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Abstract The spectral properties of a set of local gauge
(BRST) invariant composite operators are investigated in the
SU(2) Yang—Mills—Higgs model with a single Higgs field in
the fundamental representation, quantized in the ’t Hooft R¢-
gauge. These operators can be thought of as a BRST invari-
ant version of the elementary fields of the theory, the Higgs
and gauge fields, with which they share a gauge indepen-
dent pole mass. The two-point correlation functions of both
BRST invariant composite operators and elementary fields,
as well as their spectral functions, are investigated at one-loop
order. It is shown that the spectral functions of the elementary
fields suffer from a strong unphysical dependence from the
gauge parameter £, and can even exhibit positivity violating
behaviour. In contrast, the BRST invariant local operators
exhibit a well defined positive spectral density.

1 Introduction

The principle of gauge invariance is the ultimate guideline to
formulate quantum field theories of the fundamental interac-
tions as, for example, the electroweak theory [1,2]. In non-
Abelian gauge theories, genuine local gauge invariant quan-
tities are associated to composite operators. It is therefore
remarkable that the Standard Model is successfully described
by employing non-gauge invariant fields as the Higgs and the
W and Z elementary fields. Needless to say, the high order
calculations of the pole masses and cross sections worked
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out by means of these non-gauge invariant fields are in very
accurate agreement with the experimental data, see e.g. [3-6]
for a few illustrations.

Atthe theoretical level, the gauge parameter independence
of the pole masses of both transverse W and Z bosons as
well as of the Higgs field two-point correlation functions
are understood by means of the so-called Nielsen identi-
ties [7-13], which follow from the Slavnov-Taylor identi-
ties encoding the exact BRST symmetry of quantized non-
Abelian gauge theories. Nevertheless, as one easily figures
out, the direct use of the non-gauge invariant fields displays
several limitations, which become more severe in the case
of a non-Abelian gauge theory. For instance, in the case
of the U (1) Higgs model, the transverse component of the
Abelian gauge field A, is gauge invariant, so that the two-
point correlation function Py, (p){A,(p)Ay(—p)), where
Puv(p) = Buv — p’;f“) is the transverse projector, turns out

to be independent from the gauge parameter £. However, this
is no more true in the non-Abelian case, where both Higgs
and gauge boson two-point functions, i.e. (h(p)h(—p) and
Puv(p) (Aﬁ(p)Ae(—p)), where 4 stands for the Higgs field
and Ay, for the gauge boson field, exhibit a strong gauge
dependence from £. As a consequence, the understanding
of the two-point correlation functions of both Higgs field &
and gauge vector boson Aj, in terms of the Kéllén-Lehmann
(KL) spectral representation is completely jeopardized by an
unphysical dependence from the gauge parameter &, obscur-
ing a direct interpretation of the above mentioned correlation
functions in terms of the elementary excitations of the phys-
ical spectrum, namely the Higgs and the vector gauge boson
particles. We also note here that from a lattice perspective,
it is expected that the spectrum of a gauge (Higgs) theory
should be describable in terms of local gauge invariant opera-
tor correlation functions, with concrete physical information
hiding in the various (positive and gauge invariant) spec-
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tral functions, not only pole masses, decay widths, but also
transport coefficients at finite temperature etc. Clearly, such
information will not correctly be encoded in gauge variant,
non-positive spectral functions.

Within this perspective, the use of manifest gauge invari-
ant variables to describe the Higgs and the vector gauge
bosons is certainly very welcome. This endeavour was first
proposed by 't Hooft in [1], and later on formalized by Froh-
lich, Morchio and Strocchi (FMS) in [14,15]. These authors
were able to build, out of the elementary fields, a set of local
composite gauge invariant operators {O(x)} which, when
expanded around the value ® = constant which minimizes
the Higgs potential present in the starting classical action,
give rise to two-point functions which enjoy the important
property of reproducing, at the tree level, the two-point cor-
relation functions of the elementary fields {¢} = (A%, h),
namely

(OO ~ (P()P(Mtree + -+ » (1

where . . . denote the higher order loop corrections which will
be the main subject of the present work. Equation (1) shows
in a very simple and intuitive way the relevance of the com-
posite operators {O(x)} in order to provide a description of
the gauge vector bosons and of the Higgs particle within a
fully gauge invariant environment, see also the recent works
[16—19] where, amongst other things, a lattice formulation
has been proposed. Certain aspects of a gauge invariant ver-
sion of the Higgs phenomenon were also covered in [20,21],
albeit whilst assuming the “frozen” radial limit, <pTg0 = fixed,
corresponding to a Higgs coupling A — oo, a formal limit
hampering explicit computations in the continuum. Further
attempts towards a gauge-invariant formulation of the Higgs
phenomenon can be found in [22].

In two earlier works [23,24], we have laid the ground
for the study of the spectral properties of the gauge (BRST)
invariant local composite operators {@(x)} in the FMS
framework. In [24], we have made the first analytic one-
loop calculations of these BRST invariant operators in the
simpler U (1) Higgs model quantized in the Rg-gauge. In
particular, we have worked out the one-loop corrections to
the two-point functions in Eq. (1) corresponding to the Higgs
and Abelian gauge fields and we have shown that they have
the same gauge independent pole masses of the correspond-
ing elementary two-point correlation functions. In addition,
we have explicitly shown that the correlation functions of
the composite operators display a well defined positive and
gauge independent Kéllén—Lehmann spectral representation,
a feature not shared by the two-point correlation functions
of the elementary fields which, as in the explicit case of the
Higgs field, i.e. (h(p)h(—p)), display an unphysical depen-
dence from the gauge parameter £, becoming even negative
depending on the value of &£. Moreover, in [25], the renormal-

@ Springer

ization properties of these composite operators were scruti-
nized using the algebraic renormalization approach.

The aim of the present work is that of extending the tech-
niques of [23,24] to the more complex case of SU(2) Higgs
model with a single Higgs field in the fundamental represen-
tation. As we shall see, besides the exact BRST invariance,
the quantized theory exhibits a global SU (2) symmetry com-
monly referred to as the custodial symmetry. Moreover, the
local composite BRST invariant operators corresponding to
the gauge bosons transform as a triplet under the custodial
symmetry, a property which will imply useful relations for
their two-point correlation functions.

The present work is organized as follows. In Sect. 2, we
give areview of the SU (2) Yang—-Mills—Higgs model with a
single Higgs field in the fundamental representation, of the
gauge fixing procedure and its ensuing BRST invariance. In
Sect. 3 we calculate the two-point correlation functions of the
elementary fields up to one-loop order. In Sect. 4, we define
the BRST invariant local composite operators (O (x), RZ (x))
corresponding to the BRST invariant extension of (&, A,)
and calculate their one-loop correlation functions. In Sect. 5,
we discuss the spectral properties of both elementary and
composite operators.

In order to give a more general idea of the behavior of
the spectral functions, we shall be using two sets of param-
eters which we shall refer as to Region I and Region II. To
some extent, Region II can be associated to the perturbative
weak coupling regime, while in Region I we keep the gauge
coupling a little bit larger, while decreasing the vev (vacuum
expectation value) of the Higgs field. Section 6 is devoted
to our conclusion and outlook. The technical details are all
collected in the Appendices.

2 The action and its symmetries

The Yang—Mills action with a single Higgs field in the fun-
damental representation is given by

1 .. . .
So = /d4x {—F“ Fi, + (DY) (Dif %)

4 122 % VAY
Al e 15\
Zlotiepl — = 2
-I—2 ( 2v ) }
= Sym + SHiggs ()

with
Fuy = 0, A% — 8, A% + ge“P Ab A¢ 3)
and

Dij®) = 3, — S5z Ay @,
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(D) = 3,0 + g7t (@) g, @)

with the Pauli matrices t%(a = 1, 2, 3) and the Levi-Civita
tensor €7¢ referring to the gauge symmetry group SU (2).
The scalar complex field ® (x) is in the fundamental repre-
sentation of SU(2), i.e. i, j = 1,2. Thus, ® is an SU(2)-
doublet of complex scalar fields that can be written as

_ (e _ 1 ¢1+i¢2)
q)_ﬁ(¢0>_ﬁ(¢3+i¢4 ' ©)

We will work in Euclidean space-time throughout this paper.
The configuration which minimizes the Higgs potential in
the expression (2) is

(@) = (g) ©)

and we write down ®(x) as an expansion around the config-
uration (6), so that

| .
q>=_(”.+h+’p3), )
p1 — P2

where A is the Higgs field and p“, a = 1, 2, 3, the would-be
Goldstone bosons. We can use the matrix notation!:

o= %((v+h)1+i,0“r“) : ((1)) @

so that the second term in Eq. (2) becomes
(Dij ®7)" Dif @k
1
= 5(1,0) . [aﬂh -1 —id,pt?
iﬁ a jqa _ . b_b
+ 5T AM((v—i-h)l ip’t )] )
P . e 1
X |:8,4h 149,07 — ?((v + h)1 — lpdrd>7:‘AL:| . (0)
= Lo+ L1+ Lo, (10)
with £; the ith term in powers of A,:

Lo

1

5 (@ +9,0"0,0")

N 1

L = ) {gvAZBMp” — gA} P O

+8 A% (3, p")h + geabc%p“pbA,‘;} :

s & b b
£ =S anns [0 +m+ o). (1)

and we have the full action

11 1
So = /d4x§{§F[ijﬁv + VP ALAL + ()’

' This is of course possible thanks to the fact that & counts 3 Gold-
stone modes and that SU (2) has three generators. This “numerology” is
essentially what leads to a large custodial symmetry in the SU (2) case.

+0,09,p" — gvA} 00"
+g A% P98, h — gAY (30"

2
g
—ge 0" 0P A, + L ALAY, [th +h?+ p”p”]
+A02h% + ah(h? + p®p)
A
+Z(h2 + p“,o“)z}. (12)

One sees that both gauge field A}, and Higgs field & have
acquired a mass given, respectively, by

1
m? = Zgzvz, m% = 2. (13)

2.1 Gauge fixing and BRST symmetry

The action (2) is invariant under the local w-parametrized
gauge transformations

Sh= —%a)aracb, sdt = %w“qﬂr“,

(14)

a __ ab b
SAM_—DM w’,

which, when written in terms of the fields (&, p%), become

Sh= S pe,

gt 3% = 5604 W1 el ). (15)

As done in the U (1) case [23,24], we shall be using the Rg-
gauge. We add thus need the gauge fixing term

Syt =5 / d%{-i%é%a + (0, A% — smp“)}

1
- 5/d“x{gbaba

+2ib"0,, A% + 280, D4 c” — 2iEmb* p*

26 met — gE&mhe® — %‘geabCEacb,oc}, (16)

so that the gauge fixed action Sgy1 = So + Sgf, namely

1(1 1
Stull = /d4x§{§FﬁvF,i’,, + szngZAZ

+(@uh)? + 8 p 00" — guAL D, P”
—}—gAZpaaﬂh - gAZ(a,L,o”)h
_geabcaupapbAch
2

8 2 b b 2,2

+ 5 a5 a5 [20h + 12 + 00" ] + 207
2 a .a A 2 a a2 apa

+Avh(h” + p%p )+Z(h +p%p“)" +Eb%D
+2ib"0, A% + 280, D c” — 2iEmb* p*
—2&¢mc® — g&cmhc

_g_.geabCEachpc} (17)
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turns out to be left invariant by the BRST transformations

g a a
sh = =c¢ ,
5 14

S,Ou — —%(c“(v—}—h) _eubccbpc')

a _ __pnab b
sAH— Duc,

1
sct = Ege”bccbcc, sct =ib*, sb* =0, (18)

§Sean = 0. (19)

The Feynman rules for the full action (17) are given in
Appendix A. Notice that in the R¢-gauge the tree-level prop-
agator (AZ(x) p%(y)) vanishes, a well-known feature of this
gauge choice [2]. We will assume that € > 0 to avoid tachyon
poles in elementary propagators, see Eq. (Al).

