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Abstract The study of the motion of photons around mas-
sive bodies is one of the most useful tools to find the
geodesic structure associated with said gravitational source.
In the present work, different possible paths projected in
an invariant hyperplane are investigated, considering a five-
dimensional Reissner–Nordström anti-de Sitter black hole.
Also, we study some observational tests, such as the bend-
ing of light and the Shapiro time delay effect. Mainly, we
found that the motion of photons follows the hippopede of a
Proclus geodesic, which is a new type of trajectory of the sec-
ond kind, the Limaçon of Pascal being their analog geodesic
in four-dimensional Reissner–Nordström anti-de Sitter black
hole.
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1 Introduction

Extra-dimensional gravity theories have a long history, that
begins with an original idea propounded by Kaluza & Klein
[1,2] as a way to unify the electromagnetic and gravitational
fields, and nowadays finds a new realization within mod-
ern string theory [3,4]. In spacetime dimensions D ≥ 4,
the spherically symmetric and static black hole solutions of
general relativity in vacuum are known as Schwarzschild–
Tangherlini black holes [5]. Additionally, the most natural
extension of general relativity to higher dimensions that gen-
erates field equations of the second order is Lovelock gravity.
Remarkably, the action contains terms that appear as correc-
tions to the Einstein–Hilbert action in the context of string
theory. In five spacetime dimensions the Lovelock lagrangian
is given by the Einstein–Hilbert term and the Gauss–Bonnet
term, which is quadratic in the curvature and it is a topolog-
ical invariant in four dimensions. An exact black hole solu-
tion to the field equations of Einstein–Gauss–Bonnet theory
was found in [6]. The geodesics of massive test particles in
higher dimensional black hole spacetimes have been studied
in Refs. [7–10], and it was shown that a particular feature
of Reissner–Nordstrom spacetimes is that bound and escape
orbits traverse through different universes, and the study of
the motion of particles in five-dimensional spacetimes has
been performed in Refs. [11–19].

The spacetime that we consider in this study is a gener-
alization of the Reissner–Nordström anti-de Sitter (RNAdS)
black hole to five dimensions, which is interesting in the
context of the AdS/CFT correspondence [20–23]. A global
five-dimensional Schwarzschild AdS solution was consid-
ered to describe a thermal plasma of finite extent expanding
in a slightly anisotropic fashion [24]. Also, it was shown that
four- and five-dimensional charged black holes in AdS space-
time could be obtained by compactifications of the type IIB
supergravity in 11 dimensions. The properties of a Reissner–
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Nordstrom black hole in d-dimensional anti-de Sitter space-
time have been studied in Refs. [25,26], and the null geodesic
structure of four-dimensional RNAdS black holes was ana-
lytically investigated in Ref. [27], where, concerning the
radial motion, it was shown that the photons arrive at the
event horizon in a finite proper time, and infinite coordinate
time, similar to the Schwarzschild case. Also, concerning
the angular motion of photons it was shown that there are
five different kinds of motion for trapped photons, depend-
ing on the impact parameter of the orbits that corresponds to
orbits where the photon arrives from infinity and falls into the
event horizon, photons moving along the critical orbits that
represent trajectories that come from infinity and fall asymp-
totically into a circle, photons falling from infinity arriving
at some minimal distance and then going back to the infinity
again, photon orbits described by Pascal Limaçon, which is
an exclusive solution of a black hole with the cosmological
constant but it does not depend on the value of the cosmo-
logical constant, and finally confined orbits for the photons.

The aim of this work is to study the null geodesics in a
five-dimensional charged black hole, and to see if it is possi-
ble to find orbits for the motion of photons different from the
previously mentioned ones for a RNAdS spacetime. Here, we
will find the null structure geodesic analytically, and interest-
ingly enough we find a new kind of orbit called “hippopede
geodesics”, which to the best of our knowledge is the first
time that has been reported in the literature.

