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Abstract We develop a non-perturbative method for cal-
culating partition functions of strongly coupled quantum
mechanical systems with interactions between subsystems
described by a path integral of a dual system. The dual path
integral is derived starting from non-interacting subsystems
at zeroth order and then by introducing couplings of increas-
ing complexity at each order of an iterative procedure. These
orders of interactions play the role of a dual time and the full
quantum partition function is expressed as a transition ampli-
tude in the dual system. More precisely, it is expressed as a
path integral from a deformation-operators dependent initial
state at zero time/order to the inverse-temperature depen-
dent final state at later time/order. We provide examples of
strongly coupled systems with up to first-order interactions
(e.g. Ising model) and arbitrary high-order interactions (e.g.
1+1D QFT). We also discuss a possible emergence of space-
time, quantum field theories and general relativity in context
of the dual path integral.
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1 Introduction

There are two main puzzles in theoretical physics which so
far have no satisfactory resolutions. The first one is how to
calculate observables in strongly coupled theories and the
second one is how to derive general relativity from quantum
mechanics, i.e. the problem of quantum gravity. While the
former puzzle is purely mathematical, as it is usually well
defined although the analytical calculations can be difficult
to carry out, the latter puzzle is more physical than math-
ematical, as it is not even clear what is the right problem
to solve. Of course, it would be nice if the two problems
were actually related and in fact there are evidences sug-
gesting that it might be the case. For example, in context of
the AdS/CFT correspondence [1,2], general relativity in the
bulk emerges from a quantum theory on the boundary and
at the same time observables of a strongly coupled confor-
mal field theory can be obtained by performing perturbative
calculations on the anti-de Sitter background. Unfortunately,
the space-time we live in is not anti-de Sitter and so the
AdS/CFT conjecture is at most an educated guess of what
one might expect to see in a true theory of quantum grav-
ity.

In this paper our main motivation is to study the emer-
gence of space-time and general relativity from strongly cou-
pled theories beyond the AdS/CFT duality, but the initial
task will be a lot more modest. What we want first is to
understand how a fully interacting quantum mechanical par-
tition function can be obtained from the partition functions
of non-interacting subsystems. In Ref. [3] we constructed
one such transformation described by a second order differ-
ential equation for the “child” partition function with ini-
tial conditions specified by a “parent” partition function. In
certain cases the parent partition function can describe non-
interacting subsystems (see Sect. 3), but the framework was
not rich enough to handle more complex systems includ-
ing many strongly coupled systems. In this paper we will
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extend the analysis to a lot more general transformations
(and thus more general interactions) described by a path
integral with initial state specified by non-interacting par-
tition functions (see Sect. 5). By construction, the analysis is
non-perturbative with couplings of different orders of com-
plexity introduced at different orders of an iterative proce-
dure.

At a very minimum, the dual description can be viewed
as a non-perturbative method for calculating partition func-
tions of strongly coupled quantum mechanical systems such
as spin chain models (see Sect. 8), but more ambitiously it
may also tell us something new about the quantum origin
of space-time and gravity. In Ref. [4] we argued that the
anti-commutativity of quantum operators may be responsi-
ble for the emergence of space-time and in this paper we see
that essentially the same phenomena occurs for more gen-
eral quantum systems (see Sect. 3). Of course, it is prema-
ture to claim that we have derived the fully non-perturbative
equations of general relativity (see, however, some promis-
ing recent ideas in context of emergent gravity [5–9]), but
some progress in this directions can be made. In particular,
we will argue that the fully interacting quantum partition
function can often be represented by a dual path integral of
a local quantum filed theory (see Sect. 6) where the per-
turbative methods are of value. With this respect the pro-
posed framework can be considered as a generalization of
the AdS/CFT duality mapping to more general quantum sys-
tems. Even more generally, the dual path integral may dif-
fer from the Feynman path integral and then some signifi-
cant deviations from the quantum field theory framework are
expected.

The paper is organized as follows. In the next section
we construct a quantum system with a particular type of
interactions which can be modeled with an additional (or
first order) system. In Sect. 3 we consider a simple system
with first-order interactions which can be described through a
transformation of an extended partition function in an emer-
gent space-time. In Sect. 4 we obtain an analytically con-
tinued expression of the partition function which is used
in Sect. 5 to derive the dual path integral representation of
a fully interacting partition function. In Sect. 6 we argue
that the local quantum field theory may emerge in certain
limits of the dual path integral, but some significant devia-
tions from the Feynman path integral are also expected. In
Sects. 7 and 8 we demonstrate how the dual description of
spin chain models can be used to study strongly coupled
systems with respectively local and non-local interactions.
In Sect. 9 we summarize and discuss the main results of
the paper, i.e. the dual path integral and emergent phenom-
ena.

2 First-order interactions

Consider a quantum system described by a Hamiltonian oper-
ator

Ĥ0 ≡
K∑

k=1

J 0
k Ĥ

k
0 (2.1)

where J 0
k ’s are the real coefficients which parametrize defor-

mations of the corresponding Hermitian operators Ĥ k
0 ’s. At

finite temperature the system is described by the quantum
partition function

Z[−β, J ] = tr

[
exp

(
−β

K∑

k=1

J 0
k Ĥ

k
0

)]
(2.2)

where β is the inverse temperature. To simplify calculations
in Sect. 4 we shall analytically continue the parameter β to
complex plane, but it will be assumed throughout the paper
that we are dealing with a quantum system in thermal equi-
librium. The time will eventually emerge in the dual descrip-
tions first as a relativistic coordinate in Sect. 3 and later as a
parameter in a path integral of Sect. 5 despite of the fact that
the original quantum system is in a time-invariant thermal
state.

