . Thus we expect that in any realistic KK theory where
the dilaton has been screened out the equivalence principle
will be realized in the conventional way and thus we assume
that the inertial y gravitational masses are equal, noting that

the inertial mass is what enters into our calculation. More-
over, although we will use the results of the GPS model, the
only requirements for the analysis that follows is that the
monopole has a mass proportional to Planck’s mass and that
the dipole has a mass which varies from twice the monopole
mass to a smaller mass when the deformation of the dipole
diminishes. The factors in Eq. (3) or Eq. (5) are irrelevant
given the huge numbers involved. Only the exponents count!

KK monopoles and monopolium have huge masses, larger
than GUT monopoles [6,7], and therefore they have to be cre-
ated at very early times and and their density will be strongly
affected by inflation [8,9]. Is there any chance of having some
remnants at present?

3 Monopolium as a dark matter candidate

Let us assume a cosmological model which expands isotropi-
cally in 3+n spatial dimensions. A fluctuation of the geome-
try during this expansion causes n dimensions to compactify.
One may regard compactification as a phase transition and
use the horizon distance as an order parameter [34]. This
results in the production of one KK monopole per horizon
distance [32,33]. If compactification occurs at T ∼ M then
dH (T ) ∼ MPL

M2 ∼ 16 α
MPl

and in a radiation dominated expan-
sion the ratio of the number density of KK monopoles, n(T ),
to the number density of photons nγ (T ) is [34]

n(T )

nγ (T )
∼

(
M

MPL

)3

∼
(

1

4
√

α

)3

. (8)

The interactions at formation between monopole and anti-
monopole and with the charge in the plasma are dominated
by the long range magnetic coupling. Monopole and anti-
monopole after diffusing through the plasma will bind instead
of annihilate [33]. The pair builds a highly excited monop-
olium of mass approximately Md ∼ 2M and large inter-
pole distance d. The strong magnetic coupling will make
monopole and anti-monopole cascade down to the ground
state whose mass is Md ∼ M and whose separation dis-
tance d ∼ 0 (see Fig. 1). This ground state is electromag-
netically inert, i.e. zero magnetic charge and zero magnetic
dipole moment. It only is subject to gravitational interaction.
Since monopole and anti-monopole are produced in equal
numbers the number density of monopolium initially is still

n(M). This is a huge number, n(M) ∼
(

1
4
√

α

)3
nγ (M) ∼

10107 m−3. Since monopolium is basically stable its den-
sity decrease via the simplified Boltzman’s equation without
annihilation terms,

n(T )

T 3 = n(T ′)
T ′3 for T ′ < T, (9)
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Fig. 2 Number of e-foldings as a function of the decimal Log of the
reheating temperature in Kelvin

leading to a number density incompatible with standard cos-
mology. Thus we are lead to inflation.

Before inflation at T ∼ M the density is

n(M) ∼ 10107 m−3. (10)

Assuming for the as an approximation that all matter is made
of monopolium we get,

n(2.7K ) = ρmatter (2.7K )

M
∼ 10−20 m−3, (11)

where ρmatter (2.7) is the matter density of the universe now.
Let us assume that after inflation the reheating temperature
of the universe is TBB , then at the reheating period we get by
Eq. (9) a monopolium density

n(TBB) ∼ n(2.7K )

(
TBB
2.7K

)3

. (12)

Thus from Eqs. (10) and (12) a direct relation can be estab-
lished between the reheating temperature and the number of
e-foldings required from inflation as shown in Fig. 2. For
example for a reheating temperature of 1027K the number
of required e-foldings is 37. With these properties just dis-
cussed, monopolium in its ground state, could be an impor-
tant candidate for constituent of dark matter or in any case
an exotic primordial constituent of the universe.

Can the de-excitation of monopolium from the excited
state at which it is formed to the ground state by emitting pho-
tons influence the present microwave background? The time
scale for de-excitation is large compared with the inflation
period and therefore this process occurs during the reheating
period. Assume the most favorable scenario that the excess
mass from 2M to M is emitted as photons. In Fig. 3 we show
the ratio of the energy density of the radiated photons during

Fig. 3 Decimal Log of the ratio of the energy density of the photons
radiated from monopolium to the conventional blackbody photon radi-
ation as a function on the decimal Log of the reheating temperature in
Kelvin

de-excitation ργ M (T ) = Mn(T ) given by,

ργ M (T ) = 0.26 10−1
(
T

K

)3 GeV

m3 , (13)

to the true photon density determined by

ργ (T ) = 0.47 10−5
(
T

K

)4 GeV

m3 . (14)

As shown in the figure the emitted photons do not contribute
significantly to reheating since they are a small fraction of
the photons associated to conventional blackbody radiation.

