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Abstract Astrometric observations of S-stars provide a
unique opportunity to probe the nature of Sagittarius-A*
(Sgr-A*). In view of this, it has become important to under-
stand the nature and behavior of timelike bound trajectories
of particles around a massive central object. It is known now
that whereas the Schwarzschild black hole does not allow
the negative precession for the S-stars, the naked singularity
spacetimes can admit the positive as well as negative preces-
sion for the bound timelike orbits. In this context, we study
the perihelion precession of a test particle in the Kerr space-
time geometry. Considering some approximations, we inves-
tigate whether the timelike bound orbits of a test particle in
Kerr spacetime can have negative precession. In this paper,
we only consider low eccentric timelike equatorial orbits.
With these considerations, we find that in Kerr spacetimes,
negative precession of timelike bound orbits is not allowed.

1 Introduction

In recent days, the study of the nature of Sgr-A* has become
a subject of great interest. Sgr-A* is a highly dense compact
object that exists at the center of our Milky-way galaxy. It
is expected that the mass of Sgr-A* is about 4.3 × 106M�,
which is located at a distance of 8.2 kpc (1 kpc ∼ 3 × 1016

km) from the Earth. There are many ‘S’ stars (e.g. S-2, S-
38, S-102, etc.) which are orbiting around the compact radio
source Sgr-A*. The observational data of S-stars’ orbits can
reveal the great mystery about the nature of the compact
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object Sgr-A*. In order to observe the relativistic corrections
in the orbital motion of the S-stars around Sgr-A*, the GRAV-
ITY and SINFONI collaborations are monitoring their orbital
dynamics continuously.

It is generally believed that super massive black holes
(SMBHs) with masses between 106−109M� exist at the cen-
ters of most galaxies [1]. In order to predict the causal nature
of the galactic centers, it is very important to investigate dif-
ferent possible observational features, such as the shadows
of black holes, the relativistic orbits of the S-stars, accretion
disk properties of the compact objects, etc. The Event Hori-
zon Telescope (EHT) collaboration has released the first-ever
image of the shadow of a black hole located at the center of
the Messier 87 (M87) galaxy [2]. There are several literature
where the detailed analysis of the shadows cast by spherically
symmetric and static black holes and other compact objects
(e.g. different naked singularities, gravastar, etc.) are studied
[3–8]. It has been shown that compact objects, like naked sin-
gularities can cast similar type of shadow which is expected to
be cast by a black hole [3,7,8]. Recently, GRAVITY collab-
oration has shown the possibility of the existence of general
relativistic precession of the orbit of S2 star, where they con-
sider Schwarzschild black hole at the center [9]. In our earlier
work [10], we have predicted the precession angle of the S2
star considering Schwarzschild black hole and naked singu-
larity at the center. The study of the relativistic orbits of S-
stars near the Milky-way galactic center is very important in
astrophysics to verify the prediction of the general theory of
relativity. There are several works where timelike and light-
like geodesics in different spacetimes are investigated which
are very important in the context of recent observations of
EHT, GRAVITY and SINFONI collaborations [11–46].

The Schwarzschild black hole is a spherically symmetric,
static and vacuum solution of the Einstein field equation. It
describes spacetime geometry of a non-rotating, uncharged
black hole which is characterized by a single parameter,
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the Schwarzschild mass M of the black hole. In [47,48],
we show that the bound orbits of a freely falling particle
in Schwarzschild spacetime always precess in the positive
direction. In positive precession, the angular distance trav-
elled by a particle between two successive perihelion points is
greater than 2π . On the other hand, the precession is called
negative when the angular distance travelled by a particle
between two successive perihelion points is less than 2π . In
positive precession, it can be shown that the orbit of a parti-
cle always precesses in the direction of the particle motion,
whereas in the negative precession, the orbit precesses in the
opposite direction of the particle motion. However, the nega-
tive precession is forbidden in Schwarzschild spacetime [47].
Therefore, if we consider Sgr-A* to be a Schwarzschild black
hole then the observed precession of ‘S’ stars should always
be positive. It is generally believed that an extended matter
distribution (e.g. clusters of stars, baryonic matter, dark mat-
ter, etc. ) can cause or allow for a negative precession of the
stars. In [47,48], we study the bound orbits of a test parti-
cle in Schwarzschild, Joshi–Malafarina–Narayan (JMN), and
Janis–Newman–Winicour (JNW) spacetimes. Both the JMN
and JNW spacetimes are naked singularity spacetimes which
have spherically symmetric matter distributions [49–52]. The
JMN and JNW naked singularity spacetimes allow both the
negative and positive precession of timelike bound orbits. In
[7], it is shown that for some parameters’ values, when nega-
tive precession is allowed in JMN and JNW spacetimes, these
spacetimes would not cast any shadow for the central object.
However, they can cast a shadow when the positive preces-
sion is allowed in these spacetimes. Therefore, in that earlier
work [7], we construct a spacetime configuration in which
both the negative precession and shadow can exist simultane-
ously. As we know, the Schwarzschild, Kerr and other black
hole solutions can cast a shadow. Therefore, if the negative
precession of the orbit of a test particle in other black holes
spacetimes is possible then that would be another example
along with the spacetime configuration of [7], where a neg-
ative precession and shadow both can exist simultaneously.
In this context, in this paper, we investigate the possibility of
a likely negative precession of bound timelike orbits in the
Kerr spacetime, which is physically more realistic solution
of a black hole as compared to the Schwarzschild black hole
solution, which allows for no rotation.

