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Abstract A new data-driven method, using Z → μ+μ−
decays, is proposed to correct for charge-dependent curva-
ture biases in spectrometer experiments at hadron colliders.
The method is studied assuming a detector with a “forward-
spectrometer” geometry similar to that of the LHCb exper-
iment, and is shown to reliably control several simplified
detector mis-alignment configurations. The applicability of
the method for use in measurements of precision electroweak
observables is evaluated.

1 Introduction

The measurement of charged particle momenta in hadron col-
lider experiments is susceptible to mis-alignments, inaccu-
racies in the knowledge of the magnetic field, or other biases
in the reconstruction algorithms. Precision measurements of
electroweak parameters such as the W boson mass (mW ) and
the weak mixing angle (sin2 θeff

lept), using muonic decays of
weak bosons, are particularly sensitive to the accuracy with
which these details are modelled in simulations of the signal
processes. In this paper we focus on curvature biases of the
type

q

p
→ q

p
+ δ, (1)

for particles of charge q and momentum p driven, for exam-
ple, by weak modes in the detector alignment procedure. It
is desirable to identify and eliminate these (δ) biases from
both the real and simulated data, so that the simulation can
be tuned and validated with better reliability.
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In the first measurement of mW with the ATLAS experi-
ment [1], track curvature biases were determined using the
ratio of the energy and momentum of electrons fromW → eν
decays. This approach is only applicable for detectors with
comparable kinematic resolution for electrons and muons.
A second approach, based on the determination of sagitta
biases in Z → μ+μ− decays was also studied. The depen-
dence of the invariant mass of Z → μ+μ− decays on the
muon kinematics is sensitive to curvature biases but, partic-
ularly in the case of global mis-alignments, the biases on the
μ+ and μ− momenta can be strongly anti-correlated. Ref. [2]
details a method in which the curvature biases are determined
by assuming that the mean 1/pT of the μ+ and μ− should
follow the expectation of simulation, where pT is the momen-
tum of the muon transverse to the beam axis. The reliance on
simulation arises because the pT distributions are sensitive to
both mis-alignment and physics effects (including intrinsic
differences between the μ+ and μ− kinematic distributions
in Z decays). That method has nevertheless been success-
fully applied in, for example, measurements of sin2 θeff

lept by
CDF [3] and CMS [4].

This paper presents an alternative data-driven approach to
determine charge-dependent curvature bias corrections using
Z → μ+μ− decays. The method is validated with the exam-
ple of the LHCb experiment [5] using a simplified model of
the detector geometry and mis-alignment configurations.

2 The simulated event sample

A sample of 108 pp → Z → μ+μ− events, at a centre-
of-mass-energy of 13 TeV, is generated with POWHEG
Box [6,7]. These events are subsequently processed with
Pythia8 [8], which simulates a QCD parton shower, hadroni-
sation, the underlying event, and QED final state radiation.
Momentum resolution smearing is considered to be unnec-
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essary for the present study, which is focused on systematic
curvature biases rather than the intrinsic curvature resolution.
Since this work was conducted in the context of precision
measurements of electroweak observables with LHCb [9–
13], events are selected with both muons in the pseudorapid-
ity interval 1.7 < η < 5. It is also required that both muons
have pT > 15 GeV and that at least one of the two muons has
pT > 25 GeV. The coordinates are fixed according to a right-
handed Cartesian system with the origin at the pp interaction
point. The x-axis is oriented horizontally towards the outside
of the LHC ring, the y-axis points upwards with respect to the
beamline and the z-axis is aligned with the beam direction.
The simplified geometry includes a dipole magnetic field
along y, bending the tracks on the x − z plane and a single
measurement plane after the magnet. Charged particles are
deflected along the x axis by p−1 ×3 GeV m, which roughly
corresponds to the bending power of the LHCb spectrome-
ter [5]. A curvature bias (δ) can be interpreted as a systematic
translation of the measurement plane along the x axis:

Δx = δ × 3 GeV m. (2)

In Sect. 6 it is estimated that a Δx value of 5 μm leads to a
bias of O(50) MeV in the determination of mW for a single
charge. It should be noted that the bias in the measurement
of mW for a single charge is strongly (but not fully) anti-
correlated to the corresponding bias in mW for the opposite
charge, leading to partial cancellations when the combination
of the two charges is considered. Nevertheless, the precision
of the measurement is potentially affected by such biases.
Given that, for example, the LHCb Run-II dataset permits
an O(10)MeV statistical precision on mW [9] a simple and
reliable method to control this source of bias is required.