Our analysis leads to two possible scenarios depending on
the size of the inflationary process and subsequent reheating
period. If the inflationary process is around 37 e-foldings
monopolium could be a major constituent of dark matter.
However, if inflation is more dramatic, then the density of
monopolium in the Universe will be reduced considerably,
but monopolium might still form clouds of primordial non
interacting matter. The first scenario is extremely exciting
because it opens a very accessible door to extra dimensions.
The second scenario is more modest but also worth pursuing.

4 Signals of monopolium matter

Since monopolium is made of magnetically charged parti-
cles one might wonder how monopolium reacts not in empty
space but in the midst of the magnetic fields that crowd the
universe. Does its behavior give rise to observable signals
that discard monopolium as a dark matter particle?

Monopolium is a monopole–anti-monopole bound state
and in its ground state does not have a permanent dipole
moment. However, in the vicinity of a magnetic field it can
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get an induced magnetic dipole moment through its response
to the external magnetic field.

−→M = αM �B = 2g
−→

d, (15)

where
−→M is the magnetic dipole induced in the system, �B

the magnetic field, αM defines the magnetic (paramagnetic)
susceptibility and 
d = |−→
d| is the induced variation of
the pole distance and therefore a measure of the stiffness of
monopolium.

When clouds of monopolium matter traverse magnetic
fields the induced magnetic moment will transform the space
fluctuations of the magnetic field into a time dependence that
will generate electromagnetic radiation. Assume for simplic-
ity that the time dependence is harmonic,

M = M0 cos ωt . (16)

In this case monopolium matter will radiate with a power
proportional to the size of the induced magnetic moment
[35]

W = k4M2
0

3
(17)

where k is the modulus of the wave vector k = |�k| = ω
c = 2π

λ
.

Thus as a cloud of monopolium matter approaches a mag-
netic field the region close to it will emit radiation while the
one far away will not. That behavior will distinguish monop-
olium matter from other types of inert matter. In general the
emission will not be harmonic but any emission can be formu-
lated as a combination of harmonics. The crucial parameter
for observability is the magnetic moment amplitude M0.

For a spring of constant κ between two charged magnetic
poles the polarizability is

αM = g2

κ
. (18)

as can be shown classically and quantum mechanically.
We use the Born–Oppenheimer approximation to find

the spring constant of monopolium at short distances. From
Eq. (5) the d � M limit leads to

Md

M
∼ 1 + 1

16

d2

M2 . (19)

Transforming d to length dimensions becomes

Md = M + 1

16

d2

MG2 (20)

where the masses are measured in GeV , d in f m and we
use Newton’s constant as G = 1.32 10−39 f m

GeV . The spring

constant becomes therefore κ = 1
8MG2 , thus αM = 8Mg2G2

and

M0 = 8Mg2G2B, (21)

where B is measured in GeV 2.
Using the Dirac’s quantization condition as eg

h̄c = 1
2 and

the fine structure constant α = e2

h̄c we get [35]

αM = 8

(
h̄c

2e

)2

MG2 ∼ 54 MG2 f m3, (22)

thus

M0 ∼ 1.4 103MG2B f m. (23)

To summarize, monopolium matter which is electromagnet-
ically inert in the interstellar vacuum in the presence of time
dependent magnetic fields emits radiation as determined by
Eqs. (17) and (23). This radiation is a signal that differenti-
ates monopolium clouds from other exotic matter clouds. Is
this signal big enough to be detected? If affirmative it would
require the planning of experiments to confirm their exis-
tence. If not observable, monopolium could be a possible
dark matter constituent. The aim of the next section is to
estimate the size of that emission.

5 Astrophysical scenario

In order to answer the question posed in the previous sec-
tion we analyze the most favorable astrophysical scenario by
means of a simple model. Imagine a cloud of monopolium
matter moving towards the center of a galaxy. We use a very
simple model for the magnetic core of certain type of galax-
ies. We assume a basically flat galaxy, circular in shape, and
which contains two regions, the external region with radius
R such that RG > R > RC , where the magnetic field is ori-
ented in a clockwise direction, and the internal region with
radius R such that R < RC , where the magnetic field points
in an anti-clockwise direction as shown in Fig. 4. In the tran-
sition region the field is maximal and its direction rapidly
flipping.

