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Abstract In this work we study class I interior solutions
supported by anisotropic polytropes. The generalized Lane–
Emden equation compatible with the embedding condition is
obtained and solved for a different set of parameters in both
the isothermal and non-isothermal regimes. For complete-
ness, the Tolman mass is computed and analysed to some
extend. As a complementary study we consider the impact
of the Karmarkar condition on the mass and the Tolman mass
functions respectively. Comparison with other results in lit-
erature are discussed.

1 Introduction

Polytropic equations of state have played a remarkable role
in astrophysics (see [1,2] and references therein), and have
been extensively used to study the stellar structure. For exam-
ple, white dwarfs have been modeled considering Newtonian
polytropes [3,4] while in more compact configurations (e.g.
neutron stars, super Chandrasekhar white dwarfs) [5,6] gen-
eral relativistic polytropes have been extensively studied (see,
for example, and the references therein [7–15]).

For an isotropic fluid, the theory of polytropes is based on
the polytropic equation of state which reads

P = Kρ
γ
0 = Kρ

1+1/n
0 , (1)

where P denotes the isotropic pressure, ρ0 stands for the
mass (baryonic) density and K , γ , and n are usually called
the polytropic constant, polytropic exponent, and polytropic
index, respectively. Once the equation of state (1) is assumed,
the whole system is described by the Lane–Emden equation
that may be numerically solved for any set of the parame-
ters of the theory. When the constant K is calculated from
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natural constants, the polytropic equation of state may be
used to model a completely degenerate Fermi gas in the
non-relativistic (n = 5/3) and relativistic limit (n = 4/3).
In this case, Eq. (1) provides a way of modeling compact
objects such as white dwarfs and allows to obtain in a rather
direct way the Chandrasekhar mass limit. Otherwise, if K is
a free parameter, the models can be used to describe either an
isothermal ideal gas or a completely convective star. These
models related to isothermal ideal gas are relevant in the so-
called Schönberg–Chandrasekhar limit [2].

Although local isotropy is a very common assumption in
the study of compact objects, there is strong evidence that
suggests that for certain ranges of density, a large number
of physical phenomena can cause local anisotropy. A pos-
sible source is related to intense magnetic fields observed
in compact objects such as white dwarfs, neutron stars or
magnetized strange quark stars [16–20]. Another source is
the high indexes of viscosity expected to be present in neu-
tron stars, in highly dense matter produced by opacity of
matter to neutrinos in the collapse of compact objects [21–
23], and in the superposition of two isotropic fluids, to name
a few. It is important to note that, although the degree of
anisotropy may be small, the effects produced on compact
stellar objects may be appreciable [24–30]. So, the assump-
tion of an isotropic pressure is a very stringent condition,
specially in a situation in which the compact object is mod-
eled as a structure with high density (as neutrons stars, for
example). Besides, the isotropic pressure condition becomes
unstable by the presence of physical factors such as dissipa-
tion, energy density inhomogeneity and shear, this has been
recently proven in [31]. Thus, after assuming that the fluid
pressure is anisotropic, the two principal stresses (say Pr and
P⊥) are unequal and the polytrope equation of state reads

Pr = Kρ
γ
0 = Kρ

1+1/n
0 . (2)

Note that, the introduction of P⊥ as a new variable yields
an additional degree of freedom and therefore Eq. (2) is not
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enough to integrate the Lane–Emden equation. Thus, in order
to decrease the number of degrees of freedom the introduc-
tion of an additional equation of state is mandatory. Alterna-
tively, we can impose certain conditions on the metric vari-
ables as the vanishing of the Weyl tensor, implemented in [6]
to obtain a conformally flat polytrope for anisotropic mat-
ter. This condition has its own interest, since it has been
seen that highly compact configurations may be obtained
with the specific distribution of anisotropy created by such a
condition. Other approaches as the Randall-Sundrum model
[32] or 5-dimensional warped geometries have served as an
inspiration for other type of conditions, relating radial deriva-
tives of the metric functions in spherically symmetric space-
times, that produce self–gravitating spheres embedded in a
5-dimensional flat space-time (embedding class one). In this
regard, it is clear that embedding of four-dimensional space-
times into higher dimensions is a very useful tool in order
to generate astrophysical interior models. Even more, mod-
els embedded in five dimensional spacetimes satisfy the so–
called Karmarkar or class I condition [33] (for recent devel-
opments see, [34–55], for example) which allows to choose
one of the metric functions as the one which generates the
total solution. In this work we consider stellar interiors sup-
ported by anisotropic fluids fulfilling the polytropic equation
of state for the radial pressure and additionally, we imple-
ment the class I condition to close the system and construct
the corresponding generalized Lane–Emden equation.