In general the partition function (2.2) is difficult calcu-
late, but the analysis if greatly simplified if the operators
Ĥ k

0 describe Hamiltonian operators of non-interacting sub-
systems. This happens when the entire Hilbert space can be
decomposes into a tensor product of Hilbert spaces

H0 = H1
0 ⊗ H2

0 · · · ⊗ HK
0 (2.3)

with each of the operators Ĥ k
0 acting non-trivially on the

corresponding factorHk
0 only. Then the full partition function

can be expanded into a product,

Z0[−β, J ] = tr0

[
exp

(
−β

K∑

k=1

J 0
k Ĥ

k
0

)]

=
K∏

k=1

tr k0

[
exp
(
−β J 0

k Ĥ
k
0

)]

=
K∏

k=1

Zk
0 [−β Jk], (2.4)

where tr k0 [ ] is the trace over k’th subsystem and Zk
0 [−β Jk]

is the partition function of the k’th subsystem.
Perhaps, more realistically, the Hamiltonian operator

should contain interactions between subsystems. For exam-
ple, a tensor product operator Ĥ j

0 ⊗ Ĥ k
0 acts non-trivially

on two Hilbert space factors H j
0 and Hk

0, but an inclusion of
such operators would spoils the factorization of the partition
function and could lead to the problem of strong coupling.
In this paper we will take a somewhat different approach
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and to describe interactions between zeroth-order subsys-
tems Hk

0’s we will employ a collection of additional (or the
first-order) operators Ĥ1

1 , . . . , Ĥ K
1 which act non-trivially on

an additional (or the first-order) system H1 only. Then the
full Hilbert space is a tensor product of the zeroth-order and
first-order Hilbert spaces, i.e.

H1 ⊗ H0 = H1 ⊗ H1
0 ⊗ H2

0 · · · ⊗ HK
0 . (2.5)

and an interacting Hamiltonian can be defined as

Ĥ =
K∑

k=1

Ĥ k
1 ⊗ Ĥ k

0 J
0
k . (2.6)

This is certainly not the most general operator which can be
defined in the Hilbert space (2.5), but it is general enough to
enable us to study certain strongly coupled systems whose
partition function can be expressed through a dual path inte-
gral.

Different operators Ĥ k
1 ⊗ Ĥ k

0 in (2.6) act non-trivially on
the same factor of the Hilbert space, namely H1, and as a
result the interacting partition function

Z[−β, J ] = tr

[
exp

(
−β

K∑

k=1

Ĥ k
1 ⊗ Ĥ k

0 J
0
k

)]
(2.7)

does not factorize as was the case for non-interacting partition
function (2.4). To derive a useful expression of the interacting
partition function it will be convenient to first define the first-
order partition function

Z1[−β, p1, . . . , pK ] = tr1

[
exp

(
−β

K∑

k=1

Ĥ k
1 pk

)]
(2.8)

where tr1[ ] is a trace over only the first-order system H1.
The key observation is that for the system described by (2.6)
the interacting partition function (2.7) can be expressed as

Z[−β, J ] = tr1

⎡

⎣exp

⎛

⎝−β

K∑

k=1

Ĥk
1

∂

∂xk0

⎞

⎠

⎤

⎦
K∏

k=1

Zk
0 [xk0 , Jk ]

∣∣∣∣∣∣
x1

0=···xK0 =0

(2.9)

or in terms of the first-order partition function (2.8) as

Z[−β, J ] = Z1

[
−β,

∂

∂x1
0

, . . . ,
∂

∂xK0

] K∏

k=1

Zk
0 [xk0 , Jk ]

∣∣∣∣∣∣
x1

0=···xK0 =0

.

(2.10)

Note that such a representation of the partition function

with operator Z1

[
−β, ∂

∂x1
0
, . . . , ∂

∂xK0

]
acting on a non-

interacting partition function
∏K

k=1 Zk
0 [xk0 , Jk] was only pos-

sible because the zeroth-order subsystemsHk
0’s were not cou-

pled to each other directly, but through interactions in the

first-order system as is evident from the Hamiltonian expres-
sion (2.6).

3 Extended partition function

In order to better understand the transformation (2.10) from
a non-interacting partition function

∏K
k=1 Zk

0 [xk0 , Jk] to an
interacting partition function partition functionZ[−β, J1, . . . ,

JK ], consider a first-order system described by anti-commuting
first-order operators

{Ĥ j
1 , Ĥ k

1 } = 2δ jk Î1, (3.1)

where Î1 is the identity operator in H1. The corresponding
first-order partition function can be calculated by separating
odd and even terms in the Taylor series expansion, i.e.

Z1[−β, p1, . . . , pK ] = tr1

(
exp

(
−β

K∑

k=1

Ĥ k
1 pk

))

=
∞∑

n=0

tr1

⎡

⎣ (−β)n

n!

(
K∑

k=1

Ĥ k
1 pk

)n⎞

⎠

=
∞∑

m=0

tr1

⎛

⎝ (−β)2m

(2m)!

(
K∑

k=1

Ĥ k
1 pk

)2m⎞

⎠

+
∞∑

m=0

tr1

⎛

⎝ (−β)2m+1

(2m + 1)!

(
K∑

k=1

Ĥ k
1 pk

)2m+1⎞

⎠ . (3.2)

From the anti-commutation relation (3.1) we get

(
K∑

k=1

Ĥ k
1 pk

)2

=
K∑

k=1

Î1 p
2
k (3.3)

which can be substituted into (3.2),

Z1[−β, p1, . . . , pK ] =
∞∑

m=0

tr1

⎛

⎝ (−β)2m

(2m)!

(
K∑

k=1

Î1 p
2
k

)m⎞

⎠

+
∞∑

m=0

tr1

⎛

⎝ (−β)2m+1

(2m + 1)!

(
K∑

k=1

Î1 p
2
k

)m ( K∑

k=1

Ĥ k
1 pk

)⎞

⎠ .

(3.4)

If we also assume that the anti-commuting operators are
traceless

tr1

(
Ĥ j

1

)
= 0 (3.5)

then the second term in (3.4) vanishes and the partition func-
tion is greatly simplified

Z1[−β, p1, . . . , pK ] = tr1

(
Î1
) ∞∑

m=0

(−β)2m

(2m)!