This type of models have been studied in the literature
[36] but we simplify them further for our calculation. Let
us assume that a monopolium cloud approaches the galaxy
from the right and that the monopolium cloud is small enough
compared with the size of the galaxy (∼ 1 Kpc) that we can
treat it as a point like object with mass MC . Thus we reduce
the effective B field for the calculation to the one shown in
Fig. 5.
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Fig. 4 Schematic picture of the magnetic field in our model galaxy. B
is measured in microgauss (μG) and x, y, z in kiloparsecs (Kpc)

C

Fig. 5 One dimensional model of the magnetic field of a galaxy used
in the calculation as a function of distance

We can formulate mathematically the magnetic field by

B(R) = B0 tanh

(
R − RC

R1

)
exp

(
−

∣∣∣∣
R − RC

R0

∣∣∣∣
)

for R > 0,

= −B0 tanh

(
R + RC

R1

)
exp

(
−

∣∣∣∣
R + RC

R0

∣∣∣∣
)

for R < 0, (24)

where B0 ∼ 15 μG the largest possible field found in
galaxies, , R0 = 5 Kpc, RG ∼ 15 Kpc, RC ∼ 5 Kpc and
R1 � R0. We have chosen R1 = 1.0 pc to plot the fig-
ure. Let the monopolium cloud move from the right towards
the center with a velocity v. The moving cloud feels a time
dependent magnetic field B(t) ∼ B(R = RG − vt), where
RG is the point where we start measuring the time as can be

B

C

C

Fig. 6 Representation of the time evolution of the magnetic field seen
by the monopolium cloud

seen in Fig. 6. The most interesting region is close to RC as
we shall see.

The power emitted by a non harmonic force is [37]

W (t) ∼ M(t)
d4M(t)

dt4 ∼ α2
M B(t)

d4B(t)

dt4 . (25)

whereM(t) = αM B(t), where recall that αM is the magnetic
polarizability of monopolium, Eq. (22). The power can be
written as

W (t) ∼ α2
M B2

oγ
4b(x)

d4b(x)

dx4 (26)

where x = RG−RC−vt
R1

, γ = v
R1

, and

b(x) = tanh (x) exp (− a x) if 0 < x <
RG − Rc

R1

= tanh (x) exp (+ a x) if − Rc

R1
< x < 0 (27)

being a = R1
R0

.
The emission of power taking into account the magnetic

field direction is shown in Fig. 7a which is the emitted wave
signal. The total energy emitted in the process at the point
RG − vt is

E(vt) ∼
∫ vt

0
dvt ′W (vt ′) (28)

In Fig. 7b we show the energy emitted as the cloud pen-
etrates the galaxy noticing that most of the emission occurs
precisely where the power wave is formed around RC and
approximately during the interval ∼ [RC − R1, RC + R1].

If we integrate over the whole interval from RG to the
origin we get

E(RG) ∼ α2
M B2

0γ 3I(RG, RC , R0, R1) (29)

123



Eur. Phys. J. C (2021) 81 :229 Page 7 of 9 229

(a) (b)

Fig. 7 a Emitted power taking into account the direction of the field. b The structure of the emitted energy as a function of the penetration distance

where

I(RG, RC , R0, R1) =
∫ RG−RC

R1

− RC
R1

dx b(x)
d4b(x)

dx4 . (30)

Note that I is a numerical integral which depends on the
shape of the magnetic field and the structure of the galaxy
as determined by the galaxy parameters RG, RC , R0, R1 but
does not depend on the velocity. The only velocity depen-
dence is in the factor γ in front of Eq. (29). R1 is the less
known parameter but it is smaller than the rest of size param-
eters. We use for the other size parameters realistic values as
shown in the figures B0 = 15μG, which is the value of the
highest possible galactic magnetic fields observed in nature,
RG ∼ 15 Kpc, RC = 5 Kpc, R0 ∼ 5 Kpc and for R1 ∼ 1 pc.
This small value of R1 makes the transition from one field
direction to the other very abrupt.

Studying the dependence of the Integral on R1 for small
values of R1 we find that it goes to a good approxima-
tion like a constant times R1 as shown in Fig. 8, i.e.
I(RG, RC , R0, R1)/R1 ∼ constant. For the chosen values
of the parameters the constant factor is approximately 2.

The emitted energy when the monopolium cloud passes
across RC ,

E ∼ 2α2
M B2

0γ 3
(

R1

Kpc

)
n(T )Vcloud (31)

where n(T ) is the monopolium density which we parametrize
by a temperature and its determined by the relation

n(T ) = n(2.7K )

(
T

2.7

)3

(32)

where n(2.7) is the monopolium density today as shown in
Eq. (11), and Vcloud is the volume of the monopolium cloud.