As we know, every celestial body has its own intrinsic spin
angular momentum. Therefore, inclusion of a non-zero spin
in a non-rotating spacetime makes the modified spacetime
physically more realistic. There are no restrictions on the
value of the spin angular momentum of a compact object, as
long as it is not a black hole. The spin of a celestial object
is typically represented by a dimensionless spin parameter
ã. This spin parameter can be defined as ã = cJ

GM2 , where
c, J,G, M are the velocity of light, intrinsic spin angular
momentum of the body, Newton’s gravitational constant, and

the mass of the celestial body respectively. Earth, with its
spin angular momentum J ∼ 7.2 × 1033 kg m2 s−1 and
mass M = 5.972 × 1024 kg has the spin parameter ã = 907,
whereas the sun has spin parameter ã = 0.216 [53]. On the
other hand, a rapidly spinning massive star VFTS102 has
ã = 75 [53]. Therefore, one can see that the value of the
spin parameter of a celestial object can be much greater than
one. However, if we consider Kerr black hole which is a
rotating generalization of the Schwarzschild black hole, the
spin parameter ã cannot be allowed to be greater than unity in
order to ensure the existence of an event horizon. The Kerr
black hole is a vacuum axi-symmetric solution of Einstein
field equations, and it is characterized by two parameters, the
total mass of the black hole M and total angular momentum
J . Kerr spacetime describes a rotating black hole, if ã ≤ 1,
whereas it describes a rotating naked singularity spacetime if
ã > 1. Astrophysically relevant bound trajectories around a
Kerr black hole are studied in [54]. Detailed study of bound
nonspacelike geodesics in the Kerr metric is given in [55,56].

As we mentioned previously, in this paper, our prime focus
is to investigate the nature of perihelion precession of time-
like bound orbits in Kerr spacetime. In [10], we show that
Schwarzschild spacetime does not admit any negative pre-
cession. In this paper, we show that the precession of the
timelike bound orbits in Kerr spacetime is also always posi-
tive, when we consider only low eccentric, equatorial, bound
orbits. With the small eccentricity approximation, one can
analyse the nature of the timelike bound orbits in the strong
field region of Kerr spacetime where the relativistic effects
on the bound orbits are likely to be observed.

This paper is organized as follows. In Sect. 2, we review
the basic properties of the Kerr spacetime and derive the
analytic solution of the orbit equation for a test particle in
the equatorial plane. We numerically solve the orbit equa-
tion and show the particle trajectories. In Sect. 3, we use an
approximate solution of orbit equation and investigate the
nature of perihelion precession of the timelike bound orbits
in Kerr spacetime. We summarize and conclude our results
in Sect. 4. Throughout the paper, we use geometrical units
with G = c = 1.

2 Timelike geodesics in Kerr spacetime

In this section, we study the motion of a test particle in the
Kerr spacetime. The stationary, axisymmetric and rotating
Kerr spacetime is given in Boyer–Lindquist coordinates as,

ds2 = −
(

1 − rsr

�

)
dt2 + �

�
dr2

+�dθ2 +
(
r2 + a2 + rsra2 sin2 θ

�

)
sin2 θdφ2

−2rsra sin2 θ

�
dtdφ, (1)
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where � = r2 +a2 cos2 θ , � = r2 +a2 −rsr and rs = 2M .
The spin parameter a with a length dimension is related with
the total angular momentum J as a = J/M . Therefore, in
terms of dimensionless spin parameter ã, we can write a as,
a = Mã. The horizons are defined by the relation grr → ∞
which implies that the solution of � = 0 can give us the
position of the event horizon. Therefore,

r± = M ±
√
M2 − a2. (2)