(
K∑

k=1

p2
k

)m
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= N1 cosh

⎛

⎝β

√√√√
K∑

k=1

p2
k

⎞

⎠ (3.6)

where N1 is the trace of the identity operator Î1 in the first-
order system H1 (see Ref. [4] for details).

By combining (3.6) and (2.10) we obtain an equation for
a fully interacting partition function

Z[−β, J ] = N1 cosh

⎛

⎜⎝β

√√√√√
K∑

k=1

(
∂

∂xk0

)2
⎞

⎟⎠
K∏

k=1

Zk
0 [xk0 , Jk ]

∣∣∣∣∣∣∣
x1

0=···xK0 =0

(3.7)

which can be calculated by following the analysis of Ref. [4].
Let us define an extended partition function

z[−β, x1, . . . , xK , J1, . . . , JK ]

≡ tr

[
exp

(
−β

K∑

k=1

Ĥ k
1

∂

∂xk

)]
K∏

k=1

Zk
0 [xk, Jk]

= N1 cosh

⎛

⎝β

√√√√
K∑

k=1

(
∂

∂xk

)2
⎞

⎠
K∏

k=1

Zk
0 [xk, Jk] (3.8)

that contains information about both interacting and non-
interacting partition functions. For example, at β = 0 the
function reduces to a product of non-interacting partition
functions of the zeroth-order subsystems, i.e.

z[0, x1, . . . , xK , J1, . . . , JK ] = N1

K∏

k=1

Zk
0 [xk, Jk] (3.9)

and at x1 = · · · = xK = 0 the function reduces to the fully
interacting partition function, i.e.

z[−β, 0, . . . , 0, J1, . . . , JK ] = Z[−β, J1, . . . , JK ]. (3.10)

Then one might wonder if it may be possible to derive a differ-
ential equation whose solution would be the entire extended
partition function (including (3.10)) starting from initial con-
ditions at β = 0, i.e. from (3.9).

The answer to the question is affirmative and the corre-
sponding equation can be found by differentiating (twice) the
extended partition function (3.8) with respect to the inverse
temperature, i.e.

∂2

∂β2 z[−β, x, J ]

=
⎛

⎝
K∑

k=1

(
∂

∂xk

)2
⎞

⎠N1 cosh

⎛

⎝β

√√√√
K∑

k=1

(
∂

∂xk

)2
⎞

⎠
K∏

k=1

Zk
0 [xk , Jk ]

=
⎛

⎝
K∑

k=1

(
∂

∂xk

)2
⎞

⎠ z[−β, x, J ]. (3.11)

Then it is obvious that the extended partition function must
be a solution of a relativistic wave equation

�z[β, x, J ] =
(

∂2

∂β2 −
K∑

k=1

(
∂

∂xk

)2
)
z[β, x, J ] = 0,

(3.12)

but since (3.12) is a second order differential equation in β,
the correct initial conditions must be specified at β = 0 for
both“position” z[0, x, J ] and “velocity” ∂

∂β
z[0, x, J ]. These

conditions can be deduced directly from the definition (3.8),
i.e.

z[0, x, J ] = N1

K∏

k=1

Zk
0 [xk, Jk] (3.13)

∂

∂β
z[0, x, J ] = 0. (3.14)

Evidently, Eq. (3.12) describes a transformation from the
initial state z[0, x, J ] specified by a non-interacting parti-
tion function to final state z[β, x, J ] which describes the
fully interacting partition function z[β, 0, J ] = Z[−β, J ]
at inverse temperature β.

In the remainder of the paper we shall generalize this trans-
formation to a lot more general couplings between subsys-
tems, but before we proceed let us emphasize that the trans-
formation is described by an equation which is relativistic
(3.12). Recall that the original quantum system was in a time-
invariant thermal state and it is only in the dual description
the relativistic dynamics of the extended partition function
emerged from a particular coupling between subsystems.

4 Analytic continuation

So far, we have analyzed some very specific first-order inter-
actions between zeroth-order subsystems described by a
quantum Hamiltonian (2.6). This allowed us to derive the cor-
responding interacting partition function (2.10) and to study
a possible emergence of space-time (3.12). The next step is
to generalize the construction to allow more general inter-
actions between subsystems and then (if we are lucky) to
study a possible emergence of general relativity from strong
coupling. In the following section we will describe one such
generalization by including the higher-order interactions, but
it turns out that such interactions are a lot more transparent
when expressed in terms of the analytically continued func-
tions.
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Consider the quantum partition function (2.7) analytically
continued to complex plane,1

Z[i x, J ] = tr

[
exp

(
i x

K∑

k=1

Ĥ k
1 ⊗ Ĥ k

0 J
0
k

)]
. (4.1)

This function was shown to be given by the Eq. (2.10) which
can also be written using the Dirac delta functions,

Z[i x, J ] =
∫ ⎛

⎝
K∏

k=1

dxk0 δ(xk0 )

⎞

⎠Z1

[
i x,

∂

∂x1
0

, . . . ,
∂

∂xK0

]

×
K∏

k=1

Zk
0 [xk0 , Jk ]

=
∫ ⎛

⎝
K∏

k=1

dxk0 δ(xk0 )

⎞

⎠ tr1

⎡

⎣exp

⎛

⎝x
K∑

k=1

Ĥk
1

∂

∂xk0

⎞

⎠

⎤

⎦

×
K∏

k=1

Zk
0 [i xk0 , Jk ]

=
∫ ⎛

⎝
K∏

k=1

dxk0dp
1
k

2π
e−i xk0 p1

k

⎞

⎠ tr1

⎡

⎣exp

⎛

⎝x
K∑

k=1

Ĥk
1

∂

∂xk0

⎞

⎠

⎤

⎦

×
K∏

k=1

Zk
0 [i xk0 , Jk ]. (4.2)