2.2 Custodial symmetry

As already mentioned, apart from the BRST symmetry, there
is an extra global symmetry, which we shall refer to as the
custodial symmetry:

5AL = emepbac,
5p¢ = e b e
569 = ebe ghge,
Sc¢ = ebeghec,
§hY = @beghpe,
8h =0, (20)

where ¢ is a constant parameter, 9, 4% = 0,
3Sfun = 0. 21

One notices that all fields carrying the index a = 1, 2, 3,
ie. (A2, b4, c*, ¢, p*), undergo a global transformation in
the adjoint representation of SU (2). The origin of this sym-
metry is an SU (2) gauge X SU (2) global Symmetry of the action
in the unbroken phase, see Appendix B. The exception is the
Higgs field i, which is left invariant, i.e. it is a singlet. As
we shall see in the following, this additional global symmetry
will provide useful relationships for the two-point correlation
functions of the BRST invariant composite operators.

3 One-loop evaluation of the correlation function of the
elementary fields

For the elementary fields 4 (x) and Alay the correlation func-
tions are calculated up to first loop order in Appendices COa
and COb. In what follows, we will always spell out again
the momentum-dependent logarithms and explicit Feynman
parameter dependence, that is, we will in the eventual corre-
lation functions replace again the notational shorthands intro-
duced in Eq. (C1). The Feynman parameter integration itself

@ Springer

was handled via (F1). We have used the explicit expression

(F1) to numerically construct our spectral function plots (see

later). More about that integral (F1) can be found in [26,27].
For the Higgs field, for the propagator we get

(h(p)h(—=p)) = m

(P> + O, 22
G ) O, @)

with ITj;, (p?) the one-loop correction to the self-energy cal-
culated in Appendix COa. For d = 4, this correction is diver-
gent. Employing the procedure of dimensional regulariza-
tion, i.e. setting d = 4 — ¢, the divergent part for Iy, (pz) is
given by:

3 4
g (mi —36mj, = 36p* + 9,,2>

3272

M, aiv (p%) = . @
which, following the MS-scheme, is re-absorbed by the intro-
duction of suitable local counterterms. We remain thus with
the finite part of the Higgs self-energy

2

3 1 2
M (p2) = 8(4%'1)2/0 dx izg (m,% +p2> In ("L—f)

2
m
—2&m? +2(6m* — p*)In (-)
h ( ) /_,Lz

4 2 2
1 —
o+ 2 1 aptm <”1+P—<ZX>X>
m iz

+<p_‘; _m_%) In <m2$+p22(1 —x)x)
m? m w

—12m? — 2&p? + 2p?

()
2, 2
+31In (W) n 2)} L@

Before trying to resum the self-energy IT,;(p?), we notice
that this resummation is tacitly assuming that the second
term in (22) is much smaller than the first term. How-
ever, we see that Eq. (22) contains terms of the order of

p* 1 (m2+p2(]7x)x
(pP24m})? 1
big values of p?.

Indeed, if one proceeds naively and include these large
contributions into a resummation, spurious tachyon poles
will be induced in the correlator, analogous as in the earlier
investigated U (1) case in [24]. The need for care in resum-
ming these contributions was also strengthened and worked
out in great detail in [28].

) which cannot be resummed for
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We therefore proceed as in [23,24] and use the identity
pt = (p* +mp)? —mj —2p°mj, (25)
to rewrite

P’ pix(l — x) + m?
(p2 + m%)Z MZ
p2x(1 —Xx)+ m?
n 2
"

(m} +2p*m?)  p*x(1 —x) +m?

— n .
(p? +m3)? 1

=1

(26)

The term which has been underlined in Eq. (26) can be safely
resummed, as it decays fast enough for large values of p?2.
We thence rewrite

s (p?) [ (p?) 2
= + Chn(p), (27)
P +md? (P2 +md) P
with
A 3g2 1 m2§'
[y (p?) = —>— | dx {26 (m2 + p*)In | —
hh(P7) 8(4n)2/0 x E(mh+17 ) "2
2
m
—2&m? +2(6m* — p*)1n (-)
2 (= )i (5
4 2.2
+2
—(12m? — w +4p?)
I m? + p2(1 — X)X
X In —2
%
_ @mjy +2p*my) " m?& + p*(1 — x)x
m2 u2
4 2
—12m? —26p* +2p% — m—’;( —2In <m—’;>
m 3
2 2
+ p*(1 —
+31n (M) + 2)} (28)
%
and
o 382 /l

—1

2

< p*x(l — x) + m?
X | In 5
n

N prx(1 —x) —|—$m2>
(29)

Thus, for the one-loop Higgs propagator, we get

1
p*+m2 — [ (p?)

(h(p)h(—p)) = + Crn(p?) + O(12).
(30)

For the gauge field, we split the two-point function into trans-
verse and longitudinal parts in the usual way

(AL (PAL=p) = [ DR P () + DA (PP Ly ()] 8,
&)

where we have introduced the transverse and longitudinal
projectors, given respectively by

bub bub
Puv(p) = 80 — ;2”, Lu(p) = “552. (32)
We find
1 1
DT (pH) = I1 2+ Om),
AA(p) p2+m2 + (p2+m2)2 AAT(p )+ ( )

(33)

with TT, 47 (p?) the one-loop correction to the self-energy
calculated in Appendix COb. For d = 4 — ¢, following the
procedure of dimensional regularization, we find that the
divergent part for T4 47 (p?) is given by:

9m*
o 2
16mh

2 82

Myar giv(p?) = =
3my  m*e 3m*  gp®  25p?

32 8 32 8 48 |’

(34)

and these terms can be, following the MS-scheme, absorbed
by means of appropriate counterterms. We remain with the
finite part of the self-energy?

Mypr (1’2)

g ' 4.2 4 m;
== dx{ —27m m;In| —
36(4n>2m4p2m2/o { P e
2
—27m6$p2m% In (m—f)
"

2

+3m4m2 (m%l —m?+ 2p2) In (%)
+27m* p*m3 (m% + mzé)
—3m*em2 2m* (€ — 1) + m?(4& +7)p?

4 m*§

2
+3m*In (’%) (—mzmﬁ +m? (m4(2§ -1
+m2(4E +45)p> +2(6 +9) p4) — 54m* p2>
+m* (6m2m2 +m? <3m4(2(§ —)E+ 1)

+3m(E — D(EE — Dp> +208E +4) - 17)p*)

2 For notational simplicity, we will call this finite part T, ,7 again.
We will follow this notational convention as well for later correlation
functions that we will encounter.
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—3m2 + 54m4p2) - 3m,21 |:m4(2p2 (m%l — 5m2)
+ (m,% - mz) 24 %

<p2(1 —x)x + m%(l —X) +m2x>
x In

u2
2 + p) (mie — 17 4 20— 5)p> + )
P21 —x)x + Em2(1 — x) + m?x
u? >
pt—m* ><4m E+p)
pi(1 —x)x + Em? )

<in
+p2<
(
(

In

X

+p? (4m®> + p ) (12m4 —20m?p* + p4)

_ 2
an (PO T 65)

We see that (33) contains again terms of the order
4 2 2 2 2
p m°+p-(1—x)x m°+p-(1—x)x
(PP4m2)? In ( 2 ) and (p2+m2)2 In ( 2 )»
which cannot be resummed for big values of p>. We use

pt prx(1 —x) +m?

PE+me 22
p2x(1 —Xx)+ m?
u2
(m + 2p2m2) p2x(1 —Xx)+ m?
(p* +m?)? w?

=In

(36)

and

po p*x(1 —x) +m?

n
(pz + m2)2 MZ
p2x(1 —Xx)+ m?
u2

=(p?>—2m*In

2mé +3p2m*  p*x(1 —x) +m?
3,0 0 2 :
(p”+m?) I

(37)

The underlined terms in (36) and (37) can be safely
resummed. We rewrite

a7 (p?) a7 (p?)
(p2+m2)2 - (P + 2)2 + AAT(p )v (38)
with
2 1
~ 8
Ao e—— 8 f dx
aat(P7) 36(47)2m* p2m3 Jo

2 2
x{ — 27w pPmd n [ 22 ) — 27mOep?m2 In (m—f>
n "
m2
+3m4m2 (m%l —m?+ 2p2) In M_g
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+27m4p2m% (m% + mzé)
—3m*emi 2m* (& — 1) + m* (4 +7)p?
2
+2(E +9)pHn ( lf)
+3m* (—=m*mj} + m?(m* (26 — 1)
+m*(4E +45) p* +2(& +9)pY)
2
—54m4p2) In (m_z)
w
+m*(6m*m} 4+ mi(3m*(2(5 —2)& + 1)

+3m? (& — 1)(dE — 1)p?
+2(3E(E 4+ 4) — 17)p*) = 3m$ 4 54m* p?)

—Sm%l |:m4 <2p2 (m%l - 5m2) + <m% - m2> 2+ p4>
<p2(1 —0)x 4 (1 — x)m} + m2x>
x In
2

1)2 (mz +p2)2

<p2(l —x)x +Em*(1 —x) + m2x>
x In

—2m4(E _

2
+ (—2m4(4§ —1p? (m2 + p2>)
“In <p2(1 —x)x + §m2>

2

w
2 2
6.2 4 4 pr(l—x)x+m
+(66m°p~ —33m"p™) In <—M2 )“
(39
and
g2 1
Canr(pH) = G fo dx{<—4m2<s —5)—2p?)
<p2(1 —x)x +Em?(1 —x) +m2x>
X In 5
w
201 _ 2
+ (4sm2 +p - 2m2) In <p d ’;)zx +&m )
201 2
+(—18m> + pP)In (W) } (40)
Finally
T A 1 2 2
Dys(p*) = (pz T (D) + Caar(p )) + O).