The manuscript is organized as follows. In the next sec-
tion we review the main aspects of anisotropic polytropes
and obtain the generalize Lane–Emden equation. Next, we
introduce the class I condition and solve the Lane–Emden
equation numerically. We conclude this section with a brief
discussion about the incidence of the class I condition on the
Tolman mass. The last section is devoted to final remarks and
conclusions.

2 The polytrope for anisotropic fluid

2.1 The field equations and conventions

Let us consider a static and spherically symmetric distribu-
tion of anisotropic matter which metric, in
Schwarzschild–like coordinates, is parametrized as

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 dφ2), (3)

where ν and λ are functions of r . The metric (3) has to satisfy
Einstein field equations1

Gμ
ν = −8πTμ

ν . (4)

1 We are assuming natural units G = c = 1.

The matter content of the system is described by the energy–
momentum tensor

Tμν = (ρ + P⊥)uμuν − P⊥gμν + (Pr − P⊥)sμsν, (5)

where ρ is the total energy density,

uμ = (e−ν/2, 0, 0, 0), (6)

is the four velocity of the fluid and sμ is defined as

sμ = (0, e−λ, 0, 0), (7)

with the properties sμuμ = 0, sμsμ = −1.
Replacing (3), (5), (6) and (7) in (4), we have

T 0
0 = ρ = − 1

8π

[
− 1

r2 + e−λ

(
1

r2 − λ′
r

) ]
, (8)

−T 1
1 = Pr = − 1

8π

[
1

r2 − e−λ

(
1

r2 + ν′
r

)]
, (9)

−T 2
2 = P⊥ = 1

8π

[
e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′
r

) ]
, (10)

where primes denote derivative with respect to r . Fur-
thermore, we shall consider that the fluid distribution is sur-
rounded by the Schwarzschild vacuum, namely

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2(dθ2 + sin2 dφ2), (11)

where M represents the total energy of the system. In order
to match the two metrics smoothly on the boundary surface
r = rΣ = constant, we require continuity of the first and
second fundamental forms across that surface. As a result of
this matching we obtain the well known result,

eνΣ = 1 − 2M

rΣ
, (12)

e−λΣ = 1 − 2M

rΣ
(13)

PrΣ = 0, (14)

where the subscript Σ indicates that the quantity is evaluated
at the boundary surface. From the radial component of the
conservation law,

∇μT
μν = 0, (15)

one obtains the generalized Tolman–Oppenhei-
mer–Volkoff equation for anisotropic matter which reads,

P ′
r = −ν′

2
(ρ + Pr ) + 2

r
(P⊥ − Pr ). (16)

Alternatively, using

ν′ = 2
m + 4π Prr3

r(r − 2m)
, (17)
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where the mass function m is as usually defined as

e−λ = 1 − 2m/r, (18)

we may rewrite Eq. (16) in the form

P ′
r = −m + 4πr3Pr

r(r − 2m)
(ρ + Pr ) + 2

r
Δ, (19)

where

Δ = P⊥ − Pr , (20)

measures the anisotropy of the system.
For the physical variables appearing in (19) the following

boundary conditions apply

m(0) = 0, m(Σ) = M, Pr (rΣ) = 0. (21)

As already mentioned in the introduction, in order to integrate
equation (19), we shall need additional information. In this
work we use the polytropic equation of state for the radial
pressure and the class I condition in order to close the system.
In the next section we will implement the polytropic equation
of state to construct the general Lane–Emden equation.