Upon integration by parts and neglecting the (vanishing)
boundary terms we get

Z[i x, J ] =
∫ K∏

k=1

dxk0dp
1
k

2π

K∏

k=1

Zk
0 [i xk0 , Jk] tr1

×
[

exp

(
−x

K∑

k=1

Ĥ k
1

∂

∂xk0

)]
e−i
∑K

k=1 x
k
0 p

1
k

=
∫ K∏

k=1

dxk0dp
1
k

2π

K∏

k=1

Zk
0 [i xk0 , Jk] tr1

×
[

exp

(
i x

K∑

k=1

p1
k Ĥ

k
1

)]
e−i
∑K

k=1 x
k
0 p

1
k

=
∫ K∏

k=1

dxk0dp
1
k

2π

K∏

k=1

Zk
0 [i xk0 , Jk]

×e−i
∑K

k=1 x
k
0 p

1
k Z1[i x, p1

1, . . . , p
1
K ]. (4.3)

Just like before (2.10) the new equation (4.3) describes
a transformation from a zeroth-order partition function of
non-interacting subsystems

∏K
k=1 Zk

0 [i xk0 , Jk] (in the Hilbert
space H0) to a fully interacting partition function Z[i x, J ]
(in the Hilbert space H1 ⊗ H0) with interactions described
by the first-order partition function Z1[i x, p1

1, . . . , p
1
K ]. For

1 The parameter i x is purely imaginary, but it is assumed that at the end
of the calculations it is to be analytically continued back to the negative
real line, i.e. −β.

example, the analytically continued partition function (3.7)
can now be written as

Z[i x, J ] =
∫ K∏

k=1

dxk0dp
1
k

2π

K∏

k=1

Zk
0 [i xk0 , Jk]

×e−i
∑K

k=1 x
k
0 p

1
k N1 cos

⎛

⎝x

√√√√
K∑

k=1

(
p1
k

)2
⎞

⎠ . (4.4)

The key idea is, whenever possible, to expand Z1[i x, p1
1,

. . . , p1
K ] into a product of the first-order non-interacting

partition functions Z j
1 [i x, p1, . . . , pK ] similarly to how the

zeroth-order partition function was expanded into a product
of the zeroth-order non-interacting partition functions (2.4).
Then the combined first-order partition function is

Z1[i x, p1, . . . , pK ] = tr

⎡

⎣exp

⎛

⎝i x
K∑

j=1

K∑

k=1

Ĥ jk
1 pk

⎞

⎠

⎤

⎦

=
K∏

j=1

tr j
1

[
exp

(
i x

K∑

k=1

Ĥ jk
1 pk

)]

≡
K∏

j=1

Z j
1 [i x, p1, . . . , pK ]. (4.5)

Such a factorization is possible when the first-order Hilbert
space can be decomposed into a tensor product H1 = H1

1 ⊗
H2

1 · · ·⊗HK
1 with operators Ĥ jk

1 acting non-trivially on only

a single factor H j
1 for all k. To simplify calculations, but

without loosing the generality, we assume that the number
of factors in the first-order Hilbert space is once again K and
the full Hilbert space is

H = H1 ⊗ H0 =
⎛

⎝
K⊗

j=1

H j
1

⎞

⎠
(

K⊗

k=1

Hk
0

)
. (4.6)

The factorization of the first-order partition function (4.5)
can be substituted into (4.3) to obtain

Z[i x, J ] = tr1

⎡

⎣exp

⎛

⎝i x
K∑

k=1

⎛

⎝
K∑

j=1

Ĥ jk
1

⎞

⎠⊗ Ĥ k
0 J

0
k

⎞

⎠

⎤

⎦

=
∫ K∏

k=1

dxk0dp
1
k

2π

K∏

k=1

Zk
0 [i xk0 , Jk] e−i

∑K
k=1 x

k
0 p

1
k

×
K∏

j=1

Z j
1 [i x, p1

1, . . . , p
1
K ]. (4.7)

This is the most general partition function with interactions
between zeroth-order subsystemsHk

0’s described by the first-
order subsystems Hk

1’s which are not yet interacting.
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5 Dual path integral

To derive a path integral with higher-order interactions all that
we have to do is to iterate the procedure developed above.
For example, the second-order interactions between the first-
order subsystems Hk

1’s can be introduced by employing a
second-order system H2 which (for starters) can be assumed
to factor into a tensor product of non-interacting second-
order subsystems Hk

2’s. Then the full Hilbert space consists
of a tensor product of the zeroth-, first- and second-order
systems, i.e.

H = H2 ⊗ H1 ⊗ H0 =
(

K⊗

l=1

Hl
2

)⎛

⎝
K⊗

j=1

H j
1

⎞

⎠
(

K⊗

k=1

Hk
0

)
.

(5.1)

By analogy with the first-order operators we define the
second-order operators Ĥ l j

2 which act non-trivially on only a
single factor Hl

2 of the Hilbert space. Then the full partition
function can be obtained trivially from (4.7) by adding the
second order of interactions, i.e.

Z[i x, J ] = tr

⎡

⎣exp

⎛

⎝i x
K∑

l=1

K∑

j=1

K∑

k=1

Ĥ l j
2 ⊗ Ĥ jk

1 ⊗ Ĥk
0 J0

k

⎞

⎠

⎤

⎦

=
∫ K∏

k=1

dxk0dp
1
k dx

k
1dp

2
k

(2π)2

K∏

k=1

Zk
0 [i xk0 , Jk ] e−i

∑K
k=1 xk0 p1

k

×
K∏

k=1

Zk
1 [i xk1 , p1]e−i

∑K
k=1 xk1 p2

k

K∏

k=1

Zk
2 [i x, p2]. (5.2)

This is now the partition function with up to the second order
of interactions complexity, but we can keep going and intro-
duce third-order interactions, fourth-order interactions etc.

