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Abstract It is shown that the expressions for the tangential
pressure, the anisotropy factor and the radial pressure in the
Einstein–Maxwell equations may serve as generating func-
tions for charged stellar models. The latter can incorporate
an equation of state when the expression for the energy den-
sity is also used. Other generating functions are based on
the condition for the existence of conformal motion (con-
formal flatness in particular) and the Karmarkar condition
for embedding class one metrics, which do not depend on
charge. In all these cases the equations are linear first order
differential equations for one of the metric components and
Riccati equations for the other. The latter may be always
transformed into second order homogenous linear differen-
tial equations. These conclusions are illustrated by numerous
particular examples from the study of charged stellar models.

1 Introduction

Gravitation is governed by the Einstein equations of general
relativity in the simplest case. The Einstein–Maxwell equa-
tions are a system of highly non-linear differential second
order equations in partial derivatives. In astrophysics spheri-
cal symmetry is usually used, which reduces in the static case
the differential equations to ordinary ones and the deriva-
tives are with respect to the radius. The metric is diagonal
with just two components. In canonical commoving coor-
dinates there are three Einstein equations for six unknowns
– the two metric potentials and the four components of the
energy-momentum tensor Tab, namely, the energy density
μ, the radial and the tangential pressures pr and pt and the
charge l. Thus the fluid is anisotropic, which is backed by
arguments for compact objects with very high density [1]
and by a number of other reasons [2,3].

On one side these equations present expressions for the
components of the energy-momentum tensor. On the other
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side the metric potentials enter in a rather involved way as
they are obtained from the Ricci tensor and scalar. The equa-
tions remain non-linear for the metric. Durgapal and Banerjee
[4] showed that in the perfect fluid case the Einstein equa-
tions are linear of first order for a function of g11 and the
equations for pt and the anisotropy factor Δ are linear of
second order for a function of g00. Later, these findings were
generalized for charged anisotropic fluid. The reason for this
simplification was partly clarified in a previous paper [5] and
is due to the fact that the Einstein equation for pt is a Riccati
equation. It was also shown there that the Einstein equations
may serve as generating functions for stellar model solutions,
similar to the case of Δ [6]. The existence of an EOS leads
to a relation between the metric potentials.

Something more, there are common features between the
generating functions based on the equations for pt and Δ

and other ways to generate a solution, like conformal flatness,
conformal motion or the possibility to embed the spacetime in
a flat five-dimensional spacetime, namely they are also linear
or Riccati, which in the last case is truncated to a Bernoulli
equation.

In the present paper we discuss the charged anisotropic
case in a systematic way. Charged anisotropic fluid is the
general type of fluid in the static case. All other characteristics
like shear, expansion, two types of viscosity, two types of
radiation depend on time and vanish for static solutions [7].
Like in [5], we shall not study the numerous conditions for
physical viability of some new solution, but concentrate on
the mathematical issues and classification schemes, backing
them with plenty of concrete examples from the literature,
where the hard and space consuming check of viability has
already been done.

There are other methods to generate static solutions in
the neutral case. One is for perfect (isotropic) fluids, where
isotropic and canonical coordinates are used [8,9]. Different
theorems about linking the solutions were proven, or check-
ing part of the viability conditions has been done [10,11].
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Generation procedures for finding anisotropic solutions out
of known isotropic ones have also been given [12,13].

In Sect. 2 the Einstein–Maxwell equations are given, as
well as some characteristics of the model and the equations
for the anisotropy factor, the existence of conformal motion
or flatness in particular, and the Karmarkar condition. In
Sect. 3 a generating function, based on the expression for
the radial pressure is discussed. When an EOS is imposed,
the expression for the energy density is also necessary. Sec-
tion 4 gives generating function based on the expressions for
the tangential pressure. The well-known generating function,
based on the anisotropy factor, is generalized to the charged
case. In Sect. 5 we discuss the metric potentials as generating
functions, with or without a relation between them. Section 6
deals with generating solutions when the charge is not given
beforehand. Section 7 provides some discussion.

2 Einstein–Maxwell equations and definitions

The interior of static spherically symmetric stars is described
by the canonical line element

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdϕ2), (1)

where λ and ν depend only on the radial coordinate r . The
energy-momentum tensor reads

Tαβ = (μ + pt ) uαuβ + pt gαβ + (pr − pt ) χαχβ + Eαβ.