2.2 Relativistic polytrope for anisotropic fluids

When considering the polytropic equation of state within the
context of general relativity, two different possibilities arise,
leading to the same equation in the Newtonian limit [5]. The
first one, preserves the original polytropic equation of state
(1) and the second case allows another (natural) possibility
that consists in assuming that the relativistic polytrope is
defined by,

Pr = Kργ = Kρ1+ 1
n . (22)

In this case the baryonic density ρ0 is replaced by the total
energy density ρ in the polytropic equation of state. The
general treatment is very similar for both cases and therefore,
for simplicity, we shall restrict here to the case described by
(22). It can be shown that the relationship between the two
densities is given by [5],

ρ = ρ0(
1 − Kρ

1/n
0

)n . (23)

As it is well known from the general theory of polytropes,
there is a bifurcation at the value γ = 1. Thus, the cases
γ = 1 and γ �= 1 have to be considered separately.

Let us first consider the case γ �= 1. Now, defining the
variable ψ by

ρ = ρcψ
n, (24)

where ρc denotes the energy density at the center (from now
on the subscript c indicates that the variable is evaluated at

the center), we may rewrite (22) as

Pr = Kργ = Kρcψ
n+1 = Prcψ

n+1, (25)

with Prc = Kρ
γr
c . Now, replacing (22) and (24) in (19) we

obtain

(n + 1)ψ ′ = −
(
m + 4π Prcψn+1r3

r(r − 2m)

)
1

α

(
1 + α ψn)

+ 2Δ

r Prc
, (26)

where α = Prc/ρc. Let us now introduce the following
dimensionless variables

r = ξ

A
, A2 = 4πρc

α(n + 1)
, (27)

ψn = ρ

ρc
, η(ξ) = m(r) A3

4πρc
, (28)

from where (26) reads

ξ2 dψ

dξ

[
1 − 2α(n + 1)

η
ξ

1 + α ψ

]
+ η + αξ3ψn+1

− 2Δ ξ

Prcψn(n + 1)

[
1 − 2α(n + 1)

η
ξ

1 + α ψ

]
= 0, (29)

which corresponds to the generalized Lane–Emden equation
for this case.

Let us now consider the isothermal case: n = ±∞, γ = 1.
In this case, the definition of the variable ψ becomes,

ρ = ρce
−ψ, (30)

and we can write Eq. (22) as

Pr = Kρ = Kρce
−ψ = Prce

−ψ. (31)

Replacing (30) and (31) in TOV equation (19), we obtain

e−ψψ ′ =
(
m+4π Prce−ψr3

r(r − 2m)

)
1

α

(
e−ψ +α e−ψ

)− 2Δ

r Prc
.

(32)

Introducing dimensionless variables,

α = Prc
ρc

, r = ξ

A
, A2 = 4πρc

α
, (33)

e−ψ = ρ

ρc
, η(ξ) = m(r) A3

4πρc
, (34)

Eq. (32) becomes

ξ2ψ ′
(

1 − 2α
ξ
η

1 + α

)
− η − αe−ψξ3

+2Δeψξ

Prc

(
1 − 2α

ξ
η

1 + α

)
= 0, (35)

which corresponds to the Lane–Emden equation for the
isothermal case.
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3 The class I condition

Embedding of four-dimensional spacetimes into higher
dimensions is an invaluable tool in generating both cosmo-
logical and astrophysical models [41]. As it is well known,
the Karmarkar condition is necessary and sufficient to ensure
class one solutions [33] which for spherically symmetric
space–times reads (Rθφθφ �= 0) [33]

Rrtrt Rθφθφ = Rrθrθ Rtφtφ + Rrθ tθ Rrφtφ, (36)

leading to

2
ν′′

ν′ + ν′ = λ′eλ

eλ − 1
, (37)

with eλ �= 1. Now, using (24), (25) and (37) in (20) we obtain

Δ =
(
4π Prcψn+1r3 − m

) (
rm′ − 3m

)
16πm r3 , (38)

from where, after using the set of dimensionless variables
(27) and (28), we arrive at

Δ = ρc

(
αψn+1ξ3 − η

) (
ξη′ − 3η

)
4ξ3η

. (39)

Finally, replacing (39) in (29), the class I generalized Lane–
Emden equation for γ �= 1 reads

(
αψn+1ξ3 − η

) (
3η − ξη′)

2α(n + 1) ξ2ψnη

[
1 − 2α(n + 1)

η
ξ

1 + α ψ

]

+ξ2ψ ′
[

1 − 2α(n + 1)
η
ξ

1 + α ψ

]
+ η + αξ3ψn+1 = 0.