The five-dimensional spacetime considered allows us to
study the role of extra dimensions, for instance, a five-
dimensional Myers–Perry black hole spacetime was studied
in Ref. [19], where the metric describes a spacetime with two
spin parameters, and it was found that circular orbit geodesics
are allowed, and the deflection angle and the strong deflection
limit coefficients differ from four-dimensional Kerr black
hole spacetime due to the presence of two spin parameters
in the higher dimension. Another spacetime studied corre-
sponds to a geometry described by a spherically symmetric
four-dimensional solution embedded in a five-dimensional
space, known as a brane-based spherically symmetric solu-
tion, analyzed in Ref. [16], where the authors found that
the extra dimension contributes to the existence of bounded
orbits for the photons, such as planetary and circular sta-
ble orbits. The spacetime considered in this work could be
compared with four-dimensional RNAdS black holes, for the
five-dimensional spacetime there is no additional parameter
apart from the dimension added, but the event horizon is not
the same due to the change in the lapse function, which could
explain the differences between four- and five-dimensional
spacetimes. However, as we will see, the effect of additional
dimensions could be the existence of the hippopede of the
Proclus geodesic found here, versus its analog geodesic in
four-dimensional RNAdS black hole, i.e., the Limaçon of
Pascal [27], both trajectories of the second kind.

It is worth mentioning that the same spacetime was con-
sidered in Ref. [11], where the null geodesics were studied
from the point of view of the effective potential formalism
and the dynamical systems approach. The radial and circu-
lar trajectories were investigated, and it was found that pho-
tons will trace out circular trajectories for only two distinct
values of the specific radius of the orbits. The dynamical
systems analysis was applied to determine the nature of tra-
jectories and the fixed points, and it was shown that the null
geodesics have a unique fixed point and these orbits are ter-
minating orbits. Also, the thermodynamics and the stability
of the spacetime under consideration were studied from a
thermodynamic point of view, and there were found special
conditions on the black hole mass and the black hole charge
where the black hole is in stable phase [28].

The paper is organized as follows. In Sect. 2 we give a
brief review of the spacetime considered. Then, in Sect. 3,
we establish the null structure and we perform some test as
the bending of light and the Shapiro time delay effect. Finally,
we conclude in Sect. 4.

2 Five-dimensional Reissner–Nordström anti-de Sitter
black holes

Schwarzschild and Reissner–Nordström black hole solutions
in d spacetime dimensions were presented by Tangherlini [5].
The five-dimensional RNAdS black holes are solutions of the
equations of motion that arise from the action [26]

S = − 1

16πG5

∫
d5x

√−g(R − 2Λ − F2) , (1)

where G5 is the Newton gravitational constant in five-
dimensional spacetime, R is the Ricci scalar, F2 represents
the electromagnetic Lagrangian, and Λ = −6/�2 is the cos-
mological constant where � is the radius of AdS5 space. The
static and spherically symmetric metric that solves the field
equation derived from the above action is given by

ds2 = − f (r) dt2 + 1

f (r)
dr2 + r2 dΩ2

3 , (2)

where f (r) for a (n + 1)-dimensional RNAdS spacetime is
the lapse function given by

f (r) = 1 − m

rn−2 + q2

r2n−4 + r2

�2 , (3)

where m and q are arbitrary constants, and dΩ2
3 = dθ2 +

sin2 θ dφ2 + sin2 θ sin2 φ dψ2 is the metric of the unit 3-
sphere. Also, m is related to the ADM mass M of the space-
time through

M = (n − 1)ωn−1

16πG
m , (4)
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where ωn−1 is the volume of the unit (n − 1)-sphere. The
parameter q yields the charge

Q = √
2(n − 1)(n − 2)

(ωn−1

8πG

)
q . (5)

In this work, we consider n = 4, m → (2M)2, and q2 → Q4,
so the metric is

f (r) = 1 −
(

2M

r

)2

+
(

Q2

r2

)2

+
(r

�

)2 ; (6)

thereby, M and Q are related to the total mass M and the
charge Q of the spacetime via the relations

(2M)2 = 16πGM
(n − 1)ωn−1

, Q2 = 8πGQ√
2(n − 1)(n − 2)ωn−1

.