(41)
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4 One-loop evaluation of the correlation function of the
local BRST invariant composite operators

4.1 Correlation function of the scalar BRST invariant
composite operator O (x)

The gauge and BRST invariant local scalar composite oper-
ator O(x) is given by

2

0(x)=d>*cb—%, s 0(x) =0, 42)
which, after using the expansion (8), becomes
o) = %[ (1 O) ((v+ M1 —ip*t))((v+ h)1
. b_b 1 v2
+ipht ))(O>]—7
1
= (hz(x) 1 20h(x) + p° (x)p”(x)). (43)

Notice that the operator O(x) does not depend on the FP
ghost field. Therefore,

(0(x)0 () = vX(h(x)h(y))
+o(h(x)p” (1P () + v(h()R()?)

1 1
+Z<h<x>2p’7(y>p”<y>> + Z<h<x)2h<y)2>

l a a b b
+ 2 (" ()" () p" ()" (¥))- (44)

4

Looking at the tree level expression of Eq. (44), one easily
obtains

(0(P)O(=p))ree = V2 (h(P)h(=P))ree = vzm,

(45)

showing that the BRST invariant scalar operator O(x) is
directly linked to the Higgs propagator.

Concerning now the one-loop calculation of expression
(44), after evaluating each term, see Appendix D for details,
we find that the two-point correlation function of the scalar
composite operator O (x) develops a geometric series in the
same way as the elementary field A (x). This allows us the
make a resummed approximation. Using dimensional regu-
larization in the MS-scheme, we find that, in the R:-gauge

2
_ 2y _ v
(O(P)O(—=p))(p7) p2+mi
2
— 1 2y + O3, 46
+(p2+m%)2 oo(p?) + O (46)

withITpo( pz) the one-loop correction calculated in Appendix
D. Following the procedure of dimensional regularization for

d = 4 — ¢, we find that the divergent part of the one-loop
correction is given by

1 (9g4172v2 9gtv*

o=t =
00.div ™ 43272¢ 16 16
9 1
+§g2p2v2 +p*+ EApzv2 + )\%4), 47)

which can be accounted for by appropriate counterterms,
following the MS-scheme renormalization procedure. A full
renormalization analysis will be presented elsewhere. Notice
that expression (47), when multiplied again with the factored-
out v* of Eq. (46), is a polynomial in p?, v?, in full accor-
dance with power counting renormalizability.

We remain with the finite part, given by

1 1
2 2 4
Moo () = 35 / dx[—24mhm

—6m?p? (m2 + 6m2) In m—z
p h IvLZ

2 2
2 miy + p~x(l —x)
—m% (p2 — 2mi) In <hli2

2, 2
1—
—3m?2 (12m* + 4m?p? + p*) In ('”"FP—M)

2
2
m
+6p? (m), + mpm* + 2m*) — 6mj p* In (M;‘) } .

(48)

Since (46) contains terms of the order of @2-1:%)2 In(p?), we
follow the steps (36)—(38) to find the resummed correlation
function in the one-loop approximation

v2

- (49)
p2+mi —Too(p?)

Goo(p*) = + Coo(p?)

with

. 1 !
2y _ 2 4
Moo(p7) = 3202 2m%/0 dx{—24mhm

2
~on? (w60 1n (2 )
w
2 2
m; + p7x(l —x)
—m32(3m} — 6m2 p*) In <—h 2

—3m} (12m4 +4m?p* —m} — 2p2m%)

<m2 + p2x(l — x))
"

2
m
+6p* (m2 +mim? + 2m4) — 6m}p*In (—g) }
"

(50)
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and
1 1 m? + p?x(1 — x)
Coo(p?) = ~5 fo dx {m (’1T
2 2 1 —
+3ln<m+P—§<X>>}, 51)
n

Expressions (49) and (51) show that, as expected, and unlike
the Higgs propagator, Eq. (30), the correlator (O (p) O (—p))
is independent from the gauge parameter &.

4.2 Vectorial composite operators

We identify three gauge invariant vector composite operators,
following the definitions of ’t Hooft in [1], namely

0, =i¢p' Do,
01
of =o¢" <_1 0) D¢,
0, = (O (52)

The gauge invariance of 03 is apparent. For O, we can
show the gauge invariance by using the following 2 x 2 matrix
representation of a generic SU (2) transformation,

a —b*
U= (b e ) (53)
with determinant |a|? + |b|?> = 1. Thus, we find that under a
SU (2) transformation

0 1
of — WUe¢)" (_1 0) D, (U¢)
0 1
_ AT T
=¢'U (_1 0) UD,¢
—y ( 0 1) Dup = O, (54)
-1 0
which shows the gauge invariance of O;f and, subsequently,

of O, . After using the expansion (8), the first composite
operator reads

0, =i¢p'Duo
=i 0,0 + %gcb*r“Azcb
= %[(v +m)duh + i+ h)dup® —ip3d,h
+098,p% +ip'd,p* —ip*d,p"
—%g(v +h)?AS +ig+h) (Al p* — A% ph)
+égp“Aip“ - igp3AZpb}

1
= 5[ — W+ + pP0uh — p'o, 0

@ Springer

1
+0%0up" + S8 (0 + 1A}

—g(v+m)(A,p* = Al p")
1 i
— 58P ALp" + gp3A,’1p”} + 50,0, (55)

and since the last term, i.e. %BMO, is BRST invariant, the
sum of the others terms has to be BRST invariant too. There-
fore, we can introduce the following three “reduced” vector
composite operators Rﬁ witha =1,2,3:

R = i(o; - 0;).

2 M
R = %(0; + 0,;),
R, =0, — %auo, (56)
so that

1 . .
R = §|: — (v +R)Bup” + pd,h — e pP, p°

1 2 b, b
+§g(v +h)7Aj, — g + h)e“ (p” AY)

1
—EgA,”ip’"p’” + gp“A’,Z’p’”], (57)

with R, both gauge and BRST invariant, thus
SR (x) = 0. (58)

Notice that, as in the case of the scalar operator O (x), the
quantities Ry} (x) do not contain FP ghosts. Remarkably, the
BRST invariant operators Ry, transform like a triplet under
the custodial symmetry (20), namely

__ oabc pb
SR, = " B"Ry,. (59)

In work in progress [29], we shall see that the operators
R}, are the unique dimension three triplet vector opera-
tors belonging to the non-trivial BRST-cohomology and that
they renormalize in the expected fashion [30], that is, up to
BRST-exact terms and terms proportional to the equations
of motion, complemented with contact terms to render their
correlations fully finite, thereby generalizing the construct of
[25].

Concerning the existence of possible mixings at the quan-
tum level involving the vector composite operators R%, we
can already anticipate here the output of the analysis which
we shall present in detail in the forthcoming paper [29]. In
particular, we have studied the cohomology of the BRST
operator in the space of the local dimension three operators
carrying a vector index as well as an SU (2) index a, i.e. we
have looked at the equation

AL =0 (60)
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with A} the most general local polynomial in the fields and
their derivatives of dimension three, carrying a vector index
as well as an SU (2) index. After a quite lengthy analysis, it
turns out that the most general solution of Eq. (60) is given
by

A% = a1 RS + ays (€ ALE) + a3s(i9,8). (61)

where (a1, a2, a3) are free coefficients. From the previous
expression one sees that, unlike the U (1) case in which the
U(1) vector operator V,, can mix with 9, F,, (see [25]),
in the non-Abelian case the operators Rj; can mix only
with irrelevant BRST exact terms. The reasons behind this
result are twofold. First, the non-Abelian analogue of 9, F,,
, l.e. D]‘jb F [jv, is not BRST invariant, rather it transforms
covariantly, namely

s(DEPF),) = e D FY . (62)

One sees thus that, unlike the operators Ry, the quantity
Dﬁb F Zjv does not enjoy the property of being strictly BRST
invariant. As such, it cannot show up as a solution of Eq. (60).

The second reason is that, as it will be shown in details in
the paper in preparation [29], the BRST vector operators R}
are actually corresponding to the conserved Noether currents
of the custodial symmetry, Eq. (20), an observation which has
great consequences at the quantum level, being at the origin
of a very powerful new local Ward identity which, much
alike the U (1) case (see [25])), enables us to work out the
anomalous dimension of the operator R}, in a purely alge-
braic way as well as to face the calculation of the correlator
(Rz (x)Rz (y)) via Ward identities. As said before, all this
will be presented in great details in the forthcoming paper
[29].

Since the only rank two invariant tensor is 89 we can
write, moving to momentum space,

(R&(p) RY(—=p)) = 8" Ry (p?)

1
= Ru(p) = 3{Ru(p) R} (=p)),

(63)
as well as
Ruw(P?) = R(pPH P (p) + L(p*) Lyn (p), (64)
so that in d dimensions,
2y l,P;w(P) a ac_
R = 3=y (Rup) RI=p)), (65)
and
1
L(p") = 3L (D) (RG(p) RY(=p)). (66)

One recognizes that Egs. (63)—(66) display exactly the same
structure of the gauge vector boson correlation function

(AL (P)AT(=p)).

In the Rg-gauge, the non-vanishing contributions, up to
first order in 7, to the correlation function (R/“L (p) R, (—p))
are

1
(R (p) R (=p)) = $8"v* (AL (P) AT(=p))

—({(p*0uh)(p) (0vp“h)(—p))

1
+Zpupv((p“h)(p) (p*h)(=p))

_}_l a b a bye_
Spupv((p P)(p) (0 ") (=p))

1
2

_'_l 2.3 Aa Aah _
18 v (A} (p) (AL h)(—p))

((p“8,0")(P) (30 PP) (—p))

28V Pu (AL (P) P (=)

1
+Zv2pupv<p“<p)p”(—p>>

1
+2 8202 (" AL (p) (0" AV (= p))

1 a .a
=238V AL (p) A" (=)

1
+ 8 VAL (p) AY(=p))

+lg2v2<<w )(p) (hAY)(—p))
4 H v

%8P (0" (p) AL (=)
1
+58v*(0uhp") (p) A (—=p))

+5802pulp” () (A (=p))

1 X .
—ng%“b‘ (A%(p) (p°8,0)(—p))

2
—%e“""mp“ () (PP AS) (= p))

1
+5vpupu<(hp“)(p) p*(—=p))
—ivp, (8, hp®) (p) p*(=p)). (67)

The first term in expression (67) is the gauge field propagator
(AZ(p)AZ(—p)), which means that RZ can be thought as a
kind of BRST invariant extension of the elementary gauge
field AZ. At tree-level, we find in fact

1
(RZ(P) RS(_P»tree = E

1
+szauav (p" (PP (—p))

3 24
168"

g v (AL (P)AL(—p))

35
mﬂw(l’) + 7Y Liv(p),

(68)
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where we can see that, apart from the constant factor %vz

appearing in the longitudinal sector, the transverse compo-
nent reproduces exactly the transverse gauge tree-level prop-
agator.

Collecting the results from Appendix E, we see that the
transverse part of the correlator (65) in the Rg-gauge is

1 1
R(p*) = —g2v4(

1 2 2
I O(h
S e r(p )>+ (1%

16

(69)

where the divergent part of the one-loop correction is

Mg 2) . g2 m%p4 9m* 9m2p2

R.div(pP - 677.'2 32}1’!4 16m%l Smﬁ
Lmipt  mi o p® L 23pt Tp?
8m? 16 48m*  96m? 8 /|’

(70)

which is accounted for by appropriate counterterms in the
MS-scheme renormalization procedure. Notice that, compat-
ible with power counting, expression (70) is again a poly-
nomial in p2, v upon re-instating the factored-out v* of
Eq. (69).