(40)

We can repeat the same procedure for the γ = 1 (isothermal)
case. Again, after using (30), (31) and (37) in (20) we obtain,

Δ =
(
4π Prce−ψr3 − m

) (
rm′ − 3m

)
16πm r3 , (41)

from where, by means of the definitions (33) and (34) we
have

Δ = ρc

(
αe−ψξ3 − η

) (
ξη′ − 3η

)
4ξ3η

. (42)

Finally, introducing (42) in (35) we arrive to the class I gen-
eralized Lane–Emden equation for γ = 1 (isothermal case),

ξ2 dψ

dξ

(
1 − 2α

ξ
η

1 + α

)
− η − αe−ψξ3

+eψ

(
αe−ψξ3 − η

) (
ξη′ − 3η

)
2αξ2η

(
1 − 2α

ξ
η

1 + α

)
= 0.

(43)

To complement the discussion, we proceed to calculate
the Tolman mass (for the γ �= 1 case) [56], defined by

mT = 1

2
e(ν−λ)/2ν′r2, (44)

or, alternatively [24]

mT = e(ν+λ)/2
(
m + 4πr3Pr

)
. (45)

The functions λ, m and Pr in the above expression, are
obtained directly by integration of equation (40) for the
γ �= 1 case. So, we only need an expression for ν, which can
be obtained following the systematic procedure described in
[5,57]. Using the corresponding expressions (24) and (25),
and the variables defined in (27), (28), we have

mT = e(ν+λ)/2
(
α(n + 1)η + α2(n + 1)ψn+1ξ3

) 1

A
. (46)

Now, in order to obtain the metric variable ν, we proceed as
follows. First, the TOV equation (19) can be written as

2α(n + 1)dψ = − (αψ + 1) dν + 4
Δ

rρcψn
dr, (47)

from where

2α(n + 1)

∫ ψ(rΣ)

ψ(r)

dψ

αψ + 1

= −
∫ ν(rΣ)

ν(r)
dν + 4

ρc

∫ rΣ

r

Δ

ψn (αψ + 1) r
dr. (48)

Next, defining G(r) as,

G(r) ≡
∫ rΣ

r

Δ

ψn (αψ + 1) r
dr,

the integration of (48) produces

− 2α(n + 1) log (αψ + 1) = ν(r) − ν(rΣ) + 4

ρc
G(r),

(49)

from where we obtain

eν(r) = eν(rΣ)

(αψ + 1)2α(1+n)e
4
ρc

G(r)
. (50)

Using (18) and (50) in (46) we arrive at

mT =
(aΣ

a

)1/2
(1 + αψ)−α(n+1)e− 2

ρc
G(r)

×
[
α(n + 1)η+α2(n+1)ψn+1ξ3

] (
α(n + 1)

4πρc

)1/2

(51)

where

a = 1 − 2α(n + 1)
η(ξ)

ξ
. (52)
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For the numerical calculations it is convenient to change to
the following dimensionless variables

x = r

rΣ
= ξ

rΣ A
= ξ

ξΣ

, (53)

y = M

rΣ
= α(n + 1)

ηΣ

ξΣ

(54)

ηT = mT

4πρcα3 , (55)

in terms of which Eq. (51) reads,

ηT =
(

1 − 2y

1 − 2α(n + 1)
η

xξΣ

)1/2

×
[
α(n + 1)η + α2(n + 1)ψn+1x3ξ3

Σ

]
(1 + αψ)α(n+1)e

2
ρc

G(x)

×
(

1

4πρcα

)3/2

(n + 1)
1
2 . (56)

where G(x) becomes,

G(x) =
∫ 1

x

Δ(x)

ψn(αψ + 1)xξΣ

dx . (57)

This procedure, where the integration of the TOV equation is
carried out, allows us to find the metric function ν (using the
appropriate boundary conditions) and finally Tolman’s mass,
(56) and (57), is totally equivalent to the one developed in
[57] for the different cases exposed.

