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Abstract We consider a method for determining the QCD
strong coupling constant using fits of perturbative predictions
for event shape averages to data collected at the LEP, PETRA,
PEP and TRISTAN colliders. To obtain highest accuracy pre-
dictions we use a combination of perturbative O(α3

S) cal-
culations and estimations of the O(α4

S) perturbative coeffi-
cients from data. We account for non-perturbative effects
using modern Monte Carlo event generators and analytic
hadronization models. The obtained results show that the
total precision of the αS determination cannot be improved
significantly with the higher-order perturbative QCD correc-
tions alone, but primarily requires a deeper understanding of
the non-perturbative effects.

1 Introduction

Measurements using hadronic final states in e+e− annihila-
tion have provided detailed experimental tests of Quantum
Chromodynamics (QCD), the theory of the strong interac-
tion in the Standard Model. These measurements were based
on comparisons of moments and differential distributions of
event shapes or jet rates to perturbative predictions. As new
data are not foreseen in the near future, the progress in such
measurements depends wholly on improvements in the theo-
retical (and phenomenological) description of these observ-
ables. Moreover, in multiple QCD analyses of the LEP data in
the past, it was shown that the experimental uncertainties play
a relatively small role in comparison to the theory-related
uncertainties.

This situation raises some important questions. First of all,
would the increasingly precise perturbative QCD (pQCD)
calculations amended with resummation techniques be able
to improve the precision of the results in QCD studies without
any new data? And if not, what would be the limiting factors
for the precision of QCD studies in the future and what should
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be done to eliminate them? To answer these questions we
perform a QCD analysis with state-of-the-art pQCD calcula-
tions extended with estimations of higher-order corrections
not known at present.

Fully differential pQCD calculations for the production of
three partonic jets in e+e− hadronic annihilation are available
toO(α3

S) accuracy [1–6], which corresponds to next-to-next-
to-leading order (NNLO) in QCD perturbation theory for this
process. Four- and five-jet production [7–12], as well as the
total cross section [13] are also known including terms at
O(α3

S),
1 therefore it is possible to make predictions for any

infrared-safe observable at this level of accuracy. Although
higher-order corrections are presently not known, it is in prin-
ciple possible to estimate such corrections from data and
therefore to obtain “predictions” at O(α4

S). This approach is
obviously limited to cases of observables for which only a
small number of coefficients of the perturbative expansion
should be estimated, such as event shape moments. In this
paper we present an implementation of this approach with the
aim of assessing the impact of these terms on possible future
extractions of the strong coupling with exact predictions at
O(α4

S).
When confronting calculations based on QCD pertur-

bation theory (of any order) with data, it must be kept
in mind that although in e+e− annihilation strong interac-
tions occur only in the final state, nevertheless, the observed
quantities are affected by hadronization and power cor-
rections. These corrections must either be extracted from
Monte Carlo predictions or computed using analytic models.
Below, we consider both of these approaches for describ-
ing non-perturbative effects and perform simultaneous fits
of αS(MZ ) and the O(α4

S) perturbative coefficients to event

1 In the case of four- and five-jet production, O(α3
S) accuracy corre-

sponds to next-to-leading order (NLO) and leading order (LO) in per-
turbative QCD. However, NLO corrections to five-jet production [14]
(and up to seven-jet production in the leading color approximation [15])
are also known.
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shape moments (together with model parameters for ana-
lytic hadronization models) for thrust2 [16,17] and the C-
parameter [18,19].

Anticipating some of our findings, we observe a clear
discrepancy between results obtained with fits using Monte
Carlo and analytic hadronization models, even after the inclu-
sion of higher orders in pQCD and extending the analytic
models to O(α4

S). This implies that efforts to significantly
improve the overall precision of αS extractions in the future
must address not only the computation of higher-order pQCD
corrections, but also the refined modeling of non-perturbative
effects.

We expect that the presented analysis will provide valu-
able input for the planing of αS(MZ ) measurements and data
taking at future e+e− facilities.

2 Theory predictions

The n-th moment of an event shape variable O is defined by

〈On〉 = 1

σtot

∫ Omax

Omin

On dσ(O)

dO
dO,

where σtot stands for the total hadronic cross section and
[Omin, Omax] is the kinematically allowed range of the
observable O .

The fixed-order prediction for the n-th moment of O at a
reference renormalization scale μ = μ0, normalized to the
LO cross section σ0 for e+e− → hadrons reads:

1

σ0

∫ Omax

Omin

On dσ(O)

dO
dO = αS(μ0)

2π
A〈On〉

0 +
(

αS(μ0)

2π

)2
B〈On〉

0

+
(

αS(μ0)

2π

)3
C〈On〉

0 +
(

αS(μ0)

2π

)4
D〈On〉

0 + O(α5
S).