(2)

Here μ is the energy density, pr is the radial pressure, pt
is the tangential pressure, uα is the four-velocity of the fluid,
χα is a unit spacelike vector along the radial direction and
Eαβ is the electromagnetic energy tensor.

We have

Eαβ = 1

4π

(
F γ

α Fβγ − 1

4
gαβF

γ δFγ δ

)
, (3)

where Fαβ is the electromagnetic field tensor. Its only non-
trivial component F01 = −F10 = −Φ ′ is expressed through
the four-potential, which has only a time component Φ. The
prime stands for a radial derivative. The Maxwell equations
yield

Φ ′ = eν/2+λ/2l

r2 , l (r) = 4π

∫ r

0
σeλ/2r2dr, (4)

where σ is the charge density and l (r) is the total charge up
to radius r . We use relativistic units with G = 1, c = 1, k =
8π .

The Einstein equations read

8πμ + l2

r4 = 1

r2 −
(

1

r2 − λ′

r

)
e−λ, (5)

8πpr − l2

r4 = − 1

r2 (1 − e−λ) + ν′

r
e−λ, (6)

8πpt + l2

r4 = e−λ

4

(
2ν′′ + ν′2 + 2ν′

r
− ν′λ′ − 2λ′

r

)
, (7)

where μ is the matter density, pr is the radial pressure and
pt is the tangential one.

The gravitational mass in a sphere of radius r is given by

2m

r
= 1 − e−λ + l2

r2 . (8)

which may be written also as

e−λ = 1 − 2m

r
+ l2

r2 . (9)

The field equations do not contain ν, but its first and second
derivative. It is related to the four-acceleration a1, namely
2a1 = ν′.

As a whole, we have three field equations for six unknown
functions: λ, ν, μ, pr , pt and l. We can choose freely three
of them, but the model will be physically realistic if a number
of regularity, matching and stability conditions are satisfied
too. Choosing λ, ν, l means to charge a neutral solution with
the same λ and ν. Then pr and m increase, but μ and pt
decrease.

Different constraints may be imposed on the system of
Einstein–Maxwell equations. One of them is the existence
of an equation of state (EOS) pr = f (μ).

Let us introduce the anisotropic factor Δ = pt − pr . It
measures the anisotropy of the fluid. Equations (6, 7) give

− 8πΔ − 2l2

r4 = e−λ

(
−ν′′

2
− ν′2

4
+ ν′

2r
+ 1

r2

)

+e−λ λ′

2

(
ν′

2
+ 1

r

)
− 1

r2 . (10)

When Δ = 0 the fluid becomes perfect and all pressures are
equal. Charging a neutral solution decreases its Δ.

The following two requirements may be imposed on the
spacetime.

The first is conformally flat spacetime. It takes place when
its Weyl tensor vanishes. This is a particular case of space-
times with conformal motion when a Killing vector K exists.
Then the following equation has to be satisfied

LKgab = 2ψgab, (11)

where LK is the Lie derivative operator and ψ (t, r) is the
conformal factor. This implies the equation [14]

2ν′′ + ν′2 = ν′λ′ + 2ν′

r
− 2λ′

r
+ 4

r2 (1 + s) eλ − 4

r2 , (12)

where s is a constant of integration. The spacetime. is con-
formally flat when s = 0.

In recent years spacetimes, which are embeddings of class
one, have been widely discussed. They can be embedded in a
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five-dimensional flat spacetime. This requires the Karmarkar
relation between the components of the Riemann tensor [15]

R1010R2323 − R1212R3030 = R1220R1330. (13)

It transforms into a differential equation for λ and ν:

2
ν′′

ν′ + ν′ = λ′eλ

eλ − 1
. (14)

The charge does not enter Eqs. (12, 14), hence, the sys-
tem (5–7) represents in these cases the charging of a neutral
solution with conformal motion or an embedding of class
one.