Fig. 1 eν as function of x for α = 0.2 and different values of n

Fig. 2 ψ as function of x ( γ = 1 isothermal case) for different values
of α

Fig. 3 ψ as function of x for α = 0.1 and different values of n

Fig. 4 y as function of n for different values of α

Now, the above results will be integrated numerically, with
the corresponding boundary conditions, in order to obtain the
solution for each case considered.

Figure 1 shows the behaviour of eν as a function of x for
different values of the parameters involved. Note that, the
function is monotonously increasing as required. In Figs. 2
and 3 it is shown the integration of Eqs. (43) (isothermal
case) and (40), respectively, for the values of the parameters
indicated in the figure legend. Note that for the isothermal
case (γ = 1) the configurations are unbounded and as a con-
sequence, it is meaningless to define a surface potential or the
total mass. However, for the γ �= 1 case ψ is monotonously
decreasing as expected, and the radial pressure Pr vanishes
at the surface as required by the continuity of the second
fundamental form. The parameter y (“the surface potential”)
which measures the degree of compactness is plotted in Fig.
4 as function of the polytropic index n for different values
of α. Note that the plots have discontinuities in some point
nd , where we observed that for n < nd , the solution is well–
behaved, and for n ≥ nd , the numerical solution starts to have
either imaginary components or strange oscillatory behavior.

Figures 5 and 6 display the Tolman mass (normalized by
the total mass), for the case γ �= 1, as function of x for the
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Fig. 5 Normalized Tolman–Whittaker Mass ηT /ηΣT as function of x
for α = 0.1, n = 3 and different values of y. Values of y are read off
Fig. 4

Fig. 6 Normalized Tolman–Whittaker Mass ηT /ηΣT as function of x
for α = 0.1, n = 1 and different values of y. Values of y are read off
Fig. 4

selection of values of the parameters indicated in the legend.
The behavior of the curves is qualitatively the same for a
wide range of values of the parameters. We observe that as
we move from the less compact configuration (curve a) to
the more compact one (curve d), the Tolman mass tends to
concentrate on the outer regions of the sphere. Therefore,
it may be inferred from the Figs. 5 and 6 that more stable
configurations correspond to smaller values of y since they
are associated to a sharper reduction of the Tolman mass
in the inner regions, as usually happens if the anisotropy is
fixed by the imposed condition. This is the usual strategy
adopted by the fluid distribution to keep the equilibrium; it
tries to concentrate the Tolman mass in the outer regions.
This behavior was already observed for different families of
anisotropic polytropes discussed in [5]. The same result is
obtained from the Fig. 7 where we plot the Tolman mass as
a function of x for the selection of values of the parameters
indicated in the legend.

For completeness, we plot the Tolman mass, as function of
x , for several polytropic indexes and compactness parameters

Fig. 7 Normalized Tolman–Whittaker Mass ηT /ηΣT as function of x
for n = 0.5 and different values of y (α). (Blue) y (α) = 0.131649 (0.3).
(Red) y (α) = 0.114082 (0.2). (Green) y (α) = 0.0871126 (0.1). Values
of y are read off Fig. 4

Fig. 8 Normalized Tolman–Whittaker Mass ηT /ηΣT as function of x
for α = 0.1 and different values of n. (Blue) n = 11.5. (Red) n = 3.
(Green) n = 3.5. Values of y are read off Fig. 4

represented by y. The result i shown in Fig. 8 for the selection
of values of the parameters indicated in the legend.

It is worth mentioning that all the numerical results show
well-behaved solutions for small alpha values and a specific
range of values for n.

4 Karmarkar condition and Tolman mass

In this section we would like to establish some relationships
that may be useful to analyze the anisotropy inherited by the
Karmarkar condition. In order to relate the influence of the
Karmarkar condition with the mass function m and the Tol-
man mass, mT , we will take an instructive path to complete
our analysis of the fluid distribution of the compact body.
From (18) we obtain the usual definition of the mass func-
tion,

m = 1

2
r R3

232. (58)
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Note that, we can write condition (36), for our static and
spherically symmetric case, in order to define a new variable,
K, in the following form,

K = Rrtrt Rθφθφ − Rrθrθ Rφtφt , (59)

where the Karmarkar condition is satisfied when K = 0. In
this way we can keep track of how this condition influences
our anisotropic distribution of fluid of the compact object.
Using the components of the Riemann tensor appropriate to
the symmetry we may obtain from (59) the following expres-
sion,