(7)

This spacetime allows two horizons to occur (the event hori-
zon r+ and the Cauchy horizon r−), which are obtained from
the equation f (r) = 0, or

P(r) ≡ r6 + �2 r4 − 4M2�2 r2 + �2 Q4 = 0 . (8)

Now, with the change of variable x = r2 − �2/3, we obtain
P(x) = x3 − αx + β, where

α = �2
(

4M2 + �2

3

)
, β = �2

(
Q4 + 4M2�2

3
+ 2 �4

27

)
,

(9)

and the event and Cauchy horizons are given, respectively,
by

r+ =
√

ξ0 cos ξ1 − �2

3
, (10)

r− =
√

ξ0

2

(√
3 sin ξ1 − cos ξ1

)
− �2

3
, (11)

where ξ0 = 2
√

α/3 and ξ1 = 1
3 arccos

(
− 3β

2

√
3
α3

)
. Also,

the extremal black hole is characterized by the degenerate
horizon rext = r+ = r−, which is obtained when

4�4
(

4M2 − Q2
)

+ 8�2 M2
(

32M4 − 9Q4
)

− 27Q8 = 0.

(12)

In Fig. 1, we plot curves for different values of Q that show
the behavior of the lapse function against r , and we observe
that when the charge of the black hole Q increases we have
a transition from a black hole to a naked singularity, passing
by the extremal case.

Note that when Q = 0 the lapse function reduces to the
five-dimensional Schwarzschild anti-de Sitter black hole, and
the spacetime allows one horizon to occur (the event horizon
r+) given by

r+ = � sinh

[
1

2
sinh−1

(
4M

�

)]
.

Fig. 1 The behavior of the metric function f (r), with M = 1, � = 10,
for different values of Q

In Fig. 1, the blue line corresponds to the case Q = 0, and
we observe that, for the same values of Λ and M , the event
horizon is greater for an uncharged than for a charged black
hole.

3 The null structure

In order to obtain a description of the allowed motion in the
exterior spacetime of the black hole, we use the standard
Lagrangian formalism [29–31], so that the corresponding
Lagrangian associated with the line element (2) reads

L = − f (r) ṫ2

2
+ ṙ2

2 f (r)
+ r2

2
LΩ , (13)

where LΩ is the angular Lagrangian:

LΩ = θ̇2 + sin2 θ φ̇ + sin2 θ sin2 φ ψ̇2 , (14)

and the dot indicates differentiation with respect to an
affine parameter λ along the geodesic. Since the Lagrangian
(13) does not depend on the coordinates (t, ψ), they are
cyclic coordinates and, therefore, the corresponding conju-
gate momenta πq = ∂L/∂q̇ are conserved. Explicitly, we
have

πt = − f (r) ṫ ≡ −E , (15)

πψ = r2 sin2 θ sin2 φ ψ̇ = L , (16)

where E is a positive constant that describes the temporal
invariance of the Lagrangian, which cannot be associated
with energy because the spacetime defined by the line ele-
ment (2) is not asymptotically flat, whereas the constant L
stands for the conservation of angular momentum, under
which it is established that the motion is performed in an
invariant hyperplane. Here, we claim to study the motion in
the invariant hyperplane θ = φ = π/2, so θ̇ = φ̇ = 0 and,
from Eq. (16),
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ψ̇ = L

r2 . (17)

Therefore, using the fact that L = 0 for photons together
with Eqs. (15) and (16), we obtain the following equations
of motion:(

dr

dλ

)2

= E2 − V 2(r) , (18)

(
dr

dt

)2

= f 2(r)

E2

[
E2 − V 2(r)

]
, (19)

(
dr

dψ

)2

= r 4

L2

[
E2 − V 2(r)

]
, (20)

where the effective potential V 2(r) is defined by

V 2(r) ≡ L2 f (r)

r2 = L2

�2 + L2

r2 − 4M2 L2

r4 + Q4L2

r6 . (21)

The effective potential for the five-dimensional Schwarzschild
anti-de Sitter black hole is obtained by setting Q = 0 in the
above equation.

3.1 Radial motion

For the radial motion the condition L = 0 holds, which
immediately yields a vanishing effective potential, V 2 = 0.
Consequently, the equations governing this kind of motion
are

dr

dλ
= ±E (22)

and

dr

dt
= ± f (r) , (23)

where the sign + (−) corresponds to massless particles mov-
ing toward spatial infinity (the event horizon). Assuming that
photons are placed at r = r̄i when t = λ = 0, a straightfor-
ward integration of Eq. (22) yields

λ(r) = ±r − r̄i

E
, (24)

which is plotted in Fig. 2. We observed that with respect to
the affine parameter the photons arrive at the horizon in a
finite affine parameter, and when the photons move in the
opposite direction, they require an infinite affine parameter
to arrive at infinity, which does not depend on the charge of
the black hole.