We remain with

3 1
2y _ 4( 4 4
IMz(p°) = 36n2g2v4m% /0 dx{6m (mh +3m )

4. .2
p my

(9m% +35m* + 4p2)
+p? <m4mi + 10m*m} +m$ + 36m6>
m2
iy (=p? (mf +11m?) = om* + p*)In (=4
I
2
+m3 <2p4 (m% — 5m2> + <m2 - mi) 2 6)

p-+p
p2(1 —x)x+ (1 — x)m% +xm2)
X In
‘)

2

x In

+m? (48m6 — 68m*p? — 16m%p* + p
("

p2(1 — x)x + m2>
m
+m? (mﬁ (—48m4 — 1Tm*p? +3 p4)

m2
+p2mt — 54 (m6 T 2m4p2)) In <—2> }
"

4
. . )4 2
Since (71) contains terms of the order of rmIe In(p?)

6
and (p2~|1i—mz)2 ln(pz), we follow the steps (36)—(38) to find
the resummed propagator in the one-loop approximation,

(71)

@ Springer

namely
1 1
Gr(p?) = 18" (5———=—) + Cr(¥) (72)
p= +my — g(p)
with
A, 3 ! 4 4 4
r(p7) = 7367T2g2v4m% /(; dx{6m (mh +3m )
42

—E27 (om} + 35m? + 4p?)

+p? (m*m3 + 10m*m} + m + 36m°)

erg(fp2 (mﬁ + 11m2)

2
—6m* + p*)In (m£’>
"
+m% (m2 p2 - Zm%m4 - 6mim2p2 +12m% + 24m4p2)
o In X (n12 — pz(x — i)) —(x — l)m%
"
2 20, 1
+33m? (Zm6 - m4p2) In (W)
w
+m*(mj, (—48m* — 17m? p* + 3p*) + p*m}
m2
—54 (mS + 20r* p?)) In (7) } (73)
w

and

1 1
Crlp) = 12(471)2'/0 dx { (=18m + p?)
201 2
xIn (M) +(Q2m} = 6m?) + p?)
W

2 _ _ 2 2
><m(px(l x)+ (1 —=x)mjy +xm )} (74)

2

Looking now at the longitudinal part L(p?), it turns out to
be

1
Lip?) = ~p2
(p°) 7V
2
| m2 — 3m2 In (%’) +9m* — 27m* In (Z’—;)
 (4m)? 2m?;

(75)

As it happens in the tree-level case, expression (75) is inde-
pendent from the momentum p?, meaning that it does not
correspond to the propagation of some physical mode, a fea-
ture which is expected to be valid in general. This will be
discussed elsewhere, as it requires an in-depth analysis of
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non-trivial Ward identities and their consequent restrictions
on the correlation functions of the composite operators.

5 Spectral properties

In this section, we will calculate the spectral properties asso-
ciated with the correlation functions obtained in the last sec-
tion. In Sect. 5.1, we will shortly remind the techniques
employed in [23] to obtain the pole mass, residue and spec-
tral density up to first order in 7. In Sect. 5.2.2, we analyze
the spectral properties of the elementary fields. In Sect. 5.4,
the spectral properties of the composite operators O (x) and
RZ (x) are discussed.

5.1 Obtaining the spectral function

We compare the Killén-Lehmann® spectral representation
for the propagator of a generic field O (p)

<5wﬂﬂ—m>=Guﬁﬁ=A dg%%%, (76)

where p (¢) is the spectral density function and G ( p2) stands
for the resummed propagator

G(p?) =

p*+m? —T(p?) 70

The pole mass for any massless or massive field excitation is
obtained by calculating the pole of the resummed propagator,
that is, by solving

pPP4m’—T(pH =0 (78)

and its solution defines the pole mass p> = —mgole. As
consistency requires us to work up to a fixed order in pertur-
bation theory, we should solve Eq. (78) for the pole mass in
an iterative fashion. Therefore, to first order in 7 , we find

m2ye = m? — 7% (—m?) + O(h?), (79)

3 We remind here that in the case of higher dimensional operators, the
spectral representation, Eq. (76), might require appropriate subtraction
terms in order to ensure convergence. A standard way to cure this prob-
lem is to subtract from G (p?) the first few terms of its Taylor expansion
Mpzopummmyowﬂm%:4—ﬁwfm@%%ﬁgmmnm
subtraction, making the integral more and more convergent. In our the-
ory we can make use of the subtracted equations at p> = 0 because all
fields are massive in the Rg-gauge, so there are no divergences at zero
momentum. These polynomial subtraction terms are in a direct corre-
spondence with the aforementioned contact terms necessary to render
the composite operator’s correlation functions finite, see [25] for more
on this.

where T1171°9P ig the first order, or one-loop, correction to
the propagator. Now, we write Eq. (77) in a slightly different
way, namely

1

2
0= e

1
P2 m? = U900 (=) = (L(p?) — TP (—r2))
1

T P G o

where we defined ﬁ(pz) = II(p?)—T1'719°P (—m2). Atone-
loop, expanding I1(p?) around p* = —mgole = —m?+O(h)
gives the residue

Z= lim_ (p+mi)G(p?)
pz_)_mlzmle
_ 1
o 1 - 3p2H(P2)|p2=—m2
=1+ 8p21'[(p2)|p2:_m2 + O(h2). (81)

We now write (80) to first order in / as

G(p?) = .
(P +mpy. — (p2)Z
_ V4
f+m;k—ﬁ@5+uﬂ+m@9ﬁ$%ﬁ:w2
_ Z
a p2+m§ole

~ ATl (p2
n(l’z) - (]72 + miole) d;lg )|p =—m?

2
(1)2 + mﬁ(,]e)z

+Z

(82)

where in the last line we used a first-order Taylor expansion
so that the propagator has an isolated pole at p*> = —mgole.
In (76) we can isolate this pole in the same way, by defining

the spectral density function as p(t) = Z5(t — mgole) +p(0),

giving
o o~
t
+ / ar " )2 (83)
0 t+p

) V4
Gp)=—5——5—
p mpole
and we identify the second term in each of the representations
(82) and (83) as the reduced propagator

) 2 Z
G(r*) =G — 5——5—. (84)
p +mpole
so that
o ~

~ t
Gy = [ a2

0 I+p

~ 3ﬁ2
() = (p? + mp ) M5

(P2 + mgole)z

|p2:—m2

(85)
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Finally, using Cauchy’s integral theorem from complex anal-
ysis, we can find the spectral density 5(¢) as a function of
G(p?), giving

~ I~ ~

p(t) = =— lim (G(—t —ie) — G(—t +i€)). (86)

270 e—0t

5.1.1 Pole masses

There is an interesting consequence of the definition of the
first-order pole mass, Eq. (79). When calculating one-loop
corrections to the two-point function of the composite oper-
ators O(p) and RZ (p), we find that

ncomposite(pz) = Helementary(l’z) + l_Il—leg(l72)(p2 + m2)
+o-1eg (P*)(p* +m*)?, (87)

where l'[l_leg(pz) and Ho_leg(pz) are the composite one-
loop contributions to the correction of the composite field’s
two-point functions, with one external leg and zero external
legs, respectively. From this, we see immediately that

ncomposite(_mz) = Helementa.ry(_mz) (83)
and therefore, up to first order in 7, we find

m2 =m> (89)

pole,composite m pole,elementary

which means that the elementary operators and their com-
posite extensions share the same mass. We remind here
that the order-per-order gauge parameter independence of
the pole masses in the elementary correlation functions
(AZ (x)Aﬁ (y)) and (h(x)h(y)) can also be shown using the
Nielsen identities, which themselves can be derived from the
Slavnov—Taylor identity following the BRST tools of e.g.
[9,11], see also [23] for an explicit verification in the U (1)
case. This is an important feature, providing an alternative
way to the Nielsen identities, to understand why the pole
masses of the elementary particles are gauge invariant and
not just gauge parameter independent.

5.2 Spectral properties of the elementary fields

We first discuss the spectral properties of the elementary
fields: the scalar Higgs field i(x) and the transverse part
of the gauge field A7 (x). We will work with two sets of
parameters, set out in Table 1. All values are given in units
of the energy scale . Also, we have that m?> = }1 g%?v? and

Table 1 Parameter values used in the spectral density functions

Region I Region II
v 0.8 1u
g 1.2 0.5
A 0.3 0.205

@ Springer
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Fig. 1 Dependence of the residue Z for the Higgs field propagator on
the gauge parameter &, for Region I (blue), and Region II (orange)

m%l = Av?, so that m?> = 0.23 4% and m%l = 0.192 47 in
Region I and m? = 0.625 4% and m% = 0.205 112 in Region
1L

5.2.1 The Higgs field

For the Higgs fields, following the steps from Sect. 5.1, we
find the pole mass to first order in 7 to be: for Region I

M pote = 0.207 12, (90)
and for Region II
M pote = 0.206 117, 91)

for all values of the parameter £. This means that while the
Higgs propagator (24) is gauge dependent, the pole mass is
gauge independent. This is in full agreement with the Nielsen
identities of the SU(2) Higgs model studied in [10]. The
residue, however, is gauge dependent, as is depicted in Fig. 1.
For small values of &, including the Landau gauge £ = O,
the residue is not well-defined, and we cannot determine the
spectral density function, as we will explain further in the
next section.

In Fig. 2, we find the spectral density functions both
regions, for three values of £ : 1,2, 5. Looking at Region
I, we see the first two-particle state appearing at t = (mj, +
mp)? = 0.768 u?, followed by another two-particle state
at t = (m +m)? = 0.922 ,uz. Then, we see that there
is a negative contribution, different for each diagram, at
t = (VEm + /Em)?. This corresponds to the (unphysi-
cal) two-particle state of two Goldstone bosons. For § < 3,
this leads to a negative contribution for the spectral func-
tion, probably due to the large-momentum behaviour of the
Higgs propagator (24), for a detailed discussion see [23]. For
Region II, we find essentially the same behaviour: a Higgs
two-particle state at r = (m, +mp)? =0.81 ,bL2, and a gauge
field two-particle state at t = (m + m)? = 0.25 MZ. We
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Fig. 2 Spectral functions for the propagator (h(p)h(—p)), for & = 1 (green, dotted), & = 3 (red, solid), £ = 5 (yellow, dashed), with ¢ given in
units of u?, for Region I (left) and Region II (right) with the parameter values given in Table 1

also see a negative contribution different for each diagram
att = (v/Em + /Em)?, corresponding to the (unphysical)
two-particle state of two Goldstone bosons.