We have shown in the uncharged case [5] that Eqs. (5, 6,
7, 10, 12) are linear with respect to y = e−λ while Eq. (14) is
linear for y = eλ. Equation (5) does not contain a1, while Eq.
(6) gives an expression for it. The others belong to two types
of equations with respect to a1 – Bernoulli or Riccati. The
last may be transformed into linear equation for u = eν/2.
Now we shall show that charging of the fluid does not alter
these properties.

The Riccati equation is given by

gy′ = f2y
2 + f1y + f0 (15)

and no general solution is known. In particular cases it
reduces to integrable equations. Thus when f2 = 0 it turns
into a linear equation, which has the general solution [16]

y = CeF + eF
∫

e−F f0
g
dr, F =

∫
f1
g
dr. (16)

When f0 = 0 it becomes a Bernoulli equation with n = 2.
Then 1/y satisfies a linear equation and is also integrable.
Every Riccati equation may be transformed into a second-
order homogenous linear equation for a function u [5,16]. In
the case f2 = −g we have

f2u
′′ + f1u

′ + f0u = 0, u = exp
∫

ydr. (17)

The substitution y = u′/u leads back to Eq. (15).

3 The energy density and the radial pressure

In the following we consider l as known. Equation (5) for the
energy density does not contain a1. It is linear with respect
to y = e−λ and can be written as

r y′ = −y + 1 − 8πμr2 − l2

r2 . (18)

Equation (9) may be written as

y = 1 − 2m

r
+ l2

r2 . (19)

Any equation, linear in y may be transformed into an equa-
tion, linear in m with the use of the above formula.

Equation (6) for the radial pressure may be written as

8πprr
2 = (2a1r + 1) y − 1 + l2

r2 . (20)

It may be regarded as an expression for pr or y

y = 8πprr2 + 1 − l2

r2

2ra1 + 1
, (21)

or a1

2a1 = ν′ = 8πprr2 + 1 − y − l2

r2

r y
. (22)

The potential ν is found by a simple quadrature.
Thus, Eq. (20), which contains pr , y and a1, is the simplest

generating function for any of them, when the other two are
known. Solutions with given y (or m) and pr may be found
in [17–21].

An EOS can be incorporated in this scheme, pr = f (μ)

or

2r ya1 = 1 − l2

r2 − y + 8πr2 f

⎛
⎝−r y′ + y − 1 + l2

r2

8πr2

⎞
⎠ ,

(23)

which follows from Eqs. (18, 20). Obviously, the resulting
equation is not linear in y in general, but still may be solvable
by choosing an ansatz for y. Anyway, it’s an expression for a1

in terms of y and is a relation between the metric potentials.
Mainly EOS with ansatz for y were used. Thus quadratic
EOS is discussed in [22–24], polytropic EOS in [25–27],
and other EOS in [28–30].

A special case is the linear EOS (LEOS) pr = aμ − b
with constant 0 ≤ a ≤ 1 and the bag constant b ≥ 0, which
includes also the case pr = 0. Equation (23) becomes

2r ya1 = (a + 1)

(
1 − l2

r2 − y

)
− ary′ − 8πbr2. (24)

This is an expression for a1 when y and l are given and was
used for concrete ansatze in [31–39].

Equation (24) is also a linear equation for y

ary′ = − (2ra1 + a + 1) y + (a + 1)

(
1 − l2

r2

)
− 8πbr2.

(25)

It can be solved by Eq. (16) when a, b, a1 are known. The
factor F = ∫ f1

g dr is the same as in the uncharged case [5].

We have a singular eF for r = 0, hence C = 0. Then the
solution is

y =
∫ [

(a + 1)
(

1 − l2

r2

)
− 8πbr2

]
(reν)1/a dr

a
(
ra+1eν

)1/a . (26)
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The relation between the energy density and the mass is
more complicated for a charged fluid. Integrating Eq. (5) and
using formula (9) we get

m = 1

2

∫ (
8πμr2 + l2

r2

)
dr + l2

2r
. (27)

This expression reduces to the one in the neutral case when
l = 0. It may be written also as

m′ = 4πμr2 + ll ′

r
. (28)

This formula shows that when we pass from y to m Eq. (18)
simplifies.