K ≡ − K

sin2 θ
=

−e(ν+λ) 1

4
e−λ

(
2ν

′′ − λ′ν′ + ν′2 + 2
ν′ − λ′

r

)
2mr

+
(
e(ν+λ)e−λ ν′ − λ′

2r

)
2mr + r2

4
λ′ν′e(ν−λ), (60)

which, after using Einstein equations (8), (9) and (10), can
be written as

K = −e(ν+λ)

[(
8π

(
T 0

0 + T 1
1 − 2T 2

2

))
+ 4m

r3

]
mr

+r2

4
λ′ν′e(ν−λ). (61)

Now, we proceed in two different ways in order to interpret
the influence of the Karmarkar condition over our interior
solution. First, from (8) and (9), we obtain the derivatives of
the metric functions ν′ and λ′ in the form

− λ′ = 2m

r2 eλ − 8πrT 0
0 e

λ, (62)

e−λν′ = 2m

r2 − 8πrT 1
1 . (63)

Now, replacing these expressions in the last term of (61) we
obtain

3

r2 m
2 + 4πr

(
4T 2

2 − T 1
1 − T 0

0

)
m

−16π2r4T 0
0 T

1
1 = e−(ν+λ) K, (64)

which relates the mass function m with the K condition,
defined in (60). In contrast, if we use (44) and Einstein equa-
tion (8), we can write the last term of (61) in terms of the
Tolman mass function, mT , as

K = −e(ν+λ)

[(
8π

(
T 0

0 + T 1
1 − 2T 2

2

))
+ 4m

r3

]
mr

+
[

4πT 0
0 r3 − m

r(r − 2m)

]
e(ν−λ)/2 mT . (65)

Finally, using (45) in the previous equation we have

rK = −e(ν+λ)

[(
8πr2

(
T 0

0 + T 1
1 − 2T 2

2

))
+ 4m

r

]
m

+
[

4πr3(T 0
0 − T 1

1 ) − mT e−(ν+λ)/2

(r − 2m)

]
e(ν−λ)/2mT ,

(66)

which constitutes a relation between the mass function, the
Tolman mass and theK condition. So, we have been success-
ful in relating the components of the energy–momentum ten-
sor, the mass function and the Tolman mass with the defined
K condition for the symmetry considered in our development.
This could allow us to discover the influence over these mass
functions by imposing the Karmarkar condition and then be
able to find out how this metric (embedding) condition influ-
ences the distribution of our compact fluid.

In order to illustrate the effect of the Tolman mass on K
we shall consider a simple example, namely, an anisotropic
solution with vanishing radial pressure [58],

eν = B2
(

1 + r2

A2

)
(67)

e−λ = A2 + r2

A2 + 3r2 (68)

ρ = 6(A2 + r2)

8π(A2 + 3r2)2 (69)

pt = 3r2

8π(A2 + 3r2)2 (70)

pr = 0, (71)

with

A2

r2
Σ

= rΣ − 3M

M
(72)

B2 = 1 − 3M

rΣ
, (73)

which ensure the fulfilling of the matching conditions (12),
(13) and (14). Next, replacing (67), (68), (69), (70), (71), (72)
and (73) in (66) and using (45) to express the mass function
in terms of mT we arrive at

K = − η

ϑ

(
− 8Ξη2Λ2 + 3Ξ x4y

(
Λ2 − 24η2y

)

+24ΞΛx6y2 − 48Ξη2Λx2y + 15ηΘx5y2

+33Ξ x8y3 + 5ηΘΛ2x + 16ηΘΛx3y

)
, (74)

where x = r/Σ , η = mT /Σ , y = M/rΣ and

Ξ =
√ (

x2 − 3
)
y + 1

3
(
x2 − 1

)
y + 1

(75)

Θ =
√(

x2 − 3
)
y + 1 (76)

Λ = 1 − 3y (77)

123
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Fig. 9 Parametric plot of K as a function of η for y = 0.2 (black line),
y = 0.25 (blue dashed line) and y = 0.3 (red dashed line)

ϑ =
(

3
(
x2 − 1

)
xy + x

)2
(Θx − 2Ξη) (78)

In Fig. 9, we show the parametric plot ofK(x) as a function
of the normalized Tolman mass, η(x) in the interval x ∈
(0, 1) for different values of y.