To describe a fully interacting partition function (with up
to some finite order N of interactions) we define a tensor
product Hilbert space

H =
N⊗

n=0

Hn =
N⊗

n=0

K⊗

k=1

Hk
n . (5.3)

Consequently, the operators Ĥ jk
n are assumed to act non-

trivially on only respective Hilbert space factors H j
n . From

this point on it will be useful to borrow some terminol-
ogy from the textbook quantum mechanics, e.g. propagator,
wave-functions, Hamiltonian, path integral, etc., although as
we shall see the analogy is not exact. To avoid confusions
and also to distinguish the approximate notions of the dual
description from the standard terminology we shall be adding
the word “dual” wherever appropriate, e.g. dual propagator,
dual wave-functions, dual Hamiltonian, dual path integral,
etc.

For example, it will be convenient to define a “dual Hamil-
tonian density” as

H j
n (x, p1, . . . , pK ) ≡ xp j + i log

(
Z j
n [i x, p1, . . . , pK ]

)
.

(5.4)

where the n’th order partition functions of non-interacting
subsystems are given by

Z j
n [i x, p1, . . . , pK ] = tr j

n

[
exp

(
i x

K∑

k=1

Ĥ jk
n pk

)]
(5.5)

and tr j
n [ ] is a trace over H j

n factor. Then the combined
partition function of all n’th order subsystems can be written
as

Zn[i x, p1, . . . , pK ] = trn

⎡

⎣exp

⎛

⎝i x
K∑

j=1

K∑

k=1

Ĥ jk
n pk

⎞

⎠

⎤

⎦

=
K∏

j=1

tr kn

[
exp

(
i x

K∑

k=1

Ĥ jk
n pk

)]

=
K∏

j=1

Z j
n [i x, p1, . . . , pK ]

= exp

⎛

⎝
K∑

j=1

(
i xp j − i H j

n (x, p1, . . . , pK )
)
⎞

⎠ (5.6)

where trn[ ] is a trace over Hn =⊗K
k=1 Hk

n . At this point it
is not clear why (5.4) should be called the dual Hamiltonian
density, but as we shall see shortly the choice is very well
motivated.

To obtain a “dual path integral” expression for the fully
interacting partition function we iterate the procedure which
had led to (5.2). The final result is

Z[i x, J ] ≡
∫

dK x0d
K xN �out[xN ]K[xN ; x0]�in[x0]

(5.7)

where the “dual propagator” is defined as

K[xN ; x0] =
∫ K∏

k=1

dp1
kdx

k
1 . . . dxkN−1dp

N
k

(2π)N

×e−i
∑N

n=1
∑K

k=1
(
Hk
n (xkn ,pn1 ,...,pnK )−(xkn−xkn−1

)
pnk
)

(5.8)

and the initial and final “dual wave-functions” as

�in[x1
0 , . . . , xK0 ] ≡

K∏

k=1

Zk
0 (xk0 , Jk) (5.9)

�out[x1
N , . . . , xKN ] ≡

K∏

k=1

δ(x − xkN ). (5.10)
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See Fig. 1 for an illustration of interactions in a generic dual
path integral with boxes representing separate factors of the
Hilbert space Hk

n , solid lines representing tensor products of
operator from the respective factors and dashed lines con-
nected to circles representing variables of the full partition
function Z[i x, J ], i.e. x and J1, . . . , JK . Note that the dual
path integral (5.7) can be interpreted as a transition amplitude
of a dual system from the deformation-operators dependent
initial state (5.9) to inverse-temperature dependent final state
(5.10). This in a sharp contrast to the standard path inte-
gral representation of thermal partition functions where the
inverse temperature plays the role of the size of extra dimen-
sion (see for example Refs. [10–12]).

6 Quantum field theories

The dual path integral expression (5.7) is exact, but it involves
calculating a transition amplitude from initial state (5.9) to
final state (5.10) in a system described by a “dual time”-
dependent (or n-dependent) and “dual space”-dependent
(or k-dependent) Hamiltonian density Hk

n (xk, p1, . . . , pK ).
This can be considered as a generalization of the Feyn-
man path integral for local quantum field theories where the
Hamiltonian density is usually assumed to be the same every-
where in space and time. However, for more general geome-
tries with dynamical gravitational degrees of freedom the
Feynman path integral is not adequate and with this respect
the dual path integral (5.7) may give us the desired definition
of quantum gravity.

To demonstrate how a local quantum field theory can
emerge from a dual path integral, consider a collection of
n’th order “local” operators Ĥ jk

n which are non-zero only
for j ∈ {k − 1, k, k + 1} modulo K . (See Fig. 2 for an illus-
tration of interactions in a dual local quantum field theory
with boxes representing separate Hilbert space Hk

n of the
original quantum theory and solid lines representing local
tensor products of operator from the respective factors.) If
the non-zero operators satisfy an anti-commutation relation

{Ĥ k,k+1
n , Ĥ k,k−1

n } = 2Ĥ kk
n = 2 Î kn (6.1)

and a tracelessness condition

tr
(
Ĥ jk
n

)
= δ jk tr

(
Ĥ kk
n

)
= δ jk tr

(
Î kn
)

= δ jkN k
n . (6.2)

then the n’th order partition function is a straightforward
generalization of Eq. (3.6),

Zk
n (i xk , p1, . . . , pK ) = N k

n e
ixk pk cos

(
xk
√
p2
k−1 + p2

k+1

)
. (6.3)

The corresponding dual Hamiltonian density (5.4) is complex

Hk
n (xk , p1, . . . , pK ) = i log

(
N k

n cos

(
xk
√
p2
k−1 + p2

k+1

))
(6.4)

and as such cannot be interpreted as the standard Hamiltonian
density of a local quantum field theory. However, recall that
the variable i x = i xkN of the fully interacting quantum parti-
tion function must be analytically continued to the real line
−β (see Sect. 4). Then if we are only interested in the zero
temperature limit, i.e. β → ∞, the dominant contribution
would come from only negative frequency mode, i.e.

cos

(
xkN

√
(pNk−1)

2 + (pNk+1)
2

)

= e
ixkN

√
(pNk−1)