There are two horizons, the event horizon at r = r+ and
Cauchy horizon at r = r−. For a = M , both these horizons
coincide at r = M , and these are known as extreme Kerr
black holes. When a > M , there is no horizon and the Kerr
black hole becomes a timelike naked singularity. The study of
test particles motion in Kerr spacetime is important to under-
stand the physical processes occurring in these spacetimes
and their observational consequences. The Kerr spacetime is
independent of t and φ, therefore, the conserved energy (e)
and the angular momentum (L) per unit rest mass are given
by,

e = gttU
t + gtφU

φ, (3)

L = −gtφU
t + gφφU

φ, (4)

where Uμ are the components of the four velocity of a test
particle and gtt = (

1 − rsr
�

)
, grr = �

�
, gθθ = �, gφφ =(

r2 + a2 + rsra2 sin2 θ
�

)
, and gtφ = rsra sin2 θ

�
. In a physically

realistic situation, the orbital angular momentum of a test
particle and the spin angular momentum of a central rotating
body need not necessarily be aligned. Here, for simplicity
we have restricted our attention to the orbits in the equatorial
plane (θ = π

2 ). Eqs. (3), (4) can be solved for Ut and Uφ ,
and we get,

Ut = 1

�

[(
r2 + a2 + rsa2

r

)
e −

(rsa
r

)
L

]
, (5)

Uφ = 1

�

[(rsa
r

)
e +

(
1 − rs

r

)
L
]
. (6)

Using normalization condition UαUα = −1 of timelike
geodesics and also using the Eqs. (5), (6), we can derive r -
component of the four velocity Ur as,

Ur = ±
√

(e2 − 1) + rs
r

− L2 − a2(e2 − 1)

r2 + rs(L − ae)2

r3 . (7)

Here, ± signatures are corresponding to the radially out-
going and incoming timelike geodesics respectively. The
expression, in Eq. (7), is equivalent to the kinetic energy
of a test particle. The total relativistic energy is defined as,

E = 1

2
(e2 − 1) = 1

2
(Ur )2 + Vef f (r) . (8)

Using the expression of Ur (Eq. (7)) and the expression of
total relativistic energy (Eq. (8)), we get the following expres-

sion of effective potential,

Vef f (r) = − rs
2r

+ L2 − a2(e2 − 1)

2r2 − rs(L − ae)2

2r3 . (9)

Above expression of the effective potential is only applicable
for equatorial timelike geodesics. For bound orbits, the total
energy of the particle is greater than or equal to the mini-
mum effective potential. The minimum effective potential is
determined as,

dVef f
dr

|rb = 0; d
2Vef f
dr2 |rb > 0, (10)

where the effective potential has a minimum at r = rb. Using
Eqs. (9) and (10), we get the following expression of rb,

rb = 1

2M

(
L2 + a2(1 − e2)

+
√

(L2 + a2(1 − e2))2 − 12M2(L − ae)2
)
. (11)

The minimum effective potential at r = rb is,

Vef f (rb)

= −1

(L2 + a2(1 − e2) + √
(L2 + a2(1 − e2))2 − 12M2(L − ae)2)3

×(2M2(a4(1 − e2)2 + 16aLeM2 + L2(L2 − 8M2

+
√

(L2 + a2(1 − e2))2 − 12M2(L − ae)2)

+a2(2L2(1 − e2) − 8M2 + (1 − e2)

×
√

(L2 + a2(1 − e2))2 − 12M2(L − ae)2))). (12)

The bound orbits exist for Vmin ≤ E < 0. Using the bound
orbit conditions, we can determine the shape of the orbits,
that gives how r changes in the equatorial plane with respect
to φ,

dr

dφ
=

±
√

(e2 − 1) + 2M
r − L2−a2(e2−1)

r2 + 2M(L−ae)2

r3

1
�

[( rsa
r

)
e + (

1 − rs
r

)
L
] .

(13)

Using Eq. (13), we can derive second order differential orbit
equation of a massive test particle in Kerr spacetime,

d2u

dφ2 = 1 − 2Mu + a2u2

(L − 2Mu(L − ae))3 [M(L − 2ae(e2 − 1))

+u(L(−L2 + 3a2(e2 − 1))

−2M2(2L + 2ae) + uB(φ))], (14)

where u = 1
r and

B(φ) = M(7L3 − 6aeL2 + a2L(11 − 3e2)

+2a3e(e2 − 1)) + 4M3(L − ae)

+u[−3a2L3 + 3a4L(e2 − 1)

+2M2(L − ae)(−8L2 + a(7Le + a(e2 − 5)))