4 The tangential pressure and the anisotropic factor

Equation (7) is an expression for pt and can be written as a
linear equation for y

1

2

(
a1 + 1

r

)
y′ = −

(
a′

1 + a2
1 + a1

r

)
y + 8πpt + l2

r4 . (29)

Its solution from Eq. (16) reads

y = eF
(
C +

∫
zeνe

2
∫ dr

r2z

(
16πpt + l2

r4

)
dr

)
, (30)

where

a1 + 1

r
= ν′

2
+ 1

r
≡ z, (31)

eF = z−2e−νe
−2

∫ dr
r2z . (32)

The term eF is the same as in the uncharged case. Due to Eq
(9), Eq. (29) is also linear with respect to the mass.

Equation (7) is also a Riccati equation for a1

ya′
1 = −ya2

1 −
(
y

r
+ y′

2

)
a1 − y′

2r
+ 8πpt + l2

r4 (33)

and may be solved for particular choices of y and pt . It can
be transformed into a linear second order homogenous dif-
ferential equation following Eqs. (16, 17)

yu′′ +
(
y

r
+ y′

2

)
u′ +

(
y′

2r
− 8πpt − l2

r4

)
u = 0, (34)

where

u = eν/2 (35)

Sometimes it may be solved easier than the original Riccati
equation, since many special functions are defined by such
equations. It remains in the same time linear (and integrable)
first order equation for y = e−λ or m. It can be called a
double linear equation. Thus, like pr , the expression (7) for
pt is a generating function for charged stellar models, when
two of the quantities pt , y (or m) and a1 are known.

The generating functions based on Δ are found in a similar
way. Eq (10) is linear with respect to y (or m) and may be
rewritten as(
a1 + 1

r

)
y′ = −2

(
a′

1 + a2
1 − a1

r
− 1

r2

)
y

−2

(
1

r2 − 8πΔ − 2l2

r4

)
.

(36)

After some transformations it becomes

y′ = −2

(
z′

z
+ z − 3

r
+ 2

r2z

)
y

−2

z

(
1

r2 − 8πΔ − 2l2

r4

)
. (37)

This is the generalisation of Eq. (8) [6] to the charged case
when the different definition of their Δ is taken into account
and is still integrable. The result is

y = r6z−2e
− ∫ (

4
r2z

+2z
)
dr

[
C−2

∫
r−8z

(
1 − 8πΔr2 − 2l2

r2

)
e
∫ (

4
r2z

+2z
)
dr
dr

]
.

(38)

The generating potentials are Δ, z and l, the second, due
to Eq (31), is equivalent to a1. This generating function
encompasses the important cases of charged perfect fluid
when Δ = 0 [40] and neutral perfect fluid when Δ = 0,
l = 0. Solutions with given Δ, a1 and l are discussed [41–
43], where the mass is used instead of y, [44–50]. There are
also solutions with Δ = 0 [51,52].

Equation (36) is also a Riccati one for a1, the Riccati
structure a′

1 + a2
1 being brought in Δ by pt . It can be written

as

2ya′
1 = −2ya2

1 +
(

2y

r
− y′

)
a1 + 2y − 2 − r y′

r2

+16πΔ + 4l2

r4 (39)

and solved for particular Δ, y and l. Finally, it can be lin-
earized following Eq. (17) into

−2yu′′ +
(

2y

r
− y′

)
u′ +

(
2y − 2 − r y′

r2

+16πΔ + 4l2

r4

)
u = 0, (40)

where u is given by Eq. (35). Thus, once again, Eq. (40) is
doubly linear, like Eq. (34). Solutions of this equation were
presented [53–56] and with Δ = 0 [57]. In total, Eq. (10) is
a generating function for stellar models, when l and two of
the quantities Δ, y (or m) and a1 are known. The differential
equations for y and u are linear.
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5 The metric potentials as generating functions

The simplest way to generate solutions in the charged case
is to choose independently the two generating potentials λ

and ν and add to them a third potential l. Thus any neutral
solution may be charged [58,59].

Some important stellar models require a relation between
λ and ν, reducing the generating functions to two. For exam-
ple this is the case of charged perfect fluid, when in Eq. (10)
Δ = 0. Similar example are spacetimes admitting conformal
motion. The metric potentials of such spacetimes satisfy Eq.
(12). This equation is solved by a series of transformations
[14]. Surprisingly, it is also a linear equation in y (or m) and
a Riccati equation for a1. It can be written as [5]

(
1

r
− a1

)
y′ = 2

(
a′

1 + a2
1 − a1

r
+ 1

r2

)
y − 2 (1 + s)

r2

(41)

or

2ya′
1 = −2ya2

1 +
(

2y

r
− y′

)
a1 + y′

r
+ 2 (1 + s) − 2y

r2 .