Fig. 8 We plot the structure of the dependence of
I(RG , RC , R0, R1)/R1 as a function of R1 for small values of
this parameter

Assuming a spherical cloud we get for the energy emitted
when the cloud passes across the region RC

E = 8π

9

(
1

0.197

)
α2
M B2

0

(v

c

)3
n(2.7)

×
(

T

2.7

)3 (
Rcloud

R1

)3 (
R1

Kpc

)
GeV (33)

where we have used the following units: αM is in fm3, B0

in GeV/fm, n(2.7) in fm−3 which lead to an energy in GeV.
The duration in passing the region is governed by the cloud
diameter, 
T = 2Rcloud/v. Using a favorable case where
B0 ∼ 15 μG, Rcloud ∼ 1 Kpc, R1 ∼ 1pc, v = 0.01 c,
the emitted power is extremely small P ∼ 10−160 GeV/s
∼ 10−170 Joule/s at emission. The smallness is associated
with the smallness of the polarizability αm ∼ 10−56 fm3 and
also the small magnitude of the galactic fields. Thus monop-
olium matter associated with Kaluza–Klein monopoles is
really dark and the fact that it is stable makes it very improb-
able to detect via its decay.
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6 Concluding remarks

The existence of monopoles is a characteristic signature of
Kaluza–Klein multidimensional theories [13,14] based on
fundamental developments in lower dimensional theories
[15–17]. The topology of these theories is extremely interest-
ing, in particular the leitmotiv of my presentation is inspired
by the existence of the dipole solution [13,21,22], which has
been associated to a monopole–anti-monopole bound state.
In KK theories this state is classically stable since it does not
have the quantum numbers of the vacuum and therefore is
long lived. This state has been named monopolium. Its lowest
energy state, i.e. d ∼ 0 and Md ∼ M , is electromagnetically
inert in free space. We have studied its properties and there-
fore suggest to propose it as a dark matter constituent.

In order to get some consequences of this line of thought
we have used the details of the GPS model which makes
the presentation simpler by dealing with exact formulas. But
the outcome would be the same accepting some very general
features: the topology [15–17,21,22] ; the production mecha-
nism by the compactification transition [32–34] ; the natural-
ness of parameters in terms of MPl and G. The only formula
used from GPS can simply substituted by Md ∼ A + Bd2,
where A ∼ MPl and B ∼ (MPlG2)−1 by dimensional argu-
ments. The only difference with the present calculation would
be numerical coefficients, which are almost irrelevant, since
what matters here are exponents.

Due to its huge mass, M ∼ MPl , KK monopoles can
only be produced in large quantities via a compactification
phase transition in the early Universe [34]. Their long range
magnetic force will bind the KK poles form monopolium
since monopoles and anti-monopoles are produced in equal
quantities. We have shown that there is a good chance that
monopolium survives in detectable amounts after a conven-
tional inflationary period and that their photon emission aris-
ing by de-excitation from the initially highly excited state to
the ground state will not affect the cosmic microwave back-
ground. We have analyzed the observability of monopolium
by using its electromagnetic properties induced in the pres-
ence of astronomical magnetic fields. We have seen that its
magnetic polarizability is extremely small and thus detection
is impossible even if appearing in large monopolium clouds.
At this point we cannot think of any more favorable sce-
nario than this one. There are objects, like magnetars [39],
with much higher magnetic fields, but these fields are of very
small extension, at the level of kms, thus Vcloud would be
extremely small, and the emitted power even smaller than
the one we have calculated. The other scenario we would
like to study in the future is what happens with a cloud on
monopolium in the proximity of a supermassive black holes
in the center of the galaxies [40,41], but at this point we do not
see how this phenomenon would increase observability. Thus
KK monopolium seems very difficult to detect and therefore

an ideal candidate to be one of the constituents of dark mat-
ter. Probably monopolium clouds will be only detectable by
gravitational waves arising from their interaction with black
holes.

What really remains to investigate is the discovery of pos-
sible signals to detect KK monopoles or KK monopolium. In
this work we have assumed their existence and have described
some properties which lead to monopolium as being a pri-
mordial dark matter constituent. But a proof, even a good
argument of its existence is lacking. Its huge mass makes
production unfeasible in accelerators, the small magnitude
of its electromagnetic effects and its small present day den-
sity make it difficult to detect by astronomical observato-
ries. Thus, the aim next is to search for properties of KK
monopoles or KK monopolium, which help in proposing
experiments which might prove or disprove its existence.
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