Throughout the paper we employ the MS renormalization
scheme and αS (without a superscript) always denotes the
strong coupling in this scheme. The coefficients A〈On 〉

0 , B〈On〉
0

and C 〈On〉
0 for moments of standard event shapes have been

known for some time [2,4]. In this paper, we use the CoL-
oRFulNNLO [6,20,21] approach to recompute these coeffi-
cients with high numerical precision, see Table 1.

This allows us to extend the extraction of the strong cou-
pling constant from these observables to N3LO with a simul-
taneous extraction of the perturbative coefficients D〈On 〉

0 from
the data.

2 More precisely, we consider the quantity τ ≡ 1 − T , where T is the
thrust.

However, the experimentally measured event shape
moments are normalized to the total hadronic cross section,
and the perturbative expansion of 〈On〉 is given by

〈On〉 = αS(μ0)

2π
Ā〈On〉

0 +
(

αS(μ0)

2π

)2

B̄〈On〉
0

+
(

αS(μ0)

2π

)3

C̄ 〈On〉
0 +

(
αS(μ0)

2π

)4

D̄〈On〉
0 + O(α5

S).

The relations between Ā〈On〉
0 , B̄〈On〉

0 , C̄ 〈On〉
0 , D̄〈On〉

0 and A〈On〉
0 ,

B〈On〉
0 , C 〈On〉

0 , D〈On〉
0 are straightforward to obtain using

σ0

σtot
= 1 − αS

2π
Atot +

( αS

2π

)2 (
A2

tot − Btot

)

−
( αS

2π

)3 (
A3

tot − 2AtotBtot + Ctot

)
+ O(α4

S),

and we find

Ā〈On〉
0 = A〈On〉

0 ,

B̄〈On〉
0 = B〈On〉

0 − AtotA
〈On〉
0 ,

C̄ 〈On〉
0 = C 〈On〉

0 − AtotB
〈On〉
0 +

(
A2

tot − Btot

)
A〈On〉

0 ,

D̄〈On〉
0 = D〈On〉

0 − AtotC
〈On〉
0 +

(
A2

tot − Btot

)
B〈On〉

0

−
(
A3

tot − 2AtotBtot + Ctot

)
A〈On〉

0 .

The coefficients Atot, Btot and Ctot are listed in Appendix A.
Finally, to perform a simultaneous fit of multiple data

points at different center-of-mass energies, we use the four-
loop running of αS(μ)

μ2 d

dμ2

αS(μ)

4π
= −

(
αS(μ)

4π

)2 ∑
n

βn

(
αS(μ)

4π

)n

, (1)

with β0 = (11CA − 2NF )/3, β1 = (34C2
A − 10CANF −

6CF NF )/3 andβ2 = (2857C3
A−1415C2

ANF−615CACF NF

+ 54C2
F NF + 79CAN 2

F+ +66CF N 2
F )/54. We are using

the customary normalization of TR = 1/2 for the color
charge operators, thus in QCD we have CA = Nc = 3 and
CF = (N 2

c − 1)/(2Nc) = 4/3, while NF denotes the num-
ber of light quark flavors. The corresponding dependence of
the perturbative coefficients Ā〈On〉, B̄〈On〉, C̄ 〈On〉 and D̄(n)

on scale read:

Ā〈On〉 = Ā〈On〉
0 ,

B̄〈On〉 = B̄〈On〉
0 + 1

2
Ā〈On〉

0 β0L ,

C̄ 〈On〉 = C̄ 〈On〉
0 + B̄〈On〉

0 β0L + 1

4
Ā〈On〉

0 (β1 + β2
0 L)L ,

123



Eur. Phys. J. C (2021) 81 :292 Page 3 of 14 292

Table 1 LO, NLO and NNLO
contributions to the moments of
event shapes. For the details on
the analytic calculation see
Appendix B

Coefficient This work Analytic Ref. [2] Ref. [4]

A〈(1−T )1〉
0 2.1034(1) 2.1034701 2.1035 2.10344(3)

B〈(1−T )1〉
0 44.995(1) 44.999(2) 44.99(5)

C 〈(1−T )1〉
0 979.6(6) 867(21) 1100(30)

A〈C1〉
0 8.6332(5) 8.6378902 8.6379 8.6378(1)

B〈C1〉
0 172.834(5) 172.85900 172.778(7) 172.8(3)