(42)

Once again g = − f2 in Eq. (15), so it may be transformed
into a linear equation, analogous to Eq. (17)

− 2yu′′+
(

2y

r
− y′

)
u′+

(
y′

r
+ 2 (1 + k) − 2y

r2

)
u=0,

(43)

where u is given by Eq. (16). Its solution was found [14],
possesses three branches

eν = Ar exp

(√
1 + s

∫
eλ

r
dr

)

+Br exp

(
−√

1 + s
∫

eλ

r
dr

)
, 1 + s > 0, (44)

eν = Ar
∫

eλ

r
+ Br, 1 + s = 0, (45)

eν = Ar exp

(√− (1 + s)
∫

eλ

r
dr

)

+Br exp

(
−√− (1 + s)

∫
eλ

r
dr

)
, 1 + s < 0.

(46)

and do not depend on the charge. Solutions with conformal
motion were discussed recently [60,61], [62]. These expres-
sions were put into Eq. (36) and another equation for y arises,
which is simpler [63]. Solutions based on ψ in Eq. (12) were
studied [64].

Another example is the Karmarkar condition for embed-
ding of class one, Eq (14) [5]. It may be written as

a′
1 = −a2

1 +
[

ln

(
1 − y

y

)]′ a1

2
. (47)

The would be Riccati equation becomes a Bernoulli one. It
is also a Bernoulli equation for y

− a1

2
y′ =

(
a′

1 + a2
1

)
y −

(
a′

1 + a2
1

)
y2. (48)

All these equations are solvable. Their integration may be
done directly, without using the general formulas and we
obtain the well-known results

eλ = Cν′2eν + 1, (49)

eν =
(
A + B

∫ √
eλ − 1dr

)2

. (50)

where A, B,C are integration constants. Thus when one of
the metric coefficients is given, we can find the other. The
solution may be charged by introducing a known l. It only
changes the system of Einstein–Maxwell equations (5–7).
Solutions with given λ and l were found [65–67]. Solutions
with known ν and l were also studied [68,69].

6 Solutions when the charge is not given beforehand

Up to now we have discussed cases with given l2. However,
solutions may be found when this is not so. It is clear that the
LEOS Eq. (35) is also an expression for l2

(a + 1)
l2

r2 = −ary′ − (2ra1 + a + 1) y + a + 1 − 8πbr2.

(51)

We can find l2 when y and a1 are known, i.e. when λ and ν

are known and a LEOS is given [70].
Equation (36) can also serve as an expression for l2

4l2

r4 =
(
a1 + 1

r

)
y′ + 2

(
a′

1 + a2
1 − a1

r
− 1

r2

)
y

+2

(
1

r2 − 8πΔ

)
(52)

when y, a1 and Δ are known. Thus, we can give an ansatz
for λ, add the Karmarkar condition to find ν and set Δ = 0
[71–75]. The isotropic condition may be written also as Eq.
(40), another expression for l2

− 4l2

r4 = −2y
u′′

u
+

(
2y

r
− y′

)
u′

u
+ 2y − 2 − r y′

r2

+16πΔ, (53)

where u = eν/2. Fixing y, setting Δ = 0 (perfect fluid)
and with some simplifying assumption one can solve this
equation [76].
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Together, Eqs. (51, 52) give another linear equation for
y which depends only on a1 and Δ. Solving it, we find y
and then l2 from any of Eqs. (51, 52). There are particular
examples of this approach [77–79].

One can use another EOS, e.g. the Chaplygin EOS

pr = α1μ − α2

μ
, (54)

where α1, α2 are positive constants. Summing Eqs. (5, 6) we
obtain

pr = G (λ, ν) − μ, (55)

where G is some function. Replacing (55) into (54) yields a
quadratic equation for μ, which is solvable

(α1 + 1) μ2 − Gμ − α2 = 0. (56)

The metric components λ and ν may be supplied directly
[80]. Another way is to fix one of them, e.g. ν and impose
the Karmarkar condition to find λ [81].