Interestingly, the solution deviates from the K = 0 con-
dition as y increases.

5 Conclusions

In this work, we have developed a general method to con-
struct locally anisotropic polytropes, and we have applied
it to the specific case of a class I solution for spherically
symetric interior space-times. As it occurs in the specific
case of conformally flat polytrope spheres [6], our models
are necessarily anisotropic (principal stresses unequal) and
therefore are not continuously linked to isotropic polytropes
(just like it ocurres in other reported anisotropic distributions
[59]). Since the inclusion of pressure anisotropy implies an
additional degree of freedom, the integration of the ensuing
Lane Emden equation, in the general case, requires additional
information. Usually this information is provided through
equations of state or other type of assumptions about the
nature of the anisotropy. Here, we have supplied such addi-
tional information by assuming that the polytrope has the spe-

cific anisotropy derived from de Karmarkar condition. This
represents an heuristic assumption whose validity will be
confirmed (or not) from its application to specific problems.
Then, the geometrical constraint, chosen to work with, pro-
duce a specific type of anisotropy leading to a Lane–Emden
equation that required a numerical analysis, given the high
nonlinearity of the equations.

We could differentiate two possible cases depending on
whether γ �= 1 or γ = 1. We have integrated the Lane
Emden equations for these cases, for a very large set of val-
ues of the parameters, even though, only a very specific set
for each case is exhibited, this because the qualitative behav-
ior of the system does not change much for a wide range
of the parameters. The main reason to present such mod-
els was not to describe any specific astrophysical scenario,
but to illustrate the applications of our approach. However,
the protocol here developed could be useful for dealing with
several phenomena in which anisotropic polytropes appear,
with special emphasis in the physics of compact objects and
so on, the obtained models exhibit some interesting features
which deserve to be commented. We do not know if distribu-
tions that are usually represented as polytropes, and that also
constitute very compact objects, like neutron stars (that are
described by a Fermi gas), or Super-Chandrasekhar white
dwarfs could be adequately modeled in this way. For such
configurations it is evident that general relativistic effects as
well as the inclusion of pressure anisotropy are unavoidable,
and therefore its study could be carried on using the approach
presented here. Here too, care must be exercised with the fact
that some of the physical phenomena present in such config-
urations (e.g. very strong magnetic fields) could break the
spherical symmetry.

It is interesting to highlight that polytropes with γ = 1
are used to model systems with non-degenerate isothermal
cores which play an important role in the analysis of the
Schönberg–Chandrasekhar limit. Any distribution of pres-
sure anisotropy would affect the Schönberg–Chandrasekhar
limit not only by affecting the structure of the polytrope, but
also by the modifications of the virial theorem, introduced
by the anisotropy.

In the last section we have followed a similar strategy pre-
viously used to express the Tolman mass in terms of traces
of the Riemann tensor (matter sector) and the only non-
vanishing scalar associated to the electric part of the Weyl
tensor in static and spherically symmetric space-times, E (see
[60], for example). In this sense, it is clear how the different
parts affect the Tolman mass. For example, for conformally
flat solutions the Weyl condition reads E = 0 which leads to
a geometric constraint which allows to close the system. Sim-
ilarly, here we have obtained expressions relating the scalar
K with the traces of the Riemann tensor, the mass function
m (64) and the Tolman mass (66) and class one solutions are
obtained when the Karmarkar condition is fulfilled, namely

123
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K = 0. In this sense, expressions (64) and (66) may be useful
to investigate the role played by Karmarkar embedding con-
dition in our fluid distribution corresponding to the compact
object. These aspects must be approached with the necessary
care and detail in future works.

We do not know if there are any real physical phenomena
that can produce a distribution of local anisotropy similar
to the one inherited through the metric Karmarkar condition
described in our models. So, it could be interesting to be
able to provide a physical meaningful picture for a source of
the anisotropy that we have obtained (by means of magnetic
field or charge distribution) of the type one could expect to
find in some astrophysical settings. Although it is certainly
an interesting question, the answer lies beyond the scope of
this work. However, we believe that our approach provides a
useful tool to carry out this and other investigations.
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