2+(pNk+1)
2 + e

−i xkN

√
(pNk−1)

2+(pNk+1)
2

2

→ e
−i xkN

√
(pNk−1)

2+(pNk+1)
2

2
. (6.5)

If we apply the same approximation, −i xkn → ∞, to other
factors of the partition function, then the local dual Hamilto-
nian density can be approximated as

Hk
n (xk , p1, . . . , pK ) ≈ i log

(
N k

n /2 exp

(
−i xk

√
p2
k−1 + p2

k+1

))

= xk
√
p2
k−1 + p2

k+1 + const (6.6)

where the irrelevant constant does not produce any observ-
able effects and can be dropped. As a result the dual Hamilto-
nian is the desired sum of the local dual Hamiltonian density
terms

Hn[x1, . . . , xK , p1, . . . , pK ] =
K∑

k=1

Hk
n (xk, p1, . . . , pK )

=
K∑

k=1

xk
√
p2
k−1 + p2

k+1 (6.7)

as is the case for local quantum field theories. This puts the
corresponding dual path integral in the same from as the
Feynman path integral for a local quantum field theory on a
lattice,

Z[i x, J ] ≡
∫ K∏

k=1

dxk0dp
1
k . . . dpNk dxkN
(2π)N

×�out[xN ]e− i
h̄

∑N
n=1
∑K

k=1

(
xkn

√
(pnk−1)2+(pnk+1)2−(xkn−xkn−1

)
pnk

)

�in[x0]
(6.8)

where we inserted a “dual” Planck constant h̄ = 1. Note
that the limit −i xkn → ∞ is equivalent to i h̄ → 0 and
so only in this limit the dual path integral (6.8) represents
the quantum system described in this section. On the other
hand, if we would have kept both modes in (6.5), which
would be appropriate for example at finite temperatures, then
the dual Hamiltonian would not be real and the standard
quantum mechanical interpretation would be lost. This is the
limit where we expect to see some non-trivial deviations from
the Feynman path integral and where the effects of quantum
gravity should become important.
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Fig. 1 Interactions network of
a dual path integral

Fig. 2 Interactions network of
a dual quantum field theory

7 Local interactions

In the previous sections we stated a possibility of using the
dual path integral (5.7) to model or, more precisely, to define
quantum gravity. This resonates well with the AdS/CFT pro-
posal, but for the time being it also remains highly spec-
ulative. On a more practical level, it would be important
to explore in greater details the strongly coupled quantum
systems which can be solved using the dual description. In
particular, are there any spin chain models whose partition
functions can be expressed using the dual path integral rep-
resentation developed in this paper? In this section we will
discuss a couple of models for which the correlations func-
tion are local and in the following section we will discuss the
Ising model of which correlation function are non-local.

To construct a semi-simple example of such a model
it is sufficient to consider a dual path integral with only
two orders of interactions, i.e. N = 2. See Fig. 3 for an
illustration of interactions in the corresponding path inte-

gral with boxes representing factors of the Hilbert space
Hk

n and solid lines representing tensor products of non-
vanishing operator from the respective factors. As is evi-
dent from the figure, the only non-vanishing operators are
Ĥ2k,2k

1 , Ĥ2k,2k−1
1 , Ĥ2k,2k

2 , Ĥ2k,2k−2
2 which we assume to sat-

isfy the following anti-commutation relations

{Ĥ2k,2k
1 , Ĥ2k,2k−1

1 } = 0

{Ĥ2k,2k
2 , Ĥ2k,2k−2

2 } = 0 (7.1)

where K is even and all indices are periodic modulo K . These
operators can be expressed in terms of spin operators

Ĥ2k,2k−1
1 = σ̂ x

2k−1 (7.2)

Ĥ2k,2k
1 = σ̂

y
2k−1 (7.3)

Ĥ2k,2k−2
2 = σ̂ x

2k (7.4)

Ĥ2k,2k
2 = σ̂

y
2k (7.5)

where σ̂ x
k and σ̂

y
k are the anti-commuting Pauli spin operators

on lattice sites k = 1, . . . , K . If we (for simplicity) also
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Fig. 3 Interactions network of
a spin chain model

assume that

Ĥ k
0 = Î0 (7.6)

then the corresponding quantum system can be written as a
1D spin chain model with Hamiltonian

Ĥ =
K/2∑

k=1

(
J2k−1σ̂

x
2k−1 + J2k σ̂

y
2k−1

) (
σ̂ x

2k−2 + σ̂
y
2k

)
. (7.7)

As a spin chain model the system of Hamiltonian (7.7) is
strongly coupled (for generic Jk’s), but as a dual path integral
it can be easily solved. All that we have to do is to plug in the
known partition functions of the zeroth-, first- and second-
order subsystems

Zk
0 [i x, p] = exp(i xp) (7.8)

Z2k
1 [i x, p1, p2] = cos(x

√
(p1)2 + (p2)2) (7.9)

Z2k
2 [i x, p1, p2] = cos(x

√
(p1)2 + (p2)2) (7.10)

into (5.2), i.e.

Z[i x, J ] =
∫ ∏K

k=1 dx
k
0dp

1
k d
∏K/2

k=1 x2k
1 dp2

2k
(2π)3/2

×ei
∑K

k=1 xk0 (Jk−p1
k )

K/2∏

k=1

Z2k
1 [i x2k

1 , p1]e−i
∑K/2

k=1 x2k
1 p2

2k

×
K/2∏

k=1

Z2k
2 [i x, p2]

=
∫ K/2∏

k=1

dxkdpk
2π

K/2∏

k=1

cos

(
xk
√
J2
2k + J2

2k−1

)
e−i
∑K/2

k=1 xk pk

×
K/2∏

k=1

cos

(
x
√
p2
k + p2

k−1

)
. (7.11)

It is now straightforward to analytically continue i x to −β to
obtain an exact expression for the fully interacting quantum

partition function of a spin model (7.7),

Z[−β, J ] =
∫ K/2∏

k=1

dxkdpk
2π

K/2∏

k=1

cos

(
xk
√
J 2

2k + J 2
2k−1

)

×e−i
∑K/2

k=1 xk pk
K/2∏

k=1

cosh

(
β

√
p2
k + p2

k−1

)
.