This behavior is essentially the same as that reported for
the four-dimensional counterpart [27]. On the other hand,
Eq. (23) can be rearranged and then integrated leading to the
following expression:

t (r) = ± �2
3∑

j=1

δ j t j (r) , (25)

where the functions t j (r) are given explicitly by

t1(r) = ln

∣∣∣∣ r̄i + r+
r̄i − r+

r − r+
r + r+

∣∣∣∣ , (26)

t2(r) = ln

∣∣∣∣ r̄i + r−
r̄i − r−

r − r−
r + r−

∣∣∣∣ , (27)

t3(r) = tan−1(r/R) − tan−1(r̄i/R) , (28)

with the corresponding constants,

δ1 = r3+
2(r2+ − r2−)(r2+ + R2)

, (29)

δ2 = −r3−
2(r2+ − r2−)(r2− + R2)

, (30)

δ3 = R3

(r2+ + R2)(r2− + R2)
, (31)

R =
√

�2 + r2+ + r2− . (32)

Thus, an observer located at r̄i will measure an infinite time
for the photon to reach the event horizon, which also occurs in
3+1 dimensions. Nevertheless, when the test particles move
in the opposite direction, they require a finite coordinate time
to arrive at infinity, given by the relation

t∞ = lim
r→∞ t (r)

or, explicitly (with t̃∞ ≡ t∞/�2 − δ3π/2)

t̃∞ = δ1 ln

∣∣∣∣ r̄i + r+
r̄i − r+

∣∣∣∣ + δ2 ln

∣∣∣∣ r̄i + r−
r̄i − r−

∣∣∣∣ − δ3 arctan

(
r̄i

R

)
.

(33)

All previously described by Eqs. (24) and (25) is shown in
Fig. 2. It is interesting to note that the behavior given in (33)
also appears in Lifshitz spacetimes [32,33], where it was
argued that this corresponds to a general behavior of these
manifolds [34], and also occurs in the three-dimensional
rotating Hořava–AdS black hole [35].

On the other hand, for Q = 0 Eq. (24) is valid. However,
the solution for the coordinate time is given by

t (r) = ± �2
2∑

j=1

ζ j t j (r) , (34)

t1(r) = ln

∣∣∣∣ r̄i + r+
r̄i − r+

r − r+
r + r+

∣∣∣∣ , (35)

t2(r) = tan−1

[
r

(r2+ + �2)
1
2

]
− tan−1

[
r̄i

(r2+ + �2)
1
2

]
,

(36)
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Fig. 2 Plot of the radial motion of massless particles. Particles moving
to the event horizon, r+, cross it with a finite affine parameter, but an
external observer will see that photons take an infinite (coordinate) time
to do it. Here we have used the values E = 100, � = 10, and r̄i = 10.
Black-thin line for Q = 1.2, and r+ ≈ 1.80. Blue line for Q = 0, and
r+ ≈ 1.96

and

ζ1 = r+
2(2r2+ + �2)

, (37)

ζ2 = (r2+ + �2)
1
2

2r2+ + �2
. (38)

Also, in the asymptotic region, r → ∞, the time to arrive at
infinity reduces to

t∞ = �2ζ1 ln

∣∣∣∣ r̄i + r+
r̄i − r+

∣∣∣∣ + �2ζ2

[
π

2
− tan−1

(
r̄i

R

)]
. (39)

It is possible to observe in Fig. 2 that an observer located
at r̄i will measure an infinite coordinate time for the photon
to reach the event horizon, and it does not depend on the
charge of the black hole. However, when the photons move
in the opposite direction, they require a finite coordinate time
to arrive at infinity, which decreases with the charge of the
black hole.

3.2 Angular motion

Now we study the motion with L �= 0, so we put our attention
in Eq. (20), which, after using (21), is conveniently written
as
(

r
dr

dψ

)2

=
(

1

b2 − 1

�2

)
r6 − r4 + 4M2 r2 − Q4

= r6

B2 − r4 + 4M2 r2 − Q4 , (40)

where b ≡ L/E is the impact parameter and B is the anoma-
lous impact parameter, which is a typical quantity of the
anti-de Sitter spacetimes [30].