−Mu(L − ae)(a2(−11L2 + a(7Le + 4a(e2 − 1)))

−12M2(L − ae)2 + 10a2Mu(L − ae)2)].
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Fig. 1 Above figures show orbits of a test particle in the Kerr space-
time. Red solid lines indicate particle’s orbits in the Kerr black hole
for a = 0.8, rmin = 76.15 and a = −0.8, rmin = 75.53 (first col-
umn), in the extreme Kerr black hole for a = 1, rmin = 76.22 and
a = −1, rmin = 75.45 (second column) and blue solid lines indicate
particle’s orbits in the Kerr naked singularity for a = 1.1, rmin = 76.25

and a = −1.1, rmin = 75.41 (third column). Black dotted lines indicate
particle’s orbits in the Schwarzschild spacetime (for a=0, rmin = 75.85).
Brown circles represent the minimum approach of the particle towards
the center. Here, we considered M = 1, L = 12 and total energy
E = −0.001

We numerically solve the above orbit equation (Eq. (14))
to investigate the nature and shape of bound orbits of a test
particle which is freely falling in Kerr spacetime. Figure 1
shows the bound orbits of a test particle in the Kerr black
hole spacetime and Kerr naked singularity spacetime. In
that figure, we show timelike bound orbits for spin param-
eters a = ±0.8,±1,±1.1. As we know, the values of spin
parameter a = ±0.8,±1,±1.1 correspond to the Kerr black
hole, extreme Kerr black hole and Kerr naked singularity
respectively. In Fig. 1, we consider the particle’s total energy
E = −0.001, angular momentum L = 12 and the mass
of the black hole to be M = 1. The orbit shown by black
dotted lines represents the timelike orbits in Schwarzschild
spacetime (i.e. a = 0). In Fig. 1, the timelike bound orbits
in Kerr black hole spacetime (i.e. a < 1), and in Kerr naked
singularity spacetime (i.e. a > 1) are shown by solid red
lines and solid blue lines respectively. It can be seen that the
orbital precession in Kerr spacetime is distinguishable from
the orbital precession in the Schwarzschild spacetime.

All the orbits in Fig. 1 show a positive precession and
the non-zero spin parameter changes the minimum approach
(rmin) and perihelion shift of those orbits. One can see that
for a > 0, the minimum approach of the particle (Periastron

point) increases as the value of spin parameter increases. On
the other hand, for a < 0, the minimum approach of the par-
ticle decreases as the value of spin parameter decreases. This
effect of spin parameter can also be seen in Fig. 2, where the
particle’s total energy E = −0.006 and angular momentum
L = 6. Since the angular momentum (L) considered in Fig. 2
is smaller than that of the Fig. 1, the minimum approaches
of the orbits in the Fig. 2 are much smaller than the mini-
mum approaches of the orbits in the Fig. 1. Therefore, the
frame-dragging effect of Kerr black hole geometry is much
higher in the second case (i.e. for L = 6). However, it can
be verified that all the orbits in Fig. 2 always have a positive
precession.

There exists a radial limit under which no stable bound
orbit is possible in Kerr spacetime. As we know, in Schwa-
rzschild spacetime, there exists a minimum value of the
radius of the stable circular orbit and it is known as the
radius (rI SCO ) of innermost stable circular orbit (ISCO). For
Schwarzschild spacetime, the ISCO is at rI SCO = 6M . If we
put a condition that the rb in Eq. (11) should always be real,
then the rI SCO for Kerr metric can be written as,

rI SCO = 3M − √
3ae +

√
9M2 − 6

√
3aeM − 3a2(1 − e2),
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Fig. 2 Above figures show orbits of a test particle in the Kerr space-
time. Red solid lines indicate the particle’s orbits in the Kerr black
hole for a = 0.8, rmin = 18.62 and a = −0.8, rmin = 17.03 (first
column). In the extreme Kerr black hole, for a = 1, rmin = 18.78,
and for a = −1, we have rmin = 16.77 (second column). The blue
solid lines indicate particle’s orbits in the Kerr naked singularity for

a = 1.1, rmin = 18.86, and a = −1.1, rmin = 16.64 (third column).
Black dotted lines indicate particle’s orbits in the Schwarzschild space-
time (for a=0, rmin = 17.91). Brown circles represent the minimum
approach of the particle towards the center. Here, we have considered
M = 1, L = 6 and total energy is E = −0.006