5.2.2 The transverse gauge field
For the gauge field propagator, following the steps from

Sect. 5.1, we find the first-order pole mass of the transverse
gauge field to be: for Region I

m? e = 0.274 1° (92)
and for Region II
M2y = 0.065 1> (93)

for all values of the parameter &, so that the pole mass is inde-
pendent from the gauge parameter. The residue is, however,
gauge dependent as is depicted in Fig. 3. For small values of
& the residue is not well-defined, as we will explain further
in the next section.

In Fig. 4, we find the spectral density functions for both
regions, for three values of &: 1, 2, 5. Looking at Region I,
we see the first two-particle state appearing at t = (mj, +
m)? = 0.843 u?, followed by a two-particle state at 1 =
(m 4+ m)* = 0.922 2. Then, we see that there is a negative
contribution, different for each diagram, att = (m + JE m)2.
This corresponds to the (unphysical) two-particle state of a
gauge and Goldstone boson. For Region II, we find a gauge
field two-particle state at t = (m + m)? = 0.25 uz. We
also see a negative contribution different for each diagram at
t = (m + /Em)?, corresponding to the (unphysical) two-
particle state of two Goldstone bosons.

5.3 Unphysical threshold effects

From the Feynman vertex rules given in Appendix A, for
certain values of the masses, unphysical threshold effects

1.20 -

1.15

1.05

pgsb
0 5 10 15 20

Fig. 3 Dependence of the residue Z for the gauge field propagator
from the gauge parameter &, for Region I (blue), and Region II (orange)

can occur. These effects imply that for certain values of the
(physical and unphysical) parameters, a “decay’ occurs of a
gauge and Higgs boson into two other particles, see Fig. 5.
We distinguish three cases:

1. Decay of a gauge vector boson in two Goldstone bosons:
this happens when m > 2./Em.

2. Decay of a Higgs boson in two gauge vector bosons: this
happens when my > 2m.

3. Decay of a Higgs boson in two Goldstone bosons: this
happens when m;, > 2./Em.

In order to guarantee the stability of the gauge boson, we
therefore need from (1) that & > zlp This means that for
the Landau gauge & = 0, the elementary gauge boson is
not stable. For the Higgs particle, to guarantee stability we
need frg)m (2) that m;, < 2m. Then, from (3) we find that

& > ;"7’72. This is the window in which we can work with a
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Fig. 4 Spectral functions for the propagator (A{, ( p)Ae(— pnT, for £ = 1 (green, dotted), &€ = 3 (red, solid), £ = 5 (yellow, dashed), with ¢ given
in units of w2, for Region I (left) and Region II (right) with the parameter values given in Table 1

stable model. We can have a look at what happens when we
go outside of this window. For the Higgs particle, we see that
formy > 2m,or A < gz, we will find a complex value for the
first order pole mass, calculated through (78). For A > g2,
we will always find a real pole mass. Since the pole mass is
gauge invariant, we find that this is true for all values of &.

However, we do find that for & > % and A > g2, the real
value of the pole mass is a real point inside the branch cut.
This means that we cannot achieve the usual differentiation
around this point. As a consequence, we cannot consistently
construct the residue, so that we are unable to obtain a first-
order spectral function. For the gauge field, we find the same
problem when & < }1.

The foregoing mathematically correct observations clearly
show that there is something physically wrong with using the
elementary fields’ spectral functions. Luckily, all of these
shortcomings are surpassed by using the gauge invariant
composite operators.

5.4 Spectral properties for the composite fields

For the scalar composite operator O (x), whose two-point
function is given by expression (48), we find the first-order
pole mass for Region I

MH0 pote = 0.207 117, (94)
and for Region II

2 = 0.206 ;* (95)
"o 0,pole : m,

which is equal to the pole mass of the elementary Higgs field
in (90), as we expect from Eq. (89). Following the steps from
Sect. 5.1, we find the first-order residue

Z=111v° (96)
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Fig. 5 Possible decays of the gauge boson (above) and the Higgs boson
(below). The arrows indicate the momentum flow

for Region I and
Z =1.01v° 97)

for Region I1. The first order spectral function for (O (x) O(y))
is shown in Fig. 6. Comparing this result with that of the spec-
tral function of the Higgs field in Fig. 4, we see a two-particle
state for the Higgs field atr = (mp,+m )2, and a two-particle
state for the gauge vector field, starting at r = (m +m)>. The
difference is that for the gauge invariant correlation function
(O(x) O(y)) we no longer have the unphysical Goldstone
two-particle state. Due to the absence of this negative contri-
bution, the spectral function is positive throughout the spec-
trum. In fact, we see that for bigger values of &, we find that
the spectral function of the elementary Higgs field resem-
bles more and more the spectral function of the composite
operator O (x). This makes sense, since for £ — 0o, we are
approaching the unitary gauge which has a more direct link
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with the physical spectrum of the elementary excitations. In
Appendix G, one finds a detailed discussion about the uni-
tary gauge limit & — oo as well as the calculation of the
spectral function. Of course, the unitary gauge is not well-
suited for computations at the quantum level due to the non-
renormalizability issue in general, and non-curable overlap-
ping divergences in particular, but for gauge invariant quan-
tities, it was already noted in [32] that (for the S-functions)
the unitary gauge choice can still be useful, at least up to one-
loop order. Therefore, in Appendix G, we have analyzed, at
one-loop order where there are no overlapping divergences
yet, the scalar and vector correlation functions directly in
the unitary gauge and we do find that their finite pieces are
identical to those obtained in the R¢-gauge discussed so far.
Given that several propagators are trivial in the unitary gauge,
the computations in the latter gauge are evidently far more
economical. A similar observation was already made in the
U(1) case as well, see [25].

The asymptotic (constant) behaviour is directly related to
the (classical) dimension of the used composite operator.

5.4.1 The vector composite operator R} (x)

For the transverse part of the two-point correlation function
Gr(p?), Eq. (72), for our set of parameters we find the first-
order pole mass: in Region I

My pole = 0-274 1 (98)
and Region II
My pole = 0.065 11> (99)

which is the same as the pole mass of the transverse gauge
field, Eq. (92), in agreement with Eq. (89). Following the
steps from 5.1, we find the first-order residue

1
Z=—g>*1.27)

T (100)

10° p(t)
12f

10t

8_

=t
2 4 6 8 10

for Region I and

1 24
Z = —g"v" (1.05) (101)
16

for Region II. The first order spectral function for G g (p?) is
shown in Fig. 7. Comparing this to the spectral function of
the gauge vector field in Fig. 4, we see a two-particle state at
t = (my, +m)?, and a two-particle state for the gauge field,
startingatf = (m+4m)?. Again, as in the case of the two-point
correlation function of the scalar operator O (x), the differ-
ence is that for this gauge invariant correlation function we
no longer have the unphysical Goldstone/gauge boson two-
particle state. Due to the absence of this negative contribution,
the spectral function is positive throughout the spectrum. In
fact, we see that for bigger values of £, we find that the spec-
tral function of the elementary gauge field resembles more
and more the spectral function of the composite operator
R}, (x). As already mentioned previously, this relies on the
fact that in the limit £ — oo we are approaching the unitary
gauge, see Appendix G. Also here, the linear increase at large
t follows from the operator dimension.

6 Conclusion and outlook

This work is the natural extension of previous studies [23—
25], where the Abelian U (1) Higgs model has been scru-
tinized by employing two local composite BRST invariant
operators [1,14,15], whose two-point correlation functions
provide a fully gauge independent description of the ele-
mentary excitations of the model, namely the Higgs and the
massive gauge boson.

This formulation generalizes to the non-Abelian Higgs
model as, for example, the SU(2) Yang—Mills theory with
a single Higgs in the fundamental representation [1,14,15].
This is the model which has been considered in the present
analysis. The local gauge and BRST invariant composite

10% p(t)
35¢
30F
25}
20F
15F

10¢
5F

1 1 1 1 t
0.5 1.0 1.5 2.0

Fig. 6 Spectral function for the two-point correlation function (O (p)O(—p)), with ¢ given in units of w?, for the Region I (left) and Region II

(right) with parameter values given in Table 1
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10° p(t)
141

121
101

. ! . . L
2 4 6 8 10

! . Loy
0.5 1.0 1.5 2.0

Fig. 7 Spectral function for the transverse two-point correlation function G g (p?), with ¢ given in units of u2, for the Region I (left) and Region

II (right) with parameter values given in Table 1

operators (O (x), Rﬁ (x)) which generalize their U (1) coun-
terparts are given in Eq. (43) and in Eqgs. (56) and (57).

The two-point correlation functions (O(x)O(y)) and
(RZ (x) Rlv’ ( y))T , where the superscript 7 stands for the trans-
verse component, have been evaluated at one-loop order in
the Rg-gauge and compared with the corresponding cor-
relation functions of the elementary fields (A (x)A(y)) and
(Al‘i(x)Afj(y))T. It turns out that both (O(x)O(y)) and
(h(x)h(y)) share the same gauge independent pole mass,
Egs. (90), (91), (94) and (95), in agreement with both
Nielsen identities [7—13] and the BRST invariant nature of
O (x). Nevertheless, unlike the residue and spectral func-
tion of the elementary correlator (h(x)h(y)), which exhibit
a strong unphysical dependence from the gauge param-
eter &£, Fig. 2, the spectral density of (O(x)O(y)) turns
out to be &-independent and positive over the whole p?
axis, Fig. 6. The same features hold for (Al‘i(x)Afj(y))T
and (RZ (x)le (y))T. Again, both correlation function share
the same &-independent pole mass, Egs. (92), (93), (98)
and (99). Though, unlike the £-dependent spectral function
associated to (A7 (x)Alj(y))T, Fig. 4, that corresponding to
(RZ (x)Rlv’ (y))T, Fig. 7, turns out to be independent from the
gauge parameter & and positive. As such, the local compos-
ite operators (O (x), RZ (x)) provide a fully BRST consistent
description of the observable scalar (Higgs) and vector boson
particles.

It is worth mentioning here that, besides the BRST invari-
ance of the gauge fixed action, the model exhibits an addi-
tional global custodial symmetry, Egs. (20) and (21), accord-
ing to which all fields carrying the index a = 1,2, 3,
ie. (AZ, b%, ¢, c%, p%), undergo a global transformation in
the adjoint representation of SU (2). The same feature holds
for the composite operators (O (x), RZ (x)) which transform
exactly as i and Af,. More precisely, the operator O (x) is
a singlet under the custodial symmetry, while the operators
RZ transform like a triplet, Eq. (59), so that the correlation

@ Springer

function (Rﬁ(p)Rf (—p)) displays the same SU(2) struc-
ture of the elementary two-point function (A} (p) Ay (—p)),
Egs. (63)—(66). Although not being the aim of the present
analysis, we expect that the existence of a global custo-
dial symmetry will imply far-reaching consequences for
the renormalization properties of the composite operators
(0 (x), Rﬁ (x)) encoded in the corresponding Ward identi-
ties, allowing a generalization of the U (1) renormalizability
analysis of [25].