Fig. 3 Plot of the effective potential of photons. Here we have used
the values L = 1, M = 1, � = 10, ri = 10, Q = 1.2 (black line), and
Q = 0 (blue line)

In a first approach, it is necessary to perform a qualitative
analysis of the effective potential. So, we can observe in Fig.
3 the existence of a maximum potential located at

ru = 2
√

2M cos

[
1

2
sin−1

(√
3Q2

4M2

)]
. (41)

Therefore, Eu is given by V (ru), and it corresponds to the
energy of the photons for which the potential is maximum.
Also, it is possible to define E� given by V (r → ∞) =
L/�, and b� = L/E� = � as its impact parameter. Thus,
for orbits of the first kind, the parameter b� is not allowed
for photons, and the deflection of the light is allowed for
E� < E < Eu (bu < b < �), see Fig. 3; thereby, the
radius of AdS5 space � physically corresponds to an impact
parameter that the photons cannot reach. On the contrary, for
orbits of the second kind, with 0 < E < Eu (bu < b < ∞),
the photons can have an impact parameter � by describing the
hippopede geodesic, with a return point r0, see Fig. 3. Note
that for Q = 0, ru(Q = 0) = 2

√
2M , and it is greater than

ru for RNAdS; however, the maximum value of the potential
Eu(Q = 0) is smaller than Eu for RNAdS. Also, the r0 value
is the same for the two spacetimes.

Next, based on the impact parameter values and Fig. 3, we
present a brief qualitative description of the allowed angular
motions for photons in RNAdS.

– Capture zone: If 0 < b < bu , photons fall inexorably to
the horizon r+, or escape to infinity, depending on the ini-
tial conditions, and its cross section, σ , in this geometry
is [36]

σ = π b2
u = π r2

u

f (ru)
. (42)
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– Critical trajectories: If b = bu , photons can stay in one of
the unstable inner circular orbits of radius ru . Therefore,
the photons that arrive from the initial distance ri (r+ <

ri < ru , or ru < ri < ∞) can asymptotically fall to a
circle of radius ru . The affine period in such orbit is

Tλ = 2π r2
u

L
, (43)

and the coordinate period is

Tt = 2π bu = 2π ru√
f (ru)

. (44)

– Deflection zone. If bu < b < b�, this zone presents orbits
of the first and the second kind. The orbits of the first
kind are allowed in the interval rD ≤ r < ∞, where
the photons can come from a finite distance or from an
infinity distance until they reach the distance r = rD

(which is a solution of the equation V (rD) = E), and
then the photons are deflected. Note that photons with
b ≥ b� = � are not allowed in this zone. The orbits of
the second kind are allowed in the interval r+ < r ≤ rF ,
where the photons come from a distance greater than the
event horizon, then they reach the distance rF (which is
a solution of the equation V (rF ) = E) and then they
plunge into the horizon.

– Second kind and hippopede geodesic . If bu < b < ∞,
the return point is in the range r+ < r < ru , and then the
photons plunge into the horizon. However, when b = b� a
special geodesic can be obtained, known as the hippopede
of Proclus.

On the other hand, it was argued that an introduction
of a negative tidal charge in four-dimensional Reissner–
Nordström black holes can describe black hole solutions in
theories with extra dimensions in Ref. [19]. Also, by con-
sidering a naked singularity, i.e., q = Q2/M2 > 1 the
existence was shown of a critical value of q = qc = 9/8
for a shadow existence; thereby, for q ≤ 9/8 the Reissner–
Nordström spacetimes have shadows and the radius of the last
unstable circular orbit is ru = 3M/2, while for q > 9/8 the
shadows do not exist. Interestingly, at the same critical value
the quasinormal modes for the scattering exhibit a different
behavior [37]. It is responsible for the existence of circu-
lar orbits of neutral test particles [38]. The critical charge
qc arises from the last unstable circular orbits considering a
naked singularity; thus, for five-dimensional RNAdS space-
times, from Eq. (41), one can deduce the critical value of the
charge where the last unstable circular orbit occurs, given by
Q2

c = 4M2√
3

, so qc = 4√
3

, and the radius of the last unstable
circular orbit is ru = 2M . Also for Q > Qext , where