C 〈C1〉
0 3525(3) 3212(88) 4200(100)

A〈(1−T )2〉
0 0.19019(1) 0.1901961 0.1902 0.190190(5)

B〈(1−T )2〉
0 6.25943(7) 6.2595(4) 6.2568(4)

C 〈(1−T )2〉
0 175.17(5) 172(1) 182.9(2)

A〈C2〉
0 2.4316(1) 2.4316479 2.4317 2.43160(4)

B〈C2〉
0 81.1882(9) 81.184(5) 81.160(5)

C 〈C2〉
0 2231.7(6) 2220(12) 2332(2)

A〈(1−T )3〉
0 0.029875(2) 0.0298753 0.02988 0.029874(1)

B〈(1−T )3〉
0 1.12852(1) 1.1284(1) 1.1278(1)

C 〈(1−T )3〉
0 34.71(1) 35.3(2) 36.17(3)

A〈C3〉
0 1.07919(7) 1.0792137 1.0792 1.07919(3)

B〈C3〉
0 42.7709(4) 42.771(3) 42.752(3)

C 〈C3〉
0 1304.4(3) 1296(6) 1360.8(8)

A〈(1−T )4〉
0 0.0058583(6) 0.0058581 0.005858 0.0058576(3)

B〈(1−T )4〉
0 0.246380(4) 0.24637(3) 0.24619(5)

C 〈(1−T )4〉
0 8.142(3) 8.13(4) 8.447(8)

A〈C4〉
0 0.56849(4) 0.5685012 0.5685 0.56848(2)

B〈C4〉
0 25.8174(3) 25.816(2) 25.804(3)

C 〈C4〉
0 845.4(1) 843(3) 879.1(5)

A〈(1−T )5〉
0 0.0012948(1) 0.0012947 0.001295 0.0012946(9)

B〈(1−T )5〉
0 0.060085(1) 0.06009(1) 0.06003(2)

C 〈(1−T )5〉
0 2.1170(9) 2.109(9) 2.184(2)

A〈C5〉
0 0.32721(3) 0.3272163 0.3272 0.32720(1)

B〈C5〉
0 16.8743(2) 16.873(1) 16.865(3)

C 〈C5〉
0 586.9(1) 585(3) 607.4(4)

D̄〈On〉 = D̄〈On〉
0 + 3

2
C̄ 〈On〉

0 β0L + 1

2
B̄〈On〉

0

(
β1 + 3

2
β2

0 L

)
L

+1

8
Ā〈On〉

0

(
β2 + 5

2
β1β0L + β3

0 L
2
)
L , (2)

where we have L = ln(μ2/μ2
0).

We take into account the effect of non-vanishing b-quark
mass on the predictions for the A〈On〉 and B〈On〉 coefficient

by subtracting the fraction of b-quark events, rb(Q), from the
massless result and adding back the corresponding massive
prediction obtained with the Zbb4 [22] program,

A〈On〉 = A〈On〉
mb=0(1 − rb(Q)) + rb(Q)A〈On〉

mb �=0,

B〈On〉 = B〈On〉
mb=0(1 − rb(Q)) + rb(Q)B〈On〉

mb �=0.
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Table 2 Available measurements and data used in the analysis. Here we use τ ≡ (1 − T )

Source Measured Used
Observables Points,

√
s range ( GeV) Observables Points,

√
s range ( GeV)

ALEPH [26] 〈τ 1〉 1, [133] 〈τ 1〉 1, [133]
ALEPH [27] 〈τ 1〉 1, [91] 〈τ 1〉 1, [91]
ALEPH [28] 〈τ 1〉 9, [91, 206] 〈τ 1〉 9, [91, 206]
AMY [29] 〈τ 1〉 1, [55] 〈τ 1〉 1, [55]
DELPHI [25] 〈τ 1,2,3〉 15, [91, 183] 〈τ 1〉 5, [91, 183]
DELPHI [24] 〈τ 1〉 15, [45, 202] 〈τ 1〉 11, [45, 202]
HRS [30] 〈τ 1〉 1, [29] 〈τ 1〉 1, [29]
JADE [23] 〈τ 1,2,3,4,5〉 30, [14, 43] 〈τ 1〉 4, [34, 43]
L3 [31] 〈τ 1〉 1, [91] 〈τ 1〉 1, [91]
L3 [32] 〈τ 1,2〉 30, [41, 206] 〈τ 1〉 15, [41, 206]
MARK [33] 〈τ 1〉 1, [89] 〈τ 1〉 1, [89]
MARK [34] 〈τ 1〉 1, [29] 〈τ 1〉 1, [29]
MARKII [33] 〈τ 1〉 1, [89] 〈τ 1〉 1, [89]
OPAL [23] 〈τ 1,2,3,4,5〉 60, [91, 206] 〈τ 1〉 12, [91, 206]
TASSO [35] 〈τ 1〉 4, [14, 44] 〈τ 1〉 2, [35, 44]
ALEPH [27] 〈C1〉 1, [91] 〈C1〉 1, [91]
DELPHI [24] 〈C1〉 15, [45, 202] 〈C1〉 11, [45, 202]
DELPHI [25] 〈C1,2,3〉 12, [133, 183] 〈C1〉 4, [133, 183]
JADE [23] 〈C1,2,3,4,5〉 30, [14, 43] 〈C1〉 4, [34, 43]
L3 [31] 〈C1〉 1, [91] 〈C1〉 1, [91]
L3 [32] 〈C1,2〉 18, [130, 206] 〈C1〉 9, [130, 206]
OPAL [23] 〈C1,2,3,4,5〉 60, [91, 206] 〈C1〉 12, [91, 206]