The analysis of the spectral properties of the operators
(O(x), RZ(x)) worked out here could pave the route for
more ambitious projects which might lead to an interest-
ing interplay with possible future investigation on the lat-
tice of the correlators (O (x)O(y)) and (RZ(x)Rf)’(y))T, as
already mentioned in [16,17]. The BRST invariant nature of
(0 (x), RZ (x)) makes them natural candidates to attempt-
ing at facing the challenge of investigating the infrared non-
perturbative behaviour of the model, trying to make contact
with the analytical lattice predictions of Fradkin and Shenker
[33], see also [34] for a general overview and [35] for a
new take on these matters. This study would enable us to
shed some light on the issue of the positivity of the spec-
tral densities in the non-perturbative region, a topic which is
currently under intensive investigation in confining Yang—
Mills theories without the presence of Higgs fields , see
[36-73]. Finally, it would be worth to investigate to which
extent the BRST invariant correlation functions (O (x) O (y)),
(RZ (x)Rff( )T could be affected by the existence of the
non-perturbative effect of the Gribov copies, by means of the
recent BRST invariant formulation of the (Refined) Gribov—
Zwanziger horizon function [74,75].

Another most promising avenue to further explore is the
SU(2) x U(1) setting of the electroweak theory, where the
gauge invariant description of electric charge will necessi-
tate the combination of the (local) gauge invariant composite
operators set out here and (non-local) dressed gauge invariant
operators, see [76].
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Appendix A: Propagators and vertices

The tree level elementary propagators of the fields are easily
computed, for example by coupling a source J,, to each field
¢ and computing at leading order the functional derivative

§27¢ . ¢ . .
5T, C P8Iy () w¥th Z th.e generating functional of connected
two-point functions. This leads to

ab

8
(AL (p)AL(=p)) = g P (P)
+8abﬁ£w}(l’),
ab
a b, _
(" (p)p°(=p)) = e

1
(h(p)h(=p)) = m,

a b, _ gab Pu
AL (P p)) =8,
b ()" (—k)) = 8“bp2;—m§m2 (A1)
and
b 8ah
(€ (p)c’(=p)) = D Em? (A2)

for the ghost propagator. All other propagators are zero. This
includes the mixed propagator, (Aﬁ(x)pb(y)) = 0, a well-
known feature of the R¢-gauge [2, Chap. 21].

For all vertices, adopting the convention that the momen-
tum is flowing towards the vertex, we get
2
e The AAh-vertex: FAﬁAﬁh(_pl’ —p2, —p3) = —%
8,w8“?8(p1 + p2 + p3).

e The ppA-vertex: FpapbA/j(—pl, —p2, —p3) = %ie”hc
(P — Pu,2)8(p1+ p2 + p3).

e The Aph-vertex: T aapon (=P1. =p2. =p3) = i5
8 (P — Pu.2)8(p1 + p2 + p3).

o The hhh vertex: Uppn(—p1, —p2, —p3) = —3Av §(p1+
P2+ p3).

e The hpp vertex: Tyja,n(=p1, —p2, —p3) =
8% 8(p1 + p2 + p3).

e The AAA-vertex: FAZAﬁAf; (=p1, —p2, —p3) = —igfabc
[(pl - P3)v3<r,u + (p3 — p2)u.5v(r + (p2 — pl)o(sv,u]
3(p1+ p2+ p3).

e ThecAc-vertex: FE“AZCC(_pl’ —p2, —p3) = igf“b"plgu
8(p1+ p2+ p3).

e The AAAA-vertex: FAﬁAﬁA;;Ag(_pl’ — P2, — D3, —D4)
= @11 F BpuoBup = Supduo) + 4 F4 (BuoSup —
Suv8p0)+feadfebc(3up5va _‘Suvapa)]a(pl +p2+p3+
P4).

e The AAhh-vertex: FAi‘LAehh(_pl’ —Pp2, —P3, —p4) =
— 58289058,

o The AApp-vertex: T ya g pe pd (=P, —Pp2, —P3, —pa) =
—%gZ(SWS“b(SCd.

—Av

Appendix B: Custodial symmetry

The custodial symmetry given in Sect. 2.2 is a result of
the fact that the unbroken action is invariant under an
SU (2)gauge X SU(2)global symmetry. This can be seen by
writing ® in the form of a bi-doublet [77]

0% +
¢ = <_¢¢+* ZO) .

Clearly, the action,

(BI)

1 A 2
Lo = 3Tr(D0) (D, @) = 5 (Trofe—2?) . (B2)
is invariant under the SU (2)gauge X SU (2)global transforma-
tion
® — Ux)dM !,

Ay = U@)AU () + ;%U(x)BMU_l(x), (B3)

with M an arbitrary x-independent matrix from SU (2)giobal-
In the bidoublet notation, the expansion in Eq. (8) becomes

d=h+v)l+ip“t?, (B4)
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so the vev (@) is not invariant under the transformation (B3).
However, it is invariant under the global diagonal SU (2) x
SU(2) subgroup corresponding to U(x) = M. This is the
custodial symmetry, given in infinitesimal form in Eq. (20).

Appendix C: Elementary propagators in the R¢-gauge

Here we will calculate the one-loop corrections to the Higgs
and gauge field propagator. This requires the calculation # of
the Feynman diagrams as shown in Figs. 8 and 9. To shorten
the intermediate expressions, we will use the following func-

tions:
- (-1 1d 2x(1
U(m17m2)=W -5 /0 x(P x(1—x)
+xm; + (1 — x)mz)d/zfz,
_ d . ap-1
x(my) = Wr(l - E)ml . (C1)

Notice that the last four diagrams for both particles are zero
for (h) = 0. In fact, including these diagrams has the same
effect as making a shift in the vev of the scalar field ® to
demand (h) = 0, see the Appendix of [23] for the techni-
cal details. In the context of the FMS operators, we found
it more convenient to expand around the (classical) v that is
gauge invariant, and thus to include the tadpoles. Expand-
ing the FMS operator around the quantum corrected vev
would lead to cancellations in that quantum vev coming from
the propagator loop corrections to render it gauge invariant
again, indeed the minimum of the quantum corrected effec-
tive Higgs potential is not gauge invariant itself.

a. Higgs propagator

The first diagrams contributing to the Higgs self-energy are
of the snail type, renormalizing the masses of the internal
fields. The Higgs boson snail (first diagram in the first line
of Fig. 8):

3xx (m})

Chn1(ph) = —————"12
hh,1 Z(m%—l—pz)z

(€2

the Goldstone boson snail (second diagram in the first line
of Fig. 8):

3 (mzé)

, (C3)
2 (m} + p?)’

Thna(p?) = —

4 We have used from [78] the technique of modifying integrals into
“master integrals” without numerators.

@ Springer

and the gauge field snail (third diagram in the first line of
Fig. 8):

3d — Dg*x (m*)  3g°6x (m’§)
4(mp+p?)’ A(mi+p?)

Thn3(p?) = — (C4)

Next, we meet a couple of sunset diagrams. The Higgs boson
sunset (fourth diagram in the first line of Fig. 8):

9A2v2n (m%l, m}%)

(C5)
2(m} + p?)?

Thna(p?) =

the gauge field sunset (first diagram in the second line of
Fig. 8):

3g%n (m*, m?) (4(d — Dm* + 4m?p* + p*)
g2 (m3 + p?)’*
|38 (2w + p?)’ 0 (m2. m2s)
8m? (mi + p2)2
3g2 (m*(& — D 4 2m*Ep? 4 2m* p* + p*) n (m?, m?¢)
i an? (i + )
+3g2<s -y (m?)
4(m3 + p?)*
3875 — Dy (m%¢)
4(m3 +p?)’

Tyns(p?) =

(Co)

the ghost sunset (second diagram in the second line of Fig. 8):

3g°m’€7n (m*§, m*s)
4 (m3 + p2)2

Chne(p®) = —
(C7)

the Goldstone boson sunset (third diagram in the second line
of Fig. 8):

322v2y (mz“g‘, mzé)
2(m} + p?)°

Chn7(p?) = (C8)

and a mixed Goldstone-gauge sunset (fourth diagram in the
second line of Fig. 8):

3g2 ((mz(é‘ -+ p2)2 + 4m2p2> n (mz, mzé)
4m? (m%l + p2)2
3¢% (m2& + p?)* n (m2&, m2&)
- am? (m? + p?)?
+3g2x (m?€) (m*(2€ — 1) + p?)
4m? (m% + p2)2
3g%x (m?*) (m*¢ = D +p?)
am? (m2 +p?)°

Cns(p?) =

(C9)
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Fig. 8 One-loop contributions to the propagator (h(p)h(—p)). Curly lines represent the gauge field, dashed lines the Higgs field, solid lines the

Goldstone boson and double lines the ghost field

Finally, we have the tadpole diagrams. The Higgs tadpole
(first diagram on the third line of Fig. 8):

9x2v2y (m%)

RV X (C10)
2m? (m? + p?)’

Thio(p?) =

the gauge tadpole (second diagram on the third line of Fig. 8):

9gamv ((d — Dy (m?) + & x (m?€))
2m? (m? + p?)°

Chn10(p?) = , (C11)

the Goldstone boson tadpole (third diagram on the third line
of Fig. 8):

9aZv2y (mzé)

Cn11(p?) = 5
2mj (m3 + p?)

(C12)

the ghost tadpole (fourth diagram on the third line of Fig. 8):

9gAméEvy (mzé)

. C13
o (C13)

Thn12(p?) = —

Putting together Egs. (C2)—(C13) we find the Higgs up to
first order in 7

(h(x) h(y)) =

p*+mj,
L g? { 3(4d - l)m‘;nw;4m2p2 +pY) ; (m{ mz)
o (o) + 2PN (g )
A,

2mtr) (i + p2)x (mzé) + %x (mi)} 1
m

4m? (P2 +mp)?
(C14)

b. Gauge field propagator

The first diagram contributing to transverse part of the gauge
field self-energy is the gauge field snail (first diagram in the
first line of Fig. 9) and gives a contribution:

2g2 (p2 —d (d2 —3d + 3) p2) X (mz)
(d — 1)dp? (m? + p?)°

_28° (d = 2dp* + p*) x (m%§)
(d — 1)dp® (m? + p?)°

HAAT,I(pZ) =

. (C15)

The second diagram is the Goldstone boson snail (second
diagram in the first line of Fig. 9):

3g%x (m?¢)

. Cl6
4 (m? + p2)’? (1o

HAAT,z(P2) = -

The third diagram is the Higgs boson snail (third diagram in
the first line of Fig. 9):

g% x (m})

Myar 5(p°) = — :
AAT 3D 4(m2+p2)2

(C17)

The fourth diagram is the gauge field sunrise (fourth diagram
in the first line of Fig. 9):
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Fig. 9 Contributions to the one-loop gauge field self-energy

HAAT,4(P2) = gZ 2(d — 1)m4p2

(4m® + p?) 0 (m?, m?) (4d — Dm* + 43 — 2d)ym? p* + p*)

{ n (m?, m€) (2m?p*(=2d + & +3) + m* (€ — 1)> + p*)

(4m2gp* + p®) n (m*E, m*&)

4(d — ym* (m? + p2)*

4(d — Hym* (m? + p2)°

X (m%€) (4d* (m*(E + Dp* + p*) +d (m* (€ — 1) — m* (6§ + T)p* + (€ — T)p*) + 4m?&p?)
2(d — 1ydm? p? (m? + p2)’

2(d — 1)dm?2p? (m? + p2)°

x (m?) (4a2p* +d (m*(E — 1) + m?> 2 - 5)p? + (¢ = T)p*) + 4m*p?) |

(C18)

The fifth diagram is the ghost sunrise (first diagram in the
second line of Fig. 9):

2m’E
I, .7 2): 2 2 , 2
AaaT5(p7) =28 [n(m §&,m S) ((d_l) (m2+p2)2
P’ x (m?§)
+ AN st
2(d = 1) (m? + p?) d—1) (m>+p?)