3 The pseudomass method

The proposed method relies on an approximation of the
invariant mass of Z → μ+μ− decays using the momen-
tum of one muon and only the direction of the other. In the
context of a measurement of the differential cross section
for p p̄ → Z → μ+μ− with the D0 experiment, Ref. [14]
introduced the pseudomass1 (M±) for each muon charge as:

M± =
√

2p± p±
T
p∓

p∓
T

(1 − cos θ), (3)

1 The definition of “pseudomass” in D0 is given in terms of leading/sub-
leading muons, not positive/negatively charged muons. Furthermore,
the pseudomass was used for different purposes, and not for addressing
curvature biases.

where p± and p±
T are the momenta and transverse momenta

of the μ± and θ is the opening angle between the two muons.
The pseudomass is an estimate of the dimuon mass under
the assumption that the dimuon system has zero momen-
tum transverse to the bisector of the two lepton transverse
momenta.2 This assumption is inspired by the fact that most
of the Z → μ+μ− cross section at hadron colliders is in the
region pZT < mZ . A subset of events with smaller pZT values
can be selected, independently of the muon momenta, using
the φ∗ variable [15], defined as:

φ∗ ≡ tan(φacop/2) sin θ∗
η ≈ pZT

mZ
, (4)

where φacop = (π − Δφ) and Δφ is the azimuthal opening

angle between the two leptons and cos θ∗
η ≡ tanh

( η−−η+
2

)
,

and where η− and η+ are the pseudorapidities of the nega-
tively and positively charged leptons, respectively. A require-
ment of φ∗ < 0.05 corresponds to roughly half of the
available events. Figure 1 (left) shows how this requirement
selects events with smaller pZT on average, while Fig. 1 (right)
shows that the pseudomass distribution of these events has a
narrow width of O(5) GeV.

Figure 2 shows that the peaks of the M+ and M− distri-
butions are displaced by around 2 GeV when Δx = 50 μm is
assumed in the simulation. This sensitivity can be exploited
to determine the δ in Eq. 1 through a simultaneous likelihood
fit of the M+ and M− distributions. Both distributions are
modelled by a double Crystal Ball (CB) function [16], plus an
exponential function for the non-peaking component of the
Z/γ ∗ line-shape. The mean of the CB function for the M±
distribution is defined as M̄(1 ± A), where M̄ and the asym-
metry A are two of the 16 floating parameters of the fit. The
other floating parameters are the width of the first CB func-
tion and the relative width of the second CB (for both M+ and
M−); the α, n parameters describing the tail of the CB; the
slope of the exponential component; the normalisation con-
stants of the three shape functions. The charge-dependent
curvature bias can be determined via

δ ≈ A

〈
1
p+

〉
+

〈
1
p−

〉
2

. (5)

Since this approach decouples the effect of curvature biases
on the momenta of the μ+ and μ− it is straightforward to
determine δ values in an arbitrary number of bins of η and
φ. The curvature biases can be determined independently in
each bin. Unless otherwise specified a binning scheme with
8 (12) η (φ) bins is used in the remainder of this paper.

It is anticipated that the determination of the δ values with
Eq. 5 will be slightly biased by the forward-backward asym-

2 Ref. [15] refers to this axis as b̂.
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Fig. 1 The distribution of pZT (left) and the pseudomass (right) for events passing and failing the φ∗ < 0.05 cut
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Fig. 2 The parametric fit of the M+ and M− pseudomass distributions,
in the presence of a Δx = 50 μm. The signal is modelled with a double
Crystal Ball function, while the non-peaking component of the Z/γ ∗
line-shape is modelled with an exponential

metry (AFB) in the Z → μ+μ− process, which implies a
small difference in the kinematic distributions of the μ+ and
μ−. However, Eq. 5 relies on the asymmetry between the
pseudomass peak positions and AFB is minimal for dimuon
masses close to the peak of the Z resonance. This bias is nev-
ertheless evaluated and addressed in the following section.