(7.12)

Note that the integral of (7.12) has the exact form of the
partition function (4.7) with up-to first order interactions.
This means that although we have started with the second
order interactions, i.e. N = 2, it was possible to reduce the
order of interactions to N = 1. Upon integration with resect
to xk’s and pk’s we obtain the following result

Z[β, J ] =
∏

k

cosh

(
β

√
J 2

2k + J 2
2k−1 + J 2

2k−2 + J 2
2k−3

)

=
∏

k

(
1 + β2

2

(
J 2

2k + J 2
2k−1 + J 2

2k−2 + J 2
2k−3

)

+β4

4!
(
J 2

2k + J 2
2k−1 + J 2

2k−2 + J 2
2k−3

)2 + · · ·
)

.

(7.13)

More generally we can consider the first-order interactions
withZk

0 [i xk0 , Jk] = exp(i xk0 Jk) andZk
1 [i x, p1

k+1, . . . , p
1
k+L ]

= cos

(
x
√∑L

l=1

(
p1
k+l

)2
)

. Then the corresponding parti-

tion function is given by (4.7) which can be written as

Z[β, J ] =
∏

k

cosh

⎛

⎝β

√√√√
L∑

l=1

J 2
k+l

⎞

⎠

=
∏

k

⎛

⎝1 + β2

2

L∑

l=1

J 2
k+l + β4

4!

(
L∑

l=1

J 2
k+l

)2

+ · · ·
⎞

⎠ .

(7.14)
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Correlation functions can be obtained by differentiating
the partition functions with respect to the sources at the ori-
gin, i.e. at Jk = 0 for all k. For the considered models the
two-point correlation functions vanish and the smallest non-
vanishing four-point correlation function is

〈
x2
i x

2
j

〉
∝
[

∂2

∂ J 2
i

∂2

∂ J 2
j

Z[β, J ]
]

Jk=0

. (7.15)

Evidently, calculation of the four-point correlation function
amounts to calculating the respective terms in (7.13) and
(7.14). For example, if i = j , then

〈
x4
i

〉
∝
[

∂4

∂ J4
i

Z[β, J ]
]

Jk=0

=
⎛

⎝
(

β2

2

)2

+ 2
β4

4!

⎞

⎠ 4! = 8β4 (7.16)

for the model described by Eq. (7.13) and

〈
x4
i

〉
∝
[

∂4

∂ J4
i

Z[β, J ]
]

Jk=0

=
⎛

⎝ L(L − 1)

2

(
β2

2

)2

+ L
β4

4!

⎞

⎠ 4! = (3L2 − 2L)β4 (7.17)

for the model described by Eq. (7.14). By conducting similar
calculations for arbitrary i and j we get the following results

〈
x2
i x

2
j

〉
∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((
β2

2

)2 + 2β4

4!
)

4! = 8β4 for i = j
(

2
(

β2

2

)2 + 4β4

4!
)

2!2! = (2 + 2
3

)
β4 for i = 2k and j = 2k − 1

(
3
(

β2

2

)2 +2β4

4!
)

2!2!= (3+ 1
3

)
β4 for i={2k, 2k−1} and j∈{2k − 2, 2k − 3}

(
4
(

β2

2

)2
)

2!2! = 4β4 otherwise

and

〈
x2
i x

2
j

〉
∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
L(L−1)

2

(
β2

2

)2 + L β4

4!
)

4! = (3L2 − 2L)β4 for i = j
(

((2L − |i − j |)|i − j |)
(

β2

2

)2 + (2(L − |i − j |))β4

4!
)

2!2!
=
(
(2L − |i − j |)|i − j | + L−|i− j |

3

)
β4 for 1 ≤ |i − j | ≤ L(

L2
(

β2

2

)2
)

2!2! = L2β4 for |i − j | > L

for (7.13) and (7.14) respectively. It is interesting to note that
for the latter model the correlation function takes the largest
value at |i− j | = 0, then quickly drops to the smallest value at
|i− j | = 1 and then gradually grows to an asymptotic value at
|i− j | ≥ L . Of course, given a fully non-perturbative expres-
sion for the partition functions it should not be too surprising
that we are able to quickly obtain the observables. Although
we only calculated the four-point correlation functions, but

it is a straightforward exercise to calculate an arbitrary high-
order correlation function by differentiating the respective
partition functions with respective sources.

8 Ising model

In the previous section we discussed some semi-simple spin
chain models described by partition functions (7.13) and
(7.14) with up to first order interactions, but it turned out that
the correlations were completely local. On the other hand
in the most general expression of the dual path integral (5.7)
the higher order interactions are intrinsically non-local. Then
one might wonder if non-locality is something that is only
present in theories with higher order interactions, or if it is
possible to construct a non-local theory with, for example,
only local first order interactions or, in other words, using
only local first order systems.

Consider a partition function (4.7) described by the zeroth
order systems with partition functions,

Zk
0 [i xk0 , Jk ] = cos(xk0 Jk ) = 1

2

(
exp(i xk0 Jk ) + exp(−i xk0 Jk )

)
(8.1)

and by the first order systems with local and homogeneous
partition functions,

Z j
1 [i x, J1, . . . , JK ] = Z1[i x, J j , . . . , J j+L ]. (8.2)

Here the locality is represented by the assumption 1 ≤ L �
K and the homogeneity by the assumption Z j

1 = Z1. Then
the partition function (4.7) can be expressed as a product of
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the first order partition functions

Z[i x, J ] =
∫ K∏

k=1

dxk0dp
1
k

2π

K∏

k=1

Zk
0 [i xk0 , Jk] e−i

∑K
k=1 x

k
0 p

1
k

K∏

j=1

Z j
1 [i x, p1

1, . . . , p
1
K ]

=
∫ K∏

k=1

dxk0dp
1
k

2π

K∏

k=1

(
e−i
∑K

k=1 x
k
0 (p1

k−Jk )

+e−i
∑K

k=1 x
k
0 (p1

k+Jk )
) K∏

j=1

Z j
1 [i x, p1

1, . . . , p
1
K ]

=
∑

sk∈{−1,+1}

K∏

j=1

Z j
1 [i x, s1 J1, . . . , sK JK ]

=
∑

sk∈{−1,+1}

K∏

j=1

Z1[i x, s j J j , . . . , s j+L J j+L ].