3 Data sets

For the performed analysis, one minus thrust τ ≡ (1 − T )

and the C-parameter (C) were selected. The selection of
these particular observables is motivated by the abundance
of available measurements. More specifically, in this analy-
sis we considered data sets from the ALEPH, AMY, DEL-
PHI, HRS, JADE, L3, MARK, MARKII, OPAL and TASSO
experiments, see Table 2 for details.

As the theory predictions for all the measured event shape
moments were calculated in the CoLoRFulNNLO frame-
work and the hadronization corrections can be obtained con-
sistently for all the event shape moments, the most complete
analysis of the data might include simultaneously all the mea-
sured moments.

However, as most of the moments of the event shapes
are quite strongly correlated [23], a simultaneous analysis of
all available data would require taking these correlations into
account. Unfortunately, very few data sets contain this crucial
information and therefore, we have limited our analysis only
to the first moments, i.e. averages of the event shapes. From
the two available sets of measurements with the same data
in the range

√
s = 133−183 GeV, available from Ref. [24]

and Ref. [25] the measurements from Ref. [25] were used in
the analysis.

4 Modeling of non-perturbative corrections

As discussed in the Introduction, the modeling of non-
perturbative corrections is essential in order to perform a
meaningful comparison of theoretical predictions with data.
One option for obtaining the hadronization corrections is to
extract them from Monte Carlo simulations. Recent exam-
ples of this approach include the studies of the energy-energy
correlation [36] and the two-jet rate [37].

Some previous extractions of the strong coupling from
event shape moments [23,38] and event shape distributions
[39] have used an analytic hadronization model based on the
dispersive approach to power corrections [40–42]. An impor-
tant ingredient of this model is the relation between the strong
coupling defined in the MS scheme and the effective soft
coupling αCMW

S in the Catani–Marchesini–Webber (CMW)
scheme. As the extension of αCMW

S beyond NLL accuracy
is believed not to be unique [43,44], the coefficients in this
relation are “scheme-dependent”. However, in one particular
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proposal, the relation between αS and αCMW
S has recently

been computed up to O(α4
S) accuracy [44], which allows us

to implement a consistent analytic model of hadronization
corrections at this order in the perturbative expansion.

Below, we pursue both options and use Monte Carlo
tools as well as the analytic approach to estimate the non-
perturbative corrections.

4.1 Monte Carlo hadronization models

In this work we use the Monte Carlo event generation setups
similar to those in previous comparable studies [36]. We
made use of the Herwig7.2.0 [45] and Sherpa2.2.8
[46] Monte Carlo event generators (MCEGs) with similar
setups for perturbative calculations, but different hadroniza-
tion models. The QCD matrix elements for the e+e− →
Z/γ → 2, 3, 4, 5 parton processes were generated using
MadGraph5 [47] and the OpenLoops [48] one-loop
library. The 2-parton final state process was computed at
NLO accuracy in perturbative QCD. The generated events
were hadronized using the Lund hadronization model [49]
or the cluster hadronization model [50]. In the follow-
ing, the setup labelled as HL denotes predictions com-
puted with Herwig7.2.0 employing the Lund hadroniza-
tion model [49], HC denotes Herwig7.2.0 predictions
obtained with the cluster hadronization model [50], and
finally SC denotes results obtained using Sherpa2.2.8
with the cluster hadronization model [51].