≈ 6M − 2
√

3a

(
e + a

4
√

3M

)
, (15)

where the first expression is the exact expression of rI SCO

and the second expression is the approximate one, where we
consider small values of the spin parameter. Using the first
expression rI SCO , one can verify that the value of rI SCO is
real and finite when a < M (i.e. Kerr black hole). However,
when a > M (i.e. Kerr naked singularity) there exist no
real value of rI SCO , which implies that stable circular orbits
can extend up to the singularity. The second expression is
useful to understand how much the ISCO radius differs from
6M (i.e. the ISCO radius in Schwarzschild spacetime) due
to the non-zero value of spin parameter. Any bound orbits
with a minimum approach (rmin) close to rI SCO , can have
a very large perihelion shift. One can derive the expression
for the smallest possible value of rmin (rmin0) of a bound
timelike orbit in Kerr spacetime by finding the solution of

Vef f |rmin0 = 0,
dVef f
dr |rmin0 = 0 and

d2Vef f
dr2 |rmin0 < 0. The

expression of rmin0 can be written as,

rmin0 ≈ 4M − a
(

2e + a

4M

)
. (16)

Timelike bound orbits with the above value of minimum
approach have large amount of perihelion shift. One can ver-
ify that though the perihelion shift is large near rmin0, the
precession is always positive. However, this large perihelion
shift of timelike bound orbits cannot be seen or verified in the
stellar motions of ‘S’ stars. For example, S2 star has a min-
imum approach which is rmin = 2800M . Therefore, if we
consider the central body (Sgr-A*) as a Kerr black hole, then
the perihelion shift of the orbit of S2 would have a very small
positive value, and that would be very close to the expected
value of perihelion shift of the S2 star in a Schwarzschild
background. Hence, the orbits of S2 star should always have
a positive precession if we consider Schwarzschild or Kerr
black hole at the center of our galaxy (Sgr-A*).
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In Figs. 1 and 2, we show the positive precession of time-
like bound orbits (on θ = π

2 plane) in Kerr spacetime for
some particular values of L , E and a. However, by those
figures we cannot or do not actually claim to prove that the
phenomenon of negative precession is always forbidden or
absent in Kerr spacetimes. To prove that for timelike bound
orbits in Kerr spacetime, we need to analytically solve the
orbit equation (Eq. (14)). However, as the Eq. (14) is a fairly
complicated non-linear differential equation, we attempt to
solve it here either numerically, or using a suitable approx-
imation. Therefore, in the next section, we investigate the
nature of perihelion shift of the orbits in Kerr spacetime using
an approximation technique.

3 An approximate solution of orbit equation

In this section, we investigate whether a negative precession
of timelike orbits of particles is possible for any value of L , e
and a. For this purpose, we use an approximate method here
where we only consider low eccentric orbits. Therefore, for
the approximate solution of the Eq. (14), we only consider
up to the first order expression in eccentricity ε [47,57,58].
The approximate solution can be written as,

u(φ) = 1

Mp
(1 + ε cos(mφ) + O(ε2)). (17)

where p and m are real positive constants and m > 1 repre-
sents the precession of the timelike bound orbits in negative
direction, while m < 1 represents the precession in positive
direction. When we substitute the above expression of u(φ)

in the orbit equation (Eq. (14)) and separate the zeroth order
terms and the first order terms of ε, we get an expression
of m in terms of p. From the zeroth order terms, we get an
equation of fifth order polynomial of p,

g5 (L , a, e, M)p5 + g4(L , a, e, M)p4 + g3(L , a, e, M)p3

+g2(L , a, e, M)p2 + g1(L , a, e, M)p

+g0(L , a, e, M) = 0, (18)

where

g5(L , a, e, M) = −(2ae(1 − e2) + L)M4,

g4(L , a, e, M) = (3a2(1 − e2)L + L3

+2aeM2 + 4LM2)M2,

g3(L , a, e, M) = (2a3e(1 − e2) − a2(11 − 3e2)L

−7L3 − 4LM2 + 2ae(3L2 + 2M2))M2,

g2(L , a, e, M) = 3a4L(1 − e2)

−2ea3M2(5 − e2) − 30aeL2M2

+16L3M2 + a2L(3L2 + 2M2(5 + 6e2)),

g1(L , a, e, M) = −a2(ae − L)(−4a2(1 − e2)

+7aeL − 11L2) + 12M2(ae − L)3,

g0(L , a, e, M) = −10a2(ae − L)3.