Fig. 4 Plot of the effective potential of photons as a function of r for
different values of the charge Q. Here we have used the values L = 1,
and M = 1. Blue line corresponds to four-dimensional RN spacetime
Qext = 1.0 r+ = 1, Qc = 1.06, and the radius of the last unstable
circular orbit is ru = 1.5. Black line corresponds to five-dimensional
RN AdS spacetime with � = 10, Qext = 1.41, r+ = 1.39, Qc = 1.52,
and the radius of the last unstable circular orbit is ru = 2

Qext =
[

2�

27

[(
�2 + 12M2

)3/2 − �
(
�2 + 18M2

)]]1/4

,

(45)

the spacetime describes a naked singularity, where Qext was
obtained using Eq. (12). It is worth noticing that qc does not
depend on the cosmological constant. However, the value of
the charge for which the spacetime describes a naked sin-
gularity depends on the value of the cosmological constant.
In Fig. 4, we show the behavior of the effective potential
as a function of r , where the points indicate the radius of
the last unstable circular orbit for the critical charge qc and
the event horizon for the extremal charge Qext . We observe
that the critical charge qc, Qext , and the radius of the last
unstable circular orbit increase when the spacetime is the
five-dimensional RNAdS instead of the four-dimensional
Reissner–Nordström spacetime.

3.3 Bending of light

Now, in order to obtain the bending of light we consider Eq.
(40), which can be written as
(

r
dr

dψ

)2

= r6 − B2r4 + 4M2B2r2 − Q4B2

B2 = P(r)

B2 .

(46)

Thus, in order to obtain the return points, we solve the equa-
tion P(r) = 0. Thus, we perform the change of variable
y = r2 + B2/3, P(y) = y3 − α̃y − β̃, where

α̃=B2
(B2

3
−4M2

)
, β̃=B2

(
Q4−4M2B2

3
+2B4

27

)
,

(47)
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and the deflection distance rD is given by

rD =
√

χ0 cos χ1 + B2

3
, (48)

and the return point rF is

rF =
√

χ0

2

(√
3 sin χ1 − cos χ1

)
+ B2

3
, (49)

where χ0 = 2
√

α̃/3 and χ1 = 1
3 arccos

(
3β̃
2

√
3
α̃3

)
.

Then, after a brief manipulation, and performing the
change of variable r = B√

4x + 1/3 it is possible to inte-
grate Eq. (46), given the following expression:

ψ =
∫ x

xD

dx

2
√

4x3 − g2x − g3
, (50)

where the invariants are given by

g2 = 1

12
− M2

B2 , (51)

g3 = 1

16

(
2

27
− 4M2

3B2 + Q4

B4

)
. (52)

Therefore, by integrating Eq. (50) and then solving for r leads
to

r(ψ) = B
√

4℘(2ψ + ωD) + 1/3 , (53)

where ωD = ℘−1(r2
D/4B2 − 1/12). In Fig. 5 we show the

behavior of the bending of light. We observe that the deflec-
tion angle is greater, when the black hole is uncharged. On
the other hand, note that the above equations are straightfor-
wardly obtained for five-dimensional Schwarzschild–anti-de
Sitter spacetime.

3.3.1 The deflection angle

It is well known that photons can escape to infinity during a
scattering process. So, by considering r(ψ)|ψ=0 = rD , the
shortest distance to the black hole at which the deflection
happens, and assuming that the incident photons are coming
from infinity and escape to infinity, we have r(ψ)|ψ=ψ∞ =
∞. Now, by using Eq. (53) we obtain 2ψ∞ = −ωD , and the
deflection angle, α̂ = 2ψ∞ − π , is given by

α̂ = −℘−1(r2
D/4B2 − 1/12) − π . (54)

The evolution of the deflection angle has been plotted in Fig. 6
which shows an asymptotic behavior as E → Eu . We can
observe that the deflection angle takes an infinite value when
E = Eu , such that Eu increases when the charge of the black
hole increases.