(8.3)

For example, if we set the first order partition function to be

Z1[β, A, B] = exp

(
βAB + β

A + B

2

)
, (8.4)

i.e. L = 1, then

Z[β, J ] =
∑

sk∈{−1,+1}

K∏

j=1

exp

(
βs j J j s j+1 J j+1 + β

2

(
s j J j + s j+L J j+L

))
.

(8.5)

(See Fig. 4 for an illustration of interactions in the corre-
sponding path integral.) Furthermore if we set all sources to
be equal, i.e. J j = J , then the partition function (8.5) can be
rewritten as

Z[β, J ] =
∑

sk∈{−1,+1}

K∏

j=1

T (s j , s j+1). (8.6)

or in a more standard form

Z[β, J ] = Tr
(
T K
)

= λ+(β, J )K + λ−(β, J )K (8.7)

where the trace is with respect to two-by-two matrix obtained
after raising to K ’th power the so-called “transfer matrix”

T =
(
T (+1,+1) T (+1,−1)

T (−1,+1) T (−1,−1)

)

=
(

exp
(
β J 2 + β J

)
exp
(−β J 2

)

exp
(−β J 2

)
exp
(
β J 2 − β J

)
)

. (8.8)

and λ±(β, J ) are the two eigenvalues of the matrix.

Equation (8.8) has the exact form of the transfer matrix
for 1D Ising model described by Hamiltonian

Ĥ =
K∑

k=1

(
J 2σ̂ x

k σ̂ x
k+1 + J σ̂ x

k

)

=
K∑

k=1

(
J 2σ̂ x

k σ̂ x
k+1 + J

σ̂ x
k + σ̂ x

k+1

2

)
. (8.9)

The corresponding partition function Z[β, J ] has only
two free parameters β J and β J 2, which in our case is
parametrized by β and J . This shows that the dual description
can be used to study the strongly coupled systems including
certain spin chain models such as Ising model.

9 Discussion

In this paper we simultaneously achieved two parallel results:
derived a dual path integral representation of some strongly
coupled systems (5.7) and then argued that the dual descrip-
tion may be responsible for the emergence of space-time,
quantum field theories and gravity. While the first result
is purely mathematical and should be viewed as a non-
perturbative method for calculating partition functions, the
second result is an attempt to study how the essential ingre-
dients of any successful theory of gravity may emerge from
a dual path integral representation of the partition function
for strongly coupled systems. With this respect our approach
is similar to the AdS/CFT with the main difference that we
do not a priory assume a specific symmetry of the interac-
tions (e.g. conformal) nor a specific geometry of the dual
space-time (e.g. anti-de Sitter) and rely completely on the
interactions to determine the geometry of the dual space-
time. Our approach is also similar to the more recent ideas
of describing space-time using entanglement between sub-
systems [13–17] or using quantum circuits [18–20], but our
derivation of the dual description is certainly very different.

To demonstrate how the non-perturbative method works in
practice, we considered three examples of quantum mechan-
ical systems with up to the first-order interactions complexity
(see Sects. 3, 7 and 8) and one example with arbitrary high-
order interactions complexity (see Sect. 6) and calculated the
respective dual expressions for the fully interacting partition
functions. In the latter example we showed that the zero tem-
perature limit of the dual path integral can be approximated
as a path integral of a 1 + 1D quantum field theory with a
non-canonical kinetic term and with the orders of interac-
tions playing the role of a dual time. In this limit the dual
system is a legitimate quantum field theory on a lattice, but
for more general systems we expect the dual path integral
to differ from the Feynman path integral. This is where our
analysis diverges significantly from the AdS/CFT proposal
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Fig. 4 Interactions network for
Ising model

in which one is supposedly dealing with legitimate quantum
theories on both sides of the duality. Of course, in a true the-
ory of quantum gravity the Feynman path integral may not
be adequate and with this respect the dual path integral could
give us the desired non-perturbative definition of quantum
gravity.

To study the emergent phenomena we first followed the
analysis of Ref. [4] and defined an extended partition function
(Sect. 3) which solves a relativistic wave equation and simul-
taneously describes both non-interacting and interacting par-
tition functions up to the first order in interactions complexity.
Although the original system was in a time-invariant thermal
state (Sect. 2), in the dual description the relativistic dynam-
ics emerges from interactions between subsystems. With this
respect not only time, but also space-time can emerge as
was first noted in Ref. [4]. Unfortunately, such systems are
not rich enough to describe many strongly coupled systems
and therefore not suitable for describing the more complex
emergent phenomena such as quantum field theories, curved
space-time or gravity. To study the more general emergent
phenomena we proposed to use the dual path integral repre-
sentation of the partition functions with arbitrary high orders
of interactions. The higher-order interactions are expected in
a generic strongly coupled system and in Sect. 6 we defined
one such system using the interactions network of Fig. 2. As
was already mentioned, the corresponding dual path integral
can be approximated as the Feynman path integral of a 1+1D
quantum field theory on a flat background, but a generaliza-
tion of Fig. 2 to more general curved backgrounds does not
seem out of reach. Also note that it is not too difficult to come
up with examples of different, but equivalent, dual path inte-
gral representations of the same quantum system and so at
some level the emergence of local symmetries is expected.
What is, however, less obvious is how to derive fully non-
perturbative equations of general relativity, but that is work
in progress.
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