It is very difficult to get an analytical solution of the above
fifth order polynomial equation (Eq. (18)). Therefore, we can
use numerical technique and get five solutions of p. One can
verify that among those five solutions only one solution has
real and positive value. Now, we get the following expression
of m from the first order term of ε,

m2 = −1

M4(2ae + L(p − 2))4 p3

(
f7(L , a, e, M)p7

+ f6(L , a, e, M)p6 + f5(L , a, e, M)p5 + f4(L , a, e, M)p4

+ f3(L , a, e, M)p3 + f2(L , a, e, M)p2

+ f1(L , a, e, M)p + f0(L , a, e, M)
)
, (19)

where

f7(L , a, e, M) = M4(−L4 − 8ae3LM2

+ 3a2(−1 + e2)(L2 + 4e2M2)),

f6(L , a, e, M) = −2M4(6a3e(−1 + e2)L − 7L4

+ 4aeL(L2 − 2e2M2) + a2(3(−4 + e2)L2

+ 4e2(−3 + 2e2)M2)),

f5(L , a, e, M) = −6L2M2(−3a4(−1 + e2) − 16aeLM2

+ 12L2M2 + 2a2(L2 + 2(3 + e2)M2)),

f4(L , a, e, M) = 4LM2(6a5e(−1 + e2) + 3a4(7 − 2e2)L

− 96aeL2M2 + 44L3M2 − 8a3e(3L2 + (3 + e2)M2)

+ 12a2L(2L2 + (2 + 5e2)M2)),

f3(L , a, e, M) = 15a6(−1 + e2)L2 − 15a4L4

+ 12a2(ae − L)(a3e(−1 + e2) − a2(−11 + e2)L

− 24aeL2 + 24L3)M2 − 16(−ae

+ L)2(a2(3 + e2) − 14aeL + 13L2)M4,

f2(L , a, e, M) = 6a4(ae − L)L(6a2(−1 + e2)

+ 7aeL − 13L2) + 24a2(−ae + L)2(3a2

− 16aeL + 16L2)M2

+ 96(−ae + L)4M4,

f1(L , a, e, M) = 8a4(−ae + L)2(3a2(−1 + e2)

+ 14aeL − 17L2) − 192a2(−ae + L)4M2,

f0(L , a, e, M) = 80a4(−ae + L)4.

We put the numerical solutions of p in the expression of m
given in Eq. (19) and get the numerical values of m. As it
is mentioned before, m > 1 implies negative precession of
the timelike orbits in Kerr spacetime. Therefore, we verify
whether there exist any parameter space regions where m is
greater than one. To get numerical solution of p, we consider
some specific physically realistic parameter spaces for the
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parameters a, L and e. In our numerical analysis, we always
consider M = 1, and a varies from −40 to 40, L varies from
3.8 to 35 and e varies from 0.895 to 0.999. The spin param-
eters a < −40 and a > 40 are not physically realistic as
they may represent somewhat extreme spin situations. When
specific energy e < 0.8, solutions for bound stable orbits
becomes hard to find out. Specific energy cannot have values
beyond one, since the total energy of particle becomes posi-
tive, which implies unbound orbits. Our approximate solution
mentioned in Eq. (17) is not a good approximation for the
orbits of high eccentricity. For L less than 3.8, the eccentric-
ity of the orbits becomes very high and therefore, using our
approximation method, we cannot do numerical analysis in
L < 3.8 region.

In Fig. 3, we show the solution points for which bound
stable orbits are possible. We show those points in the m and
a coordinates. We know that m is a function of a, L and
e. Therefore, for a particular value of a, we can get many
values for m, since at every points other two variables (L and
e) are varying. We separate 3.8 ≤ L ≤ 35 into four sections
so that we can get more data points in every section. From
Fig. 3a–d), we can see that all the solution points are inside
the region 0 ≤ m ≤ 1 which indicates that the precession
of orbits in Kerr spacetime is always positive for the classes
we have considered. One can see from Fig. 3 that for any
absolute value of the spin parameter, the positive perihelion
shift becomes larger when the sign of the spin changes from
positive to negative. This phenomenon also can be seen from
Figs. 1 and 2. Therefore, if negative precession is not possible
for any positive value of spin parameter then it would not be
possible for any negative value of spin parameter either. One
can consider larger interval of a to verify whether negative
precession of orbits is possible for larger values of a (i.e.
a > 50), or smaller values of a (i.e. a < −50). However, it
can be verified from the Fig. 3 that the solution points are very
close tom = 1 in the interval 0 ≤ a ≤ 30 and after that range,
those points are diverging away from m = 1. Therefore,
from the above analysis it can be stated that the negative
precession is forbidden under the given approximation in the
Kerr spacetime.

Till now, in this section, we have done all the analysis
considering only the low eccentricity approximation and we
show that negative precession of the orbits of a test particle is
not possible in Kerr spacetime for the equatorial orbits. We do
not consider any weak field approximation for our numerical
analysis. Since eccentricity of a orbit is not directly related
with the perihelion distance, a highly eccentric orbit can be
far away from the center, whereas a low eccentric orbit can
be very close to the center. Therefore, in our analysis, the
orbit of the test particle can be very close or far away from
the singularity.