Fig. 5 Polar plot for deflection of light with � = 10, and L = 1. Thin
line E1 = 0.07, thick line E2 = 0.06, and dashed line E3 = 0.04.
Black lines for Q = 1.20 and blue lines for Q = 0

Fig. 6 The behavior of the deflection angle α̂ in terms of E , demon-
strated for L = 1, M = 1 and � = 10. Black-thin line for Q = 1.2,
black-thick line Q = Qext = 1.40, and blue line for Q = 0. As
expected, the deflection angle reaches its limit as E tends to Eu which
for Q = 1.20 is around 0.077, for Q = Qext is 0.084 and it is 0.073
for Q = 0
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3.4 Second kind trajectories and hippopede geodesic

The spacetime allows for second kind trajectories, when bu <

b < ∞, where the return point is in the range r+ < r < ru ,
and then the photons plunge into the horizon. However, a
special geodesic can be obtained when the anomalous impact
parameterB → ∞ (b = �). In this case, the radial coordinate
is restricted to r+ < r < r0, and the equation of motion (40)
can be written as

ψ = −
∫ r

r0

r dr√−r4 + 4M2r2 − Q4
, (55)

and the return points are

r0 = 2M cos

[
1

2
sin−1

(
Q2

2M2

)]
, (56)

ρ0 = 2M sin

[
1

2
sin−1

(
Q2

2M2

)]
. (57)

Thus, it is straightforward to find the solution of Eq. (55),
which is given by

r(ψ) =
√

2M2 +
√

4M4 − Q4 cos[2ψ] , (58)

which represents the hippopede of the Proclus geodesic (see
Fig. 7) [39]. This trajectory is a new type of orbit in five-
dimensional RNAdS, and it does not depend on the value of
the cosmological constant. It is worth mentioning that the
analog geodesic in four-dimensional RNAdS corresponds to
the Limaçon of Pascal [27]. Also, when the spacetime is
the five-dimensional Schwarzschild–anti-de Sitter spacetime
this geodesic is given by r = 2M cos[ψ], which describes
a circumference with radius M that is analog to the cardioid
geodesics found in four-dimensional Schwarzschild–anti-de
Sitter spacetime [30].

3.5 Critical trajectories and capture zone

In the case of b = bu , the particles can be confined on unsta-
ble circular orbits of the radius ru . This kind of motion is
indeed ramified into two cases; critical trajectories of the
first kind (CFK) in which the particles come from a distant
position ri to ru and those of the second kind (CSK) where the
particles start from an initial point di at the vicinity of ri and
then tend to this radius by spiraling. We obtain the following
equations of motion for the aforementioned trajectories:

r(ψ) =
[
ρ2

u + (r2
u − ρ2

u )

(
1 + C eκ ψ

1 − C eκ ψ

)2
]1/2

, (59)

Fig. 7 The hippopede geodesic (black line), with E� = 0.01, Q =
1.20, and � = 10, dashed black lines correspond to the horizons. The
circumference geodesic (blue lines), with E� = 0.01, Q = 0, and
� = 10

Fig. 8 The critical trajectories r(ψ) plotted for Q = 1.2, L = 1.0
� = 10, with Eu ≈ 0.077, ru ≈ 2.67, and ri = 10. Black line for CFK
and blue line for CSK trajectories

where

ρu =
√
B2

u − 2r2
u , (60)

C =
∣∣∣∣∣∣

√
r2

i − ρ2
u − √

r2
u − ρ2

u√
r2

i − ρ2
u + √

r2
u − ρ2

u

∣∣∣∣∣∣ , (61)

κ = 2
√

r2
u − ρ2

u

Bu
. (62)

In Fig. 8, we show the behavior of the CFK and CSK
trajectories, given by Eq. (59). Note that, for trajectories of
the second kind, ri must be replaced by di in the constant C
(61). On the other hand, for photons with an impact parameter
smaller than the critical one (bu), which are in the capture
zone, they can plunge into the horizon or escape to infinity,
with a cross section given by Eq. (42).
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3.6 Shapiro time delay

An interesting relativistic effect in the propagation of light
rays is the apparent delay in the time of propagation for a light
signal passing near the Sun, which is a relevant correction
for astronomic observations, and is called the Shapiro time
delay. The time delay of radar echoes corresponds to the
determination of the time delay of radar signals which are
transmitted from the Earth through a region near the Sun to
another planet or spacecraft and then reflected back to the
Earth. The time interval between emission and return of a
pulse as measured by a clock on the Earth is

t12 = 2 t (r1, rD) + 2 t (r2, rD) , (63)

where rD is the closest approach to the Sun. Now, in order to
calculate the time delay we use Eq. (18), and by considering
that dr/dt vanishes, we have E2