4 Validation of the method

The pseudomass method is validated with 30 toy experiments
using statistically independent subsets of the Z → μ+μ−
event sample described in Sect. 2. When no mis-alignment
is simulated the method should return Δx values that are
statistically compatible with zero.

Figure 3 (upper row) shows the distribution over the
30 toys of the pull, i.e. the difference between the correc-

tion derived using the proposed method and the expecta-
tion (Δx = 0 μm), divided by the statistical uncertainty of
the measured parameter in each of the η bins. In this study
an integration over φ bins is performed. Given the forward-
backward asymmetry it is not surprising to see that the pull
distributions have means that are systematically shifted from
zero, by up to three standard deviations, with a strong depen-
dence on η. Figure 3 (central row) shows that this bias is
eliminated when the charges of the Z boson decay products
are randomised, so that the number of μ+ and μ− falling in
each [η, φ] bin is the same (i.e. effectively “switching off” the
forward-backward asymmetry). The small bias can be cor-
rected using simulation but, given the intended application
of the method to measurements of mW and sin2 θeff

lept, careful
attention is required for the dependence of this bias on the
value of sin2 θeff

lept assumed in the simulation. A larger (than in

the 30 toy experiments) sample of around 107 events is used
to determine this correction with high statistical precision.
Figure 4 (left) shows the resulting pseudomass asymmetry
values in bins of η for the nominal value of sin2 θeff

lept (black

points) and ±5 × 10−2 variations (red and blue points). It is
reassuring to see that the pseudomass asymmetry shifts by at
most 5 × 10−4 for these extreme variations, corresponding
to roughly ±300 times the uncertainty on the current world
average value of sin2 θeff

lept [17]. Figure 4 (right) shows that

the same variations in sin2 θeff
lept lead to far greater changes

in the profile of the mean 1/pT asymmetry versus η. The
pseudomass asymmetry therefore appears to be better suited
than the 1/pT asymmetry for the determination of curvature
biases with Z → μ+μ− events. A small correction for this
bias can now be included in Eq. 5, as follows:

δ ≈ (A − AFB,corr)

〈
1
p+

〉
+

〈
1
p−

〉
2

, (6)
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where AFB,corr corresponds to the black points in Fig. 4.
Figure 3 (lower row) shows that using Eq. 6 the curvature
biases can be determined without bias, since the pull distri-
butions of the Δx values are consistent with standard normal
distributions in all the bins considered.

5 Application of the method

The pseudomass method is tested on a subset of 3×106 events
from the sample described in Sect. 2. The muon momenta
are re-calculated to mimic the effects of five mis-alignment
scenarios that are representative of the LHCb detector [18].
There is a distinction between coherent translations/rotations
of the entire measurement plane and incoherent translations
in bins of η and φ. In all cases the additional deflection (Δx)
of a track along x due to the introduced mis-alignment is
calculated, and the corresponding variation in the momentum
is derived from Eq. 2. The five mis-alignment scenarios are
configured as follows.

1. Coherent translation along x (Δx = 50 μm).
2. Coherent translation along z (Δz = 100 μm): the corre-

sponding deflection along x is

Δx = Δz
cos φ

sinh η
. (7)

3. Coherent rotation in the x − y plane (Rz = 0.2 mrad): the
corresponding deflection along x is

Δx = cos(φ + Rz) − cos φ

cos φ

m

p/GeV
. (8)

4. Incoherent translation along x , with the Δx values ran-
domly sampled from a symmetric Gaussian distribution
with a width of 100 μm in each of the η and φ bins corre-
sponding to the same binning scheme as the pseudomass
corrections.

5. Incoherent translation along x with five η bins instead of
eight, so that the binning scheme is slightly different to
that used in the pseudomass corrections.