One can consider weak field approximation along with the
small eccentricity approximation to get analytical solutions

of p and m. From that expression of m, one can get the
expression ofm in the Schwarzschild limit (i.e. a → 0). If we
want to consider weak field approximation, we can neglect
third and higher order powers of u(φ) in the expression of
the orbit equation (Eq. (14)). The approximate orbit equation
upto the second order power of u(φ) is given by,

d2u

dφ2 = 1

L5
[ML2(L + 2ae(1 − e2))

−L(L4 + 8aLe3M2 + 3a2(1 − e2)(L2 + 4e2M2))u

+3M(L2(L3 + 3a2Le2 + 6a3e(1 − e2))

−4ae2(2eL2 + 3aL(1 − 2e2)

−4a2e(1 − e2))M2)u2]. (20)

Substituting the expression of u(φ) (Eq. (17)) in the above
orbit equation (20), we get the following quadratic equation
of p from the coefficient of zeroth order power of eccentricity
(ε),

g̃2(L , a, e, M)p2 + g̃1(L , a, e, M)p

+g̃0(L , a, e, M) = 0, (21)

where

g̃2(L , a, e, M) = 2aL2M2e(e2 − 1) − L3M2,

g̃1(L , a, e, M) = L[L4 + 8aLe3M2

−3a2(e2 − 1)(L2 + 4e2M2)],
g̃0(L , a, e, M) = [−3L2(L3 + 3Le2a2

+6ea3(1 − e2)) + 12ae2M2(2eL2

+3aL(1 − 2e2) − 4ea2(1 − e2))].
Now, we get the following expression of m from the first
order term of eccentricity (ε),

m2 = 1

pL5
[96a3e3M2(e2 − 1) + L5(p − 6)

+3a2L3(p − e2(p + 6)) + 4aeL2(9a2(e2 − 1)

+2e2M2(p + 6)) − 12La2e2M2

×(−p − 6 + e2(p + 12))]. (22)

One can solve the above quadratic equation analytically
and get the following two roots of p,

p1 = 1

2L2M2(L + 2ae(1 − e2))
[L5 + 3a2L3(1 − e2)

+8aL2M2e3 + 12La2e2M2(1 − e2)

+{L2(−12M2(L + 2ae(1 − e2))(L2(L3 + 3La2e2

+6ea3(1 − e2)) − 4ae2(2eL2 + 3aL(1 − 2e2)

−4ea2(1 − e2))M2) + (L4 + 8aLe3M2

+3a2(1 − e2)(L2 + 4e2M2))2)}1/2] (23)

p2 = 1

2L2M2(L + 2ae(1 − e2))
[L5 + 3a2L3(1 − e2)

+8aL2M2e3 + 12La2e2M2(1 − e2)
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(a) (b)

(c) (d)

Fig. 3 The above figure shows the solution points for the timelike bound orbits in m and a coordinates. We have 0 < m < 1 and m > 1, that
represent the positive precession and negative precession of timelike bound orbits respectively

−{L2(−12M2(L + 2ae(1 − e2))(L2(L3 + 3La2e2

+6ea3(1 − e2)) − 4ae2(2eL2 + 3aL(1 − 2e2)

−4ea2(1 − e2))M2) + (L4 + 8aLe3M2

+3a2(1 − e2)(L2 + 4e2M2))2)}1/2] (24)

Now, it can be verified that for p = p2,m becomes imaginary
and therefore, the real solution of the quadratic equation of
p is p = p1. We get the following expression of m after
substituting p = p1 in the expression of m,

m = (1 + f (a, M, L , e))1/4, (25)
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(a) (b)

Fig. 4 This figure shows region plots of f > 0 and Vmin ≤ E < 0 for M=1 and L = 6 (a) and L = 12 (b). Blue region represents region of
negative precession ( f > 0) and orange region represents region of bound orbits (Vmin ≤ E < 0)

where

f (a, M, L , e) = 1

L8 (−12M2L6

+8aeM2L3(L2(5e2 − 3) + 12e2M2)

+24Lea3M2(e2 − 1)(L2(e2 + 3)

+4e2M2(4e2 − 1)) − 3a4(e2 − 1)2(−3L4

+24L2e2M2 + 80e4M4) − 2a2L2(3L4(e2 − 1)

+6L2e2M2(1 + 2e2) + 8e2M4(8e4 + 6e2 − 9))).