L2 = f (rD)

r2
D

. Thus, the coordi-

nate time that the light requires to go from rD to r is given
by

t (r, rD) =
∫ r

rD

dr

f (r)

√
1 − r2

D
f (rD)

f (r)

r2

. (64)

So, at first order correction we obtain

t (r, rD) =
√

r2 − r2
D + tM (r) + tQ(r) + t�(r) , (65)

where

tM (r) = 6M2

rD
sec−1

(
r

rD

)
, (66)

tQ(r) = − Q4

4r3
D

⎡
⎣5 sec−1

(
r

rD

)
+

3 rD

√
r2 − r2

D

r2

⎤
⎦ , (67)

t�(r) = −
√

r2 − r2
D

3�2

(
r2 + r2

D

2

)
. (68)

Therefore, for the circuit from point 1 to point 2 and back the
delay in the coordinate time is

Δt := 2

[
t (r1, rD) + t (r2, rD) −

√
r2
1 − r2

D −
√

r2
2 − r2

D

]
,

(69)

where

Δt = 2
[
tM (r1) + tM (r2) + tQ(r1) + tQ(r2)

]
+2 [t�(r1) + t�(r2)] . (70)

Now, for a round trip in the solar system, we have (rD <<

r1, r2)

Δt ≈
[

12M2

rD
− 5 Q4

2 r3
D

] [
sec−1

(
r1

rD

)
+ sec−1

(
r2

rD

)]

− 2

3 �2

(
r3

1 + r3
2

)
. (71)

Note that the classical result of GR is ΔtG R=4M

[
1+ ln(

4r1r2
r2

D

)]
. For a round trip from the Earth to Mars and back,

we find (for rD � r1, r2 ) r1 ≈ r2 = 2.25 × 108 km to
be the average Earth–Mars distance. Considering rD as the
closest approach to the Sun, like the radius of the Sun (R
 ≈
696,000 km) plus the solar corona (∼ 106 km), rD ≈ 1.696×
106 km, then the time delay is ΔtG R ≈ 240µ s. On the other
hand, if we consider the limit M → M
, Q = 0, and Λ = 0,
in Eq. (71), we obtain Δt ≈ 161 ns. It is worth to mention
that this value is closer to the value measured in the Viking
mission, where the error in the time measurement of a circuit
was only about 10 ns [40].

4 Final remarks

We considered the motion of photons in the background of
five-dimensional RNAdS black holes, and we established the
null structure geodesic. This spacetime is described by one
Cauchy horizon and an event horizon. Concerning the radial
motion, we showed that, as seen by a system external to the
photons, they will fall asymptotically to the event horizon.
On the other hand, this external observer will see that photons
arrive in a finite coordinate time to spatial infinity. Concern-
ing the angular motion, we found analytically the orbit of the
first and the second kind; and also the critical orbit. Inter-
estingly, for the trajectory of the second kind, we found that
the motion of photons follows the hippopede of the Proclus
geodesic when the parameter of impact b takes the value
b = �, and it does not depend on the value of the cosmo-
logical constant, the Limaçon of Pascal being their analog
geodesic in four-dimensional RNAdS. On the other hand,
we studied some observational test such as the bending of
light, which show a similar behavior to the four-dimensional
RNAdS, and the Shapiro time delay effect, where our results
show that Δt ≈ 161ns while for GR ΔtG R ≈ 240 μ s.

Also, by comparing five-dimensional RNAdS black holes
with four-dimensional RNAdS black holes, for the five-
dimensional spacetime there is not an additional param-
eter apart from the dimension added, contrary to a five-
dimensional Myers–Perry black hole spacetime, where the
metric describes a spacetime with two spin parameters
which could explain the differences with respect to the four-
dimensional Kerr black hole spacetime due to the pres-
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ence of two spin parameters in higher dimension. For five-
dimensional RNAdS black holes the event horizon is not the
same due to the change in the lapse function, which could
explain the differences between four- and five-dimensional
spacetimes. However, the effect of an additional dimen-
sion could be the existence of the hippopede of the Pro-
clus geodesic found here, versus its analog geodesic in four-
dimensional RNAdS black hole, i.e., the Limaçon of Pascal
[27], both trajectories of the second kind.
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