Maps of the curvature bias corrections in the η and φ bins
are determined for each mis-alignment scenario, and they
are presented in Fig. 5. An iterative procedure is required
because Eq. 5 is only accurate to leading order. The resid-
ual corrections of each iterations are added to the corrections
map of the previous iteration. Iterations stop when the size
of the residual corrections are zero within their statistical
errors in most [η, φ] bins. This happens with around two
iterations. Figure 6 shows the dimuon invariant mass (Mμμ)
distribution and the forward backward asymmetry in bins

of Mμμ in the simulation. The black histogram and points
correspond to the simulated events before mis-alignment,
while the magenta (green) versions correspond to the mis-
aligned (coherent Δx = 50 μm scenario) simulation before
(after) the pseudomass corrections. It can be seen that the
mis-alignment degrades the Mμμ resolution by around 10%
and biases the AFB values by up to 30% in some mass bins.
The pseudomass method successfully restores the original
mass resolution and AFB profile. Figure 7 shows the profiles
of the mean Mμμ as a function of the φ of the μ+ and μ−
and as a function of the angle φd between decay plane normal
and the magnetic field direction. In the simulated LHCb-like
geometry φd distinguishes tracks with opposite-sign curva-
ture in the x−z plane. The lower row of Fig. 7 shows the
values of AFB as a function of Mμμ. The left (right) columns
correspond to before (after) applying the pseudomass correc-
tions. The black points correspond to the simulation before
mis-alignment while the other three colours correspond to
the first three mis-alignment scenarios. It can be seen that
the profile of AFB versus Mμμ is particularly sensitive to the
Δx translation, while the φ± and φd profiles are sensitive
to the Δz translation. The pseudomass corrections reliably
resolve both of these pathologies, as can be seen in the right-
hand column of Fig. 7.

Figure 8 shows the same four alignment-sensitive pro-
files as in Fig. 7 but considering incoherent mis-alignments
along the x axis. By construction, the size of the local
mis-alignment depends on random numbers. Therefore, it
is appropriate to repeat the study for multiple toy data sets,
generated sampling the mis-alignments from different ran-
dom seeds. The bands in Fig. 8 are centered on the mean
value across 10 toys, and their width is given by their root
mean square (RMS). The red (blue) bands correspond to the
values before (after) applying the pseudomass corrections to
the mis-aligned events. For most points the blue bands are
at least a factor of two narrower than the red bands. The
reduction in the width of the band is particularly evident for
the mass dependence of AFB . Similar results are obtained for
the fifth mis-alignment scenario, corresponding to a different
binning scheme in η and φ.

It is now interesting to test the susceptibility of measure-
ments of mW and sin2 θeff

lept to these mis-alignment scenarios.
For each of the first four mis-alignment scenarios, values of
mW+ , mW− and sin2 θeff

lept are extracted from the same sam-
ple of generator level events, using a simple single-parameter
χ2 fit described in greater detail in Sect. 6. With the assumed
signal yields for LHCb Run-II [10], the statistical uncertain-
ties on mW+ , mW− , and sin2 θeff

lept are 9 MeV, 11 MeV and

43 × 10−5, respectively. Table 1 lists, for each of the three
parameters of interest, the shift in the measured value and the
Δχ2 that is induced by the first four mis-alignment scenar-
ios. The overall bias for mW is obtained from the weighted
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Fig. 3 The distribution of the difference between the measured Δx
values calculated with the pseudomass method and the expectation
(Δx = 0 μm) divided by the uncertainty of the measured parameter

in bins of η for 30 toy experiments. The upper two rows correspond to
Eq. 5. In the central row the muon charges have been randomised. In
the lower row Eq. 6 is used
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average of the biases for mW+ and mW− , and is reported
in a separate column in Table 1. The largest biases in all
three parameters are caused by the (coherent and incoher-
ent) mis-alignments along the x direction. Rotations around,
or translations along, the z axis lead to smaller biases. The
next obvious step is to understand whether the pseudomass
method is able to correct for such biases.

6 Impact of the pseudomass method on the
measurement of electroweak observables

The sample of Z → μ+μ− events described in Sect. 2 is
complemented by samples of 2 × 107 W− → μ−νμ decays
and 2 × 107 W+ → μ+νμ decays. Events are selected with
muons in the region 2 < |η| < 5, reducing both samples
to around 107 events. For each of the three parameters of
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Fig. 7 The first three rows show the profiles of the mean dimuon invari-
ant mass in bins of φ+, φ− and φd . The lower row shows the AFB val-
ues in bins of mass. The black points correspond to the simulation with
no mis-alignment while the other colours correspond to the first three

mis-alignment scenarios. The left and right columns correspond to the
simulation before and after application of the pseudomass corrections,
respectively