(C19)

The sixth diagram is the Goldstone sunrise (second diagram
in the second line of Fig. 9):

Myar6(p%)
2
_ 2 2. 2.\ [ m-§
8 {U(m E,mf)( (d—l)(m2+p2)2
B P’ X (m€)
4d—1)(m>+p2)°*) 26 —1) (m? + p2)°

(C20)

@ Springer

The seventh diagram is the mixed Goldstone-Higgs sunrise
(third diagram in the third line of Fig. 9):

Mpar 7(P?)
((-m3 +m2 + p)? + 4m2p?) o (3. m%6)
4d = 1)p* (m? + p?)’
L X (mi) (Zmj 4 m?6 + p?)
4(d — 1)p2 (m2 + p2)°
L X (m?8) (mj —m? + p?)
4d — Dp? (m? + p?)°

:g2 —

(C21)

The eighth diagram is the mixed Higgs-gauge field sunrise
(fourth diagram in the second line of Fig. 9):

M a7 5(P°)
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1 ((m% —m?& + 172)2 + 4m2ép2) n (m3, m*&)
= g2/ dx 5
0 4(d = 1)p? (m* + p?)
n (mz, m%) ((m% —m?+ p2)2 —4(d — 2)m2p2)
4d — 1p? (m? + p2)°
e x () x () (mF - w4 )
Ad — D)2 (m2 + p2)>  4d—1)p? (m2 + p2)’
L X m?) (mf —m? + p?)
4d —1yp? (m? + p2)*

(C22)

Finally, we have four tadpole diagrams. The Higgs boson
tadpole (first diagram of the third line in Fig. 9):

3gmyx (m})

_ (C23)
2v (m2 + p2)2

l_IAAT,s(PZ) =

the Goldstone boson tadpole (second diagram of the last line
in Fig. 9):

3gAmuy (mzé)

. (C24)
2m? (m? + p2)°

M7 6(p7) =

The gauge field tadpole (third diagram of the last line in

Fig. 9):

3(d — l)g2m2x (mz)
2m? (m? + p2)°

3g2m%& x (m*¢)
2m (m2 + p2)°
(C25)

Myar7(p?) =

and finally, the ghost tadpole (fourth diagram of the last line
in Fig. 9):

3g2m* x (m%€)

. (C26)
2m3 (m? + p2)2

Paarg(p?) = —

Combining all these contributions (C15)-(C26), we find the
total one-loop correction to the gauge field self-energy

ab
(AL (P AL(p)T =

Appendix D: Contributions to (O(p)O(—p)) in the
R¢-gauge

The diagrams which contribute to the correlation function
(O(p)O(—p)) are depicted in Fig. 10. The first term (first
box in Fig. 10) is v? times the one-loop correction to the Higgs
propagator, given in Eq. (C14). The second term (second box
in Fig. 10) is

_3 mﬁn (mzé, mzé)

v(h YN (—p)) = D1
(h(p) (" p™)(=p)) m2 4 (D1)
The third term (third box in Fig. 10) is
3m21) m2, m? 3x (m? x (m2¢
Ry = ) 3 (d) (%)
my, +p my +p° my+p

2(d~ Dm?y (m?) B 2m2& x (m%€)
my, (my +p2)  mj (mj; + p?)
2m2E x (m?*€)

T GV (D2)
mj, (mj; + p?)
The fourth term (fourth box in Fig. 10) is
1
i (pym} (=p) = 31 (mh.m?). (D3)
The fifth term (fifth box in Fig. 10) is
3
(0 P )P)" ") (=p)) = S (6m” 6m?)
(D4)

and together these terms give the correlation function of the
scalar composite operator O (p) up to first order in 7

(O(pP)O(—p))

2
v 3 2 2 4
=——+1= , 4(d -1
p2+m%+{2n(mM)(( ym

(2(3 —2dym?*p* + mﬁ - Zm}zl (m2 - pz) +m*+ p4)

_—+6ab2 _
p?+m? §

2 2
n (m ,mh>

4(d — 1)p?

L+ p2)’ (2m?p2(=2d + £ +3) + m*(E — 1)* + p?)

2(d — Dm*p?

N (m* — p*) (4m?€ + p?)

) (2. %)

4(d — Dym*

+

(my, (—m?p* (84% — 24d + 4& +13) —2p*(4d + & —7) + m*(1 — 28)) + 6(d — 1)*m* p* + mjym?)

2 2 _ 4 _ 2.2 4
n<m2$,m2§)— (4m? + p?) (4(d — Dm* + 43 = 2dym*p* + p )n(m2,m2)

4(d — ym*

4(d — 1)mimzp2

x(m)

(@=2)p* +mj—m?)
4d — 1)p? (mh> +

w3 (m) + 3 (ne) }m

2.2 _ 4 _ 4 _
(m*p*(5d + 45 — 13) +2p*(4d + & — 7) + 2m*(& 1))X(m2§)

4(d — 1)m?p?

(C27)
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Fig. 10 One-loop contributions for the propagator (O (x)O(y)). Curly lines represent the gauge field, dashed lines the Higgs field, solid lines the
Goldstone boson and double lines the ghost field. The e indicates the insertion of a composite operator

1
+4m?p® + p*y + E(p2 — Zm%)zn (m%l m%)
3p*xmH)Q2d = Hm? +mj)
m;

- 3p2x(mf,)}
|

Appendix E: Contributions to (Rj (p)Rj(—p)) in the
R¢-gauge

The diagrams which contribute to the correlation function
(R}, (p)R(—p)) are depicted in Fig. 11. The first term (first

box in Fig. 11) is % g2v* times the one-loop corrected func-
tion, given by Eq. (C27). The second term (second box in
Fig. 11)is

—(p“(P)3uh(p), 3y p (= p)h(=p))
= sy (7€) (i + =)
— <4mip2 + (—mi +m%E + pz)z) 0 (m/%, mzé‘)
—x (m}) (m} - m - p?) }P;w(lf)- (ED

@ Springer

The third term (third box in Fig. 11) is

1
3 (P @0 (0. 6 (100" )

B { 3x (m2€) 3 (4m2E + p?)n (mPe, m2¢)

2d—1) ad—1) } P (p)-

(E2)
The fourth term (fourth box in Fig. 11)is

I
2870 (A5 (), AT ()

4
32 (= +m2 + p2)” +4md p?) (] %)
1 2(d — 1)p? (m? + p?)

3m>n (m?, mj;) (4172 (m} — (d — Dm?) + (—m? +m? + p2)2>
2(d — Dp?* (m* + p?)

2264 2
2 2 my—m-E+p
Imx (m f)<h<d_71>pz‘3>

+

+ 2(m? + p?)
4 2 £-1 3
3mx (m}) (<d_1>pz B ?)
2 (m? + p?)

3m2y (mz) (6(d - D2m?p? + mz + mi (p2 — mz))

- PRI > 7);”(17)-
2(d — Dmyp (m +p )
(E3)
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Fig. 11 One-loop contributions for the propagator (Rj, (x) R}/ ()) in the unitary gauge. Curly lines represent the gauge field, dashed lines the Higgs
field, solid lines the Goldstone boson and double lines the ghost field. The e indicates the insertion of a composite operator

The fifth term (fifth box in Fig. 11) is
1
8™ [ AL ). 0" )AL )

3((m2& = D+ p?)* = 4 = 2mp?) y (m?, m%6)

- 2(d — 1)p?
3(4m%E + p?)n (m*E. m*€) 3y (m?) (m*E — 1) + p?)
+ 2d—1) 2(d — 1)p?
3x (m?€) (m*¢ — 1) + p?)
_ 2= D7 Puv(p)
(E4)

The sixth term is

1
7820 (0 (0" (1) AL (), AP ()

24
382U2X (EmZ)
= —WPW(P)- (ES)
The seventh term (seventh box in Fig. 11) is
1 3g%v%x (m?
870 (RO A (), 4§ () = g(m2—+(pzh))7’““(”)‘
(E6)

The eighth term (eighth box in Fig. 11) is

1
2870 AL @), R AT ()

2 ((—m%’ +m2€ + p2)2 + 4m%,p2) n (m%, mzf)
4(d — 1)ym? p?

=3m

n (m2, m,zl) (4;72 (m,% —(d- 1)m2) + (—m,% +m?+ p2)2)

B 4(d — Dm?2p?
X (m*€) (=mj, +m?6 = p?)  x (m?) (mj; —m* + p?)
4(d — Dm? p? 4(d — )m? p?
(& — Dx (m})
—W Puv(P)- (E7)

The ninth term (ninth box in Fig. 11) is

1
= g2 (9,h(x)p" (x), AS(»))

2
5 { (o 264 127+ 4 ?) . )
=—=g —
2

4(d — 1p* (m* + p?)
x (m}) (=mj +m?§ + p*)
4(d — 1) p? (m? + p?)

x (m*§) (mj; —m?& + p*)
4(d — 1) p? (m? + p?)

(E8)

} Puv(p).

The tenth term (tenth box in Fig. 11) is

1
_ngzgabc <Aa (x)’ ,Obau,06>

3g2v2 { (4m?&p? + p*) n (m?€, m?¢)

4 2(d — )p? (m* + p?)

4
x (m?*€)

_ E9
(d—1) (m2+ p?) E9)

} P;w (p)
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and together these terms give the transverse part of the cor-
relation function of the scalar composite operator Ry up to
first order in 7

We used here that the surviving tree level propagators in the
unitary gauge are

a acoT _ 3 1
(RM(X)7 Rv(y)) = 1—68204m — {—
B (4m? + p?) (4(d — Dm* + 43 = 2d)ym? p* + p*)
4d — 1)

+

P2 (23 — 2dym2p? — 2m2 (m2 — p?) + m? + m* + p*) ( ) 2)
n

. (mz, mz)

x (m?) (my (=8 (d* — 3d +2) m* + (15 — 8d)ym? p> + 3p*) — 6(d — 1)>’m* (m* +2p?) + p>m])

m<, my
4d - 1)

4(d — lym;

L (m?) (—=2(d — Dm* + (5 — 4d)ym*p* — p*m? + p*) 1 EI10)
4d—1) (m? + p2)2'
ab
Appendix F: Fundamental Feynman integral b _
pp y g (AL (P AJ(=p)) = mp;w(l?)
1 ab Pub
b _ w v
+8¢ Wﬁuv(P) = m (&w + ) ),
1 2:(1 — 2 — 2
[ v PEEO T T O 0 (h(p)h(~p)) = (G2)

I

1 m3 m? m?m?
=2+~ {m% In(—3) +m3In(—5) + p* In(= )
2p my my H

—2\/—m? +2m3m3 — 2m3p? — m§ — 2m3p? — p*

+2\/7m‘1‘ +2m3m3 — 2m3p? — m§ — 2m3p? — p*

2 2_ 2
—mi+m5 —p

x tan~ ! [
—mt +2mi(m3 — p?) — (m3 + p?)?