Similar is the situation with the quadratic EOS

pr = α1μ
2 + α2μ + α3. (57)

Equation (55) shows that this is a quadratic equation for μ

α1μ
2 + (α2 + 1) μ + α3 − G = 0 (58)

and may be solved too.
Another popular EOS is the modified Van der Vaals one

pr = α1μ
2 + α2μ

1 + α3μ
. (59)

It becomes

α1α3μ
3 + (α1 + α3) μ2 + (α2 + 1 − α3G) μ − G = 0.

(60)

This is a cubic equation for μ and is still solvable.
Finally, let us discuss the polytropic EOS

pr = αμ1+ 1
N , (61)

where α is a constant and N is the polytropic index. It can
be written with the help of Eq. (55) as

αNμN+1 − (G − μ)N = 0. (62)

This equation is quadratic for N = 1, cubic for N = 2 and
quartic for N = 3 and therefore solvable for μ for these
values of N .

7 Discussion

In a previous paper [5] we have studied the existence of gen-
erating functions, giving solutions for uncharged stellar mod-
els. In the present one we do the same for charged models.
The addition of charge does not alter the general scheme of

using the Einstein equations as generating functions. Now
three of the four characteristics of the model should be given
– y = e−λ, a1 = ν′/2, l and either pr , pt or Δ. This approach
is greatly simplified, because the Einstein equations with
charge are still linear first order differential equations for y
and linear or Riccati equations for the four-acceleration a1.
The linear equations are always integrable in quadratures,
while the Riccati equations are integrable in many particular
cases. There is a standard mathematical procedure to trans-
form them into linear homogenous differential equations of
second order for u = eν/2 [16]. They are the ”missing link”
between the original form of the Einstein equations and their
linear version, which appears out of nowhere in [4] for neutral
perfect fluids. It holds also for anisotropic and charged fluids.
The source of the Riccati structure a′

1 + a2
1 still comes from

the component R0101 of the Riemann tensor, whose expres-
sion is the same in the charged case. Equation (8) shows that
the mass m still satisfies a linear equation and may replace
y.

There are two main ways of generating solutions. The first
one accepts that l is a given function. Then the stellar mod-
els for neutral fluids are just charged. If the initial model is
physically realistic this is rather probable for its charged gen-
eralization. The simplest generating function is Eq. (6) for
pr , which is an expression for pr , a1, y or l2 without solving
any equations. Equation (5) for the energy density cannot be
used as a generating function, because it does not contain ν.
However, when the model has an EOS, the combination of
Eqs. (5) and (6) works as a generating function, producing a
relation between the two metric potentials and l2. The equa-
tion for Δ was used [6] to obtain λ when ν and Δ are given. It
becomes a generating function for perfect fluid models when
Δ = 0. We have generalized it to the charged case. Equation
(7) for pt can play a similar role but is rarely used.

Of course, the simplest generating potentials are λ and ν

and l. There are physical reasons that sometimes impose a
relation between the metric components. This happens when
an EOS exists.

A second important case is that of spacetimes admitting
conformal motion (conformal flatness in particular). The sur-
prising fact is that this relation is also a linear differential
equation for y or u and a Riccati one for a1. It does not
depend on the charge.

A third well-known example are spacetimes of embed-
ding class one, obeying the Karmarkar condition. Here there
is a minor difference – the relation is a linear equation for
1/y and a Bernoulli equation for y, which is also integrable.
Furthermore, it is a Bernoulli equation with quadratic term
for a1. The Riccati structure, discussed above, is still present
but there is no free term. It is charge independent too.

The second way of generating solutions is when l is not
given beforehand. In the previous section we have outlined
the different ways to solve the Einstein equations in this case.
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One of them relies on the existence of an EOS. It leads to
algebraic equations for most of the popular EOS, which are
soluble up to fourth order included. This second way more
often produces models with unphysical features. However,
the numerous examples of physically realistic stellar mod-
els given in Sect. 6 show that this problem may be solved
successfully.

It is interesting whether in some of the alternative theories
of gravitation similar simplifications occur.
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