interest (mW+ , mW− and sin2 θeff
lept) 90 toy measurements are

conducted.
The measurements of mW are based on template fits to

the muon pT distribution of W → μν events, while the
measurements of sin2 θeff

lept are based on template fits to AFB

in bins of the dimuon mass in Z → μ+μ− events. The
data histograms are compared to templates where events are
reweighted to emulate differentmW and sin2 θeff

lept hypotheses.
The toy experiments are configured differently for measure-
ments of mW and sin2 θeff

lept:
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Fig. 8 Profiles of the mean dimuon invariant mass in bins of φ+, φ−
and φd , and the AFB values in bins of mass. The black points corre-
spond to the simulation before any mis-alignment. The red (blue) band
represents the variations over ten toy experiments with the 100 μm inco-

herent mis-alignment scenario before (after) application of the pseudo-
mass method. The centre (width) of each band corresponds to the mean
(RMS) of the ten toys

Table 1 The biases in the values of mW+ , mW− and sin2 θeff
lept, and the

correspondingshifts in the minimum χ2 values, that are caused by the

first four is-alignment scenarios in an example toy measurement. The
overall bias in mW , given by the weighted average of the biases for
mW+ and mW− , is also reported

mW+ mW− mW sin2 θeff
lept

Bias (MeV) Δχ2 Bias (MeV) Δχ2 Bias (MeV) Bias (×10−5) Δχ2

Coh. Δx = 50 μm −574 268 + 590 92 −50 + 211 960

Coh. Δz = 100 μm −1.2 2 −5 5 −2.9 −0.6 0.1

Coh. Rz = 0.2 mrad −0.4 0.2 −0.1 1.6 −0.3 −4 3

Δx = Gaus(0, 100) μm −101 52 + 98 79 −11 −65 28

– In the case of mW , toy data histograms are generated by
randomly fluctuating the bins around the nominal muon
pT distribution 90 times, assuming the expected LHCb
Run-II yields [10] and Poisson statistics.

– The same procedure can not be used for the AFB tem-
plates, since the Z → μ+μ− events used for the sin2 θeff

lept
determination are also used to determine the pseudomass
alignment corrections. It is therefore crucial to check

whether this re-use of events causes any bias in the deter-
mination of sin2 θeff

lept. Therefore, 90 statistically indepen-
dent samples are selected from the original simulated data
set.

For each data histogram a single-parameter fit determines
the mW or sin2 θeff

lept value that minimises the χ2 between the
data and the templates. The 68% C.L. statistical uncertainty
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Fig. 9 The pull distributions for 90 toy measurements of (left) mW+
and (right) sin2 θeff

lept. Three different scenarios are represented: (1) the
pseudomass and decay-asymmetry bias corrections are not included in
the toy data and template events (green); (2) the pseudomass correc-
tions are applied to toy data and templates, but the decay-asymmetry

bias corrections are not included in the the templates (red); (3) the pseu-
domass and decay-asymmetry corrections are applied to both toy data
and templates (black). Note that, in the case of mW , the three distribu-
tions overlap. The expected statistical behaviour, represented by a unit
Gaussian, is drawn in magenta

Table 2 The mean values of the distributions shown in red in Fig. 10 (where a 5 μm mis-alignment along x is applied to the toy data), before and
after applying the pseudomass corrections. The biases on mW are reported in MeV

Bias in mW+ (MeV) Bias in mW− (MeV) Bias in sin2 θeff
lept (×10−5)

Before (after) corr. σstat on mW+ Before (after) corr. σstat on mW− Before (after) corr. σstat on sin2 θeff
lept

−62 (-1) 9 + 56 (0.7) 11 + 26 (9) 43

corresponds to a variation of Δχ2 = 1 with respect to the
parabola minimum.

The pull distributions for the extracted values of mW+ 3,
and sin2 θeff

lept in 90 toys are shown in Fig. 9. What is denoted
as “ref” value in the pull distributions is the nominal mW

or sin2 θeff
lept value, which is aligned with the central template

hypothesis. A Gaussian distribution with zero mean and unit
width is drawn in magenta: this is the expected distribution
over the 90 toys assuming reliable coverage of the statistical
uncertainties. In order to study the impact of the pseudomass
alignment method on the measurements ofmW and sin2 θeff

lept,
before any mis-alignment, four different scenarios are con-
sidered.