(26)

In the above expressions of m, f > 0 implies m > 1 which
is the necessary condition for the negative precession and
f < 0 implies m < 1 which is the necessary condition for
the positive precession. As m must be a real and positive
number, f ≥ −1. Therefore, for the positive precession,
we must have −1 < f < 0. In the Schwarzschild limit or
with the approximation of negligibly small value of a, the
expression of m written above reduces to,

m =
(

1 − 12M2

L2

)1/4

, (27)

where f = −12M2

L2 . Therefore, to satisfy the condition

−1 < f < 0 we need,

L

M
>

√
12. (28)

From the expression of m in Eq. (27), one can verify that in
Schwarzschild spacetime, m is always less than one which
implies positive precession of timelike bound orbits [47,48].
If we consider L >> M , we can write down an approximate

expression of m for the Schwarzschild spacetime,

m =
(

1 − 3M2

L2

)
. (29)

From the above expression of m, we can get the follow-
ing positive perihelion shift of timelike bound orbits in
Schwarzschild spacetime [47,48],

δφprec = 6πM2

L2 . (30)

In Kerr spacetime, we can also get the minimum value of L
M

for bound orbits,

L

M
≈ √

12 − a

M

(
e + a√

12M

)
, (31)

where we consider only upto the second order power of a.
Previously, we have shown that the negative precession

does not occur in Kerr spacetime, where we do not con-
sider any weak field approximation. Now, with the weak field
approximation, it should be obvious that we would get the
same result. To verify that, in Fig. 4, we show two region
plots for fixed mass (M) and angular momentum (L), where
we show the regions of the negative precession f > 0 (i.e.
the blue region) and the bound orbits Vmin ≤ E < 0 (i.e. the
orange region) for different values of a and e. Existence of
any common region between these two regions implies that in
Kerr spacetime, negative precession of bound timelike orbit
is possible. However, we do not find any of such overlap-
ping regions. Therefore, again we get the same result that we
have verified previously without considering any weak field
approximation.
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4 Discussion and conclusion

In this paper, we have studied the nature of timelike bound
orbits of a test particle in Kerr spacetime geometry. In order to
find the particle trajectories in Kerr spacetime, we derive an
orbit equation and solve the same numerically. In Fig. 1, we
show the trajectories of a test particle in Kerr spacetime for
the spin parameter values a = ±0.8,±1,±1.1, where we
take black hole mass M = 1, specific angular momentum
of the test particle L = 12 and the total energy of the test
particle E = −0.001. In Fig. 2, we show particle trajectories
for the same spin parameter values where M = 1, L = 6 and
E = −0.006. In both the cases we get positive precession of
the bound orbits. We have investigated the particle trajectory
only on the equatorial plane (θ = π/2).

Then in Sect. 3, we consider an approximation solution
of the orbit equation (Eq. (14)), in order to understand the
nature of perihelion shift of timelike bound orbits in Kerr
spacetime. In that approximation, we consider only small
values of eccentricity (ε), and therefore, we neglect second
and higher order terms of ε. With this approximation, we
show that in Kerr spacetime, negative precession of the time-
like bound orbits is forbidden, no matter how much far or
how much close the orbit is from the center.

Finally, we take a weak field approximation and we show
that the solutions of Kerr space time reduce to the solution of
Schwarzschild with the approximation a → 0. In this paper
and in [47,48], we show that negative precession of timelike
orbits is not possible in Kerr and Schwarzschild spacetimes
respectively. In [47,48], we also showed that naked singu-
larity models, such as JMN, JNW spacetimes admit both
negative and positive precession of timelike orbits.

As we know, GRAVITY and SINFONI collaborations are
continuously observing the stellar motions of ‘S’ stars around
the Milky-way galaxy center Sgr-A*. Hence, any evidence
of negative precession of any ‘S’ star can raise big question
on the existence of Kerr black hole at the Milky-way galaxy
center.

Of course, we have not scanned here the full space of
bound orbits around the Kerr black hole or the Kerr naked
singularity. Our analysis, however, clearly points that in the
classes of bound orbits we analysed, using the approxima-
tion and numerical techniques as we have stated, we have not
found any negative precession for the bound orbits in both
these cases. In particular, the case of Kerr black hole needs to
be analysed in more detail to make sure if it forbids the nega-
tive precession for the bound timelike trajectories always. If
that turns out to be the case, that will support the conjecture
that black holes never allow for the negative precession, how-
ever, naked singularities allow the same as shown by some of

the naked singularity spacetimes investigated as we pointed
out here.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited [Authors’ comment: The results were
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ciated data.]
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