2 2 2
—my +m5 +
xtanfl[ 1 2P ]}

(FD)

—m{ +2mi(m3 — p?) — (m3 + p*)?

Appendix G: A digression on the unitary gauge

It is well-known that in the unitary gauge the unphysical
fields, like the Goldstone and ghost fields, decouple, a feature
which allows for a more direct link with the spectrum of the
elementary excitations of the model. However, this gauge is
known to be non-renormalizable. In fact, working directly
with the elementary tree level propagators taken a priori in
the unitary limit, i.e. £ — o0, and following the steps of
dimensional regularization, we find that the divergent part of
the inverse Higgs propagator reads

3% (m}, + 6m*p* + p*)
6412m2e '

Gina(P) = (G1)

@ Springer

p2+m%l

with all other propagators, i.e. the Goldstone and Faddeev—
Popov ghost propagators, vanishing. In expression (G1) we
clearly see the presence of the term ~ %, signalling
the aforementioned issue of the non-renormalizability. In
essence, this can be traced back to the tree level presence
of 2 r’;’; ~, a non power-counting controllable term.

Nevertheless, it is interesting to observe that, if we remove
the divergent part (G1) anyway, we obtain the spectral func-
tion as shown in Fig. 12. This spectral function is almost
identical to that obtained for the composite operator O (x),
see Fig. 6.

For the inverse gauge field propagator, proceeding in the
same way, we find the divergent part

2.4 2.6
R =
h
7¢%p* 3gZm?  83g¢%p*  3am?
4872m2 ' 3272 ' 96m2 8712)
(G3)

which shows again the non-renormalizability of unitary
gauge, through the terms ~ % and ~ % . However, if
we remove also here those terms by hand, we obtain the
spectral function as shown in Fig. 13.

Apart from the by hand removal of the divergences in this

unitary gauge exercise, the nice behaviour of the spectral
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Fig. 12 Spectral function for the propagator (h(p)h(—p)) in the unitary gauge, with ¢ given in unity of 12, for the Region I (left) and Region II

(right), with parameter values given in Table 1

densities for the Higgs and gauge field® obtained by a direct
use of the tree level propagators already taken in the unitary
limit, & — oo, can be, to some extent, justified by the fact that
we are working at the one-loop order in perturbation theory.
Since overlapping divergences start from two-loop onward,
we can easily figure out that the naive use of the elemen-
tary tree level propagators taken already in the unitary limit
will run into severe non-renormalizability issues, making the
removal of the (overlapping) divergent parts (G1), (G3) quite
problematic beyond the current one-loop level.

Now for what concerns the composite operators, since
O(x) is BRST invariant, any choice for the gauge fixing
should give the same expression for the correlation function
Goo(p?). So again using the unitary gauge, Eq. (44) sim-
plifies to

(O(x)O(¥))unitary = v? (h(x)h(y))unitary

1
+0(h()R(Y)? ) unitary + Z(h(x)%(y)z)umry, (G4)

with the consecutive terms displayed diagrammatically by
the respective boxes in Fig. 14. Using dimensional regular-
ization in the MS-scheme with (d = 4 — ¢) and switching to
momentum space, we find

V2 (h(P)h(— P))unitary
= i /l dx 1 (Zm;‘, + 12m2p2 + 2p4)
32]‘[2 0 €
2

2
4 mj 4 2 2 m
+2mj, In (M2>+2(6m —m?p*)In (F)

2 2

po(l —x)x +my

_3mﬁ In (/ﬂ
2 2
1—
— (12 + 4m2p? 4 ) m(%)

> Notice that these dropped divergences do not contribute anyhow to
the branch cut discontinuity and this spectral function.

1

—om* £ 2m2 (0% — 6m>
it -+ 2m2 (1 — 6m )}WHZ)Z’ (G5)
U<h(P)h(_P)2>unitary
= ;/ldx{l—zm4—6m4ln (m—z) —mtIn ﬁ
- 16712m,21 0 € u? h u?
m% + p2(1 — X)X 1
+min | AT ) o 42 4}7, Go6
mp n( 2 mp + 2m (m2 + p?) (G6)
1
Z(h(P)zh(P)2>unilary
1 1 1 1 mﬁ + p2(1 — X)X
_ 16”2/0 dx{gfiln <u2 } (G7)

Inserting now the unity

1= (p* +mp)/(p* +m3) = (p> +m3)/(p* +m}))?,
(G8)

we find indeed that the finite pieces of (O (x)O (¥))unitary
and (O(x)O(y))r, do coincide, this is evidently related to
the gauge invariance. From two-loop onward the overlapping
divergences will show up again, requiring a fully renormal-
izable setup.

We can stretch the unitary gauge even a bit further, to also
look at the vector correlator, (Rfi (p) RS (=Pp))unitary- We find
at one-loop order

1
(R.(p) RY(=p)) = 10 (AL (D) AL (= P)) unitary

1
+ 870 AL (D) (AT (= P) hunitary

1
+582U2((h214ﬁ)(17) Aﬁ (_p)>unitary
1
+87VH((RAL (P) (BAD) (=) unitary
(G9)

with the consecutive terms displayed diagrammatically by
the respective boxes in Fig. 15.
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Fig. 13 Spectral function for the propagator (A{,( p)Aﬁ(f p)) in the unitary gauge, with ¢ given in unity of x2, for the Region I (left) and Region

II (right), with parameter values given in Table 1
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Fig. 14 One-loop contributions for the propagator (O(x)O(y)) in the unitary gauge. Curly lines represent the gauge field and dashed lines the

Higgs field. The e indicates the insertion of a composite operator
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Fig. 15 One-loop contributions for the propagator (Rﬁ (x)RS(y)) in the unitary gauge. Curly lines represent the gauge field and dashed lines the

Higgs field. The e indicates the insertion of a composite operator
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We find in momentum space
1 a a
Rg v (AM(P) AT (—p))unitary
I
8V 1 1 4. 4 2 6
== | dx{-- 9 -9
32(47)? /0 x{ € 6m4mfl( ey, o+ mj, (=9m
—83m*p? — 14m? p* + p®) + 54m®)
2 2
my 2 2 2 My
+T[ﬂ (_mh +m°+7p )ln (le)
1

+W(m mh mh(m +47m

2
+16m2 p* — 2p%) + 54m®p?) In ("Lz)
%

1
+2—p2(—2m% (m2 — pz) + m;‘l + m*

P2l —x)x+(1 - x)m% + mzx)

—10m2p2—|—p4)ln( 5
"

1
2 r— (4m +p )(12m4 — 2()m2p2 + p4)
< In (m2 + p21 - x)x)
2
n

4 6 4 6 4.2
+W(3m mj, — 3mj, (2m® + 9m* p~)
h

-l-m% (3m8 - 9m6p2 - 2m4p4 - 26mzp6 - 2p8)
Puv(p) gt ! 13
—54 8.2 nv / d
" )} @m0t Jy Clem?
x (m} (3m* + p?) — 3m}, — 18m*)
3m? 2(.2 2 4 2 2 <m2>
———(m —m~)+m; —18m In( —
2p2m%( h (P ) h po) H2

3'”% 2 2 2 m%
+—2p2 (mh—m +5p )1n F

3
_sz ((mh - m)2 + Pz) ((mh +m)* + pz)

<p2(1 —x)x+(1— x)m% + mzx)
x In 5
"w

3
2 m 2(mh(Sp —2m )
+mj, (m* —m®p?) + m§ + 6m4p2>}£w<p>,

l 2.3/ 4a a _ i
g v (A} (p) (ATh) (= Pp))unitary

4
1 : 1 m? 202 2 4 4

ZWA dx{6n1]21(mh(p —9m)+12mh+54m)
mzm%

2 2 2 m%
BT (=mj, +m” +10p°) In e

m* 2(2 2 4 2.2 m?
_2p2m}% (my (p> —m®) + mj; + 54m>p”) In 2
m? 2
2p (Zp( —5m)—|—(m —mh) +p)

<p2(1 —x)x+ (1 - x)m,% + xmz)
x In 5
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+— (6mh (m +6p )

6p 2m 2
—|—mh (—3m4 + 9rr12p2 + 2p4)
Pv(p)
(m* + p?)
+ ! fldx li(—m2 (3m2+p2)+m4+18m4)
1672 J €em; h h
2

3m 4 2.2 m’
+2 m 2(mh(p —m)+mh—l8mp)ln F

3m? m?
— ] (m% —m?+ 3p2) In (g’)
7

—3m$ + 54m* pz)}

S 2p?
+2p3mh (2 (0n = mi)> + p2) (Om + ) + %))
(p (I—x)x+( —x)mﬁ +xm2)
X In 5
1%

3 3 2 2
+———((m; —m°m
2yt (1 "

PR (emmd + 3w + 6m4))}£,w(17), (G10)

20 ((h* A%) (p) A% (=) unitary

3’"%,’"2 1 2 m2
=— 5 / dxi——1In +1
32w Jo € ,u

1 1
x <m7’uv(p) + W‘Cuv(p)) ; (G11)

202 ((hA%) (p) (RAL) (= P))unitary

1 ! 1
= W/ dxig(—3m% +9m? — p?)

h 2 m%
+2—(m +p* —m})In i
2

2
m 2 2 2 m
+=— (mj, —m~+ p°)In (—)
2[72 ( ) ,U«2

1
s (02 (= 5) & (0 =) 4 1)

P 21 —x)x + (1 —x)mh—i—xm
112

X
5
/\ N

t— (3 (m2 - m%) - 9[72 (m% + m2) - 2p4) }P;w(p)

3 (! 1 2 2, 2
—|—m/0 dx{g(—mh+3m + p?)

m?

2
— (—m2 +m? - p2) In m
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2
my,

m2
—l—z—pz (m%l —m*+ 3p2) In <H;’)
2 (n —=mp)* + p?) ((my +m)* + p?)
< In (pzx(l —x)+ (1 —x)mi +xm2)
u2

1
Ty ((m* = m}p) >+ 3p*m; — p*m?) }E,w(p). (G12)

and putting everything together, also here we see that
(R%(p) RE(—p))uniiary = (RY%(p) R4(—p))r, upon drop-
ping the divergences.
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