1. No pseudomass correction is included in either the toy
data or template events.

2. The pseudomass corrections are derived from the Z sam-
ple and then applied to W and Z events when generating
the data and template histograms. The curvature biases
are determined with Eq. 5, i.e. without the small correc-
tion for the decay-asymmetry. This scenario is not shown
in Fig. 9, but is discussed below.

3 Qualitatively consistent results are seen for the W−, so the figure is
omitted for brevity.

3. Same as scenario 2, but with the decay-asymmetry bias
corrections (Eq. 6) applied to only template events.

4. Same as scenario 3, but with the decay-asymmetry bias
corrections applied to both toy data and template events.

It can be seen in Fig. 9 that in the first scenario both pull
distributions are consistent with the ideal Gaussian func-
tions. A small bias is observed in the sin2 θeff

lept pulls when
the pseudomass corrections are applied without including
the decay-asymmetry bias correction in the templates (red
curve), thus introducing a discrepancy in the way the align-
ment corrections are applied to data and templates. However,
the unbiased behaviour is restored after including the addi-
tional decay-asymmetry corrections. For better visualisation,
the second scenario of the list above (no decay-asymmetry
bias corrections in data and model) is not included in the
plots, but an unbiased result is observed also in that case.

As a final test, it is interesting to check what happens
to the four scenarios described above when a detector mis-
alignment is included. Figure 10 shows the shift in the
extracted mW+ and sin2 θeff

lept values with respect to the ref-
erence value for the same 90 toys. The distributions drawn
with blue lines are obtained from unbiased data. Those with
red lines are obtained from data with a coherent 5 μm mis-
alignment along x . The upper (lower) row shows the results
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Fig. 10 The shift in the extracted (left) mW+ and (right) sin2 θeff
lept val-

ues with respect to the reference value, in 90 toys. The upper (lower) row
corresponds to the simulation before (after) application of the pseudo-
mass method. The distributions drawn with blue lines are obtained from
unbiased data. Those with red lines are obtained from toy data with a

coherent 5 μm mis-alignment along x . The first (last) row of plots show
the distributions before (after) applying the pseudomass corrections.
The upper panel of each plot shows the best-fit χ2 corresponding to the
extraction of mW and sin2 θeff

lept for the 90 toys
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before (after) applying the pseudomass corrections. In order
to estimate the size of the bias on mW and sin2 θeff

lept driven
by the introduced mis-alignment, the distributions in red are
fitted with a Gaussian, and the corresponding means, before
and after corrections, are reported in Table 2. A 60 MeV bias
in the extraction of mW+ is estimated. Although the corre-
sponding plot is not shown, we observe an opposite-sign bias
of similar size for mW− . This confirms the sensitivity of the
mW measurement to small mis-alignment effects. The same
size mis-alignment has a smaller effect on the extraction of
sin2 θeff

lept, where the observed bias is within the statistical
uncertainty of the measurement. However, the corrections
have an impact in the best fit χ2 values extracted from each
toy, as shown in the upper panel of each set of plots.

7 Conclusion

The measurements of, for example, mW and sin2 θeff
lept, using

muonic decays of weak bosons at hadron colliders are sus-
ceptible to biases in the measurement of muon momenta.
A particular concern is curvature biases, caused by mis-
alignments of the tracking detector elements, that depend
on the sign of the particle charge. It is proposed to use the
“pseudomass method”, which is introduced in this paper, to
determine corrections for charge-dependent curvature biases
using Z → μ+μ− decays. The method is validated using
simulated pp → Z → μ+μ− events with the LHC Run-
II centre-of-mass energy of 13 TeV. A simplified model
of a detector with a similar geometry to the LHCb experi-
ment is used. This approach has the advantage of being less
dependent on assumptions about the kinematics of the Z
boson decays than other methods present in the literature.
A small correction for an effect of the forward-backward
asymmetry in Z → μ+μ− decays is required but, impor-
tantly, the curvature biases can be determined with limited
sensitivity to assumptions about the value of sin2 θeff

lept. The
method is tested against several simplified mis-alignment
configurations. With pseudo-experiments using simulated
Z → μ+μ− and W → μν decays it is demonstrated that the
proposed method can be reliably applied in measurements of
mW and sin2 θeff

lept in the presence of these simplified mis-
alignments.
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