For the study, predictions of event shape moments were
calculated from MC generated events at hadron and par-
ton levels (〈On〉MC hadrons and (〈On〉MC partons). To take
into account that the presence of a shower cut-off Q0 ≈
O(1 GeV) in Monte Carlo programs affects the event shape
distributions (e.g. see Refs. [52,53]) both parton and hadron
level MC predictions were calculated with several differ-
ent values of the parton shower cut-offs and extrapolated
to Q0 → 0 GeV.

Figure 1 shows the final results obtained with the various
MCEG setups after extrapolation to Q0 = 0 GeV, together
with the experimental measurements. The hadron and par-
ton level MC predictions seen in Fig. 1 provide reasonable
descriptions of the data as well as the NNLO perturbative
results for a wide range of center-of-mass energies. How-
ever, the MC predictions at lowest

√
s show non-physical

behavior, i.e. 〈On〉 increases with
√
s for the parton level

results. In order to analyze only the data that can be ade-
quately described by the Monte Carlo modeling, we exclude
measurements with

√
s < 29 GeV from the analysis. In prac-

tice this criterion is much weaker than a requirement that MC
matches the data well or that the subleading power correc-
tions to the analytic hadronization models are small. How-
ever, this choice, in addition to retaining as much of the data as
is reasonable, serves to highlight the discrepancies between

Fig. 1 Data and predictions by MCEGs extrapolated to Q0 = 0 GeV.
The NNLO result was computed using αS(MZ ) = 0.118

Fig. 2 Hadronization corrections extracted from MC generated sam-
ples after extrapolation to Q0 = 0 GeV and the hadronization correc-
tions from the A0 scheme calculated as ratios of the hadron and parton
level predictions usingαS(MZ ) = 0.118,α0(μI ) = 0.5 andM = 1.49.
The hadronization corrections from the AT - and cusp-schemes are not
shown, but these very closely follow the hadronization corrections from
the A0-scheme

the Monte Carlo and analytic hadronization models in regions
where hadronization effects are most pronounced, i.e. at low
energies.

Finally, the correction of theory predictions for hadroniza-
tion was implemented in the analysis as follows,

〈On〉corrected = 〈On〉theory × 〈On〉MC hadrons, Q0=0 GeV

〈On〉MC partons, Q0=0 GeV
.

The hadronization correction factors for different center-of-
mass energies, observables and MC setups are shown in
Fig. 2.
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4.2 Analytic hadronization models

The dispersive model of analytic hadronization corrections
for event shapes in e+e− annihilation has been worked out in
detail in Refs. [40–42]. In this model, hadronization correc-
tions simply shift the perturbative event shape distributions,

dσhadrons(O)

dO
= dσpartons(O − aOP)

dO
, (3)

where the power correctionP is universal for all event shapes,
while the aO are specific, known constants, e.g. a1−T = 2
and aC = 3π for 1−T and theC-parameter. Inserting Eq. (3)
into the definition of the moments, one obtains the non-
perturbative predictions for event shape moments. In par-
ticular, the effect of hadronization corrections on the average
is additive,

〈O1〉hadrons = 〈O1〉partons + aOP,

where 〈O1〉partons is the value obtained in fixed-order pertur-
bation theory as described in Sect. 2. Some deviations from
this simple model were discussed very recently in Ref. [54].

Finally, we must compute the power correctionP atO(α4
S)

accuracy. The perturbative ingredients of this calculation are
the running of the strong coupling in the MS scheme and
the relation between the coupling defined in the MS and the
CMW schemes. This relation takes the following generic
form

αCMW
S = αS

[
1 + αS

2π
K +

( αS

2π

)2
L

+
( αS

2π

)3
M + O(α4

S)

]
. (4)

The value of the K coefficient has been known to coincide
with the one-loop cusp anomalous dimension for a long time
and hence it may be tempting to assume that the cusp anoma-
lous dimension provides a sensible definition of the CMW
coupling also beyondO(α2

S). However, this assumption turns
out to be incorrect3 and as mentioned above, it is believed that
there is no unique extension of αCMW

S beyond NLL accuracy.
Nevertheless, recently several proposals have been made for
the definition of the effective soft coupling in the literature
[43,44]. In particular, Ref. [44] introduces the effective soft-
gluon coupling ACMW

i as

ACMW
i (αS) = Ci

αCMW
S

π
= Ci

αS

π

(
1 + αS

2π
K + · · ·

)
,

(here i denotes the type of radiating parton, so Cq = CF and
Cg = CA) and proposes two different prescriptions for defin-

3 A simple way to see that the equivalence between the coefficients in
Eq. (4) and the cusp anomalous dimensions cannot hold in general is
to realise that the latter depend on the factorization scheme of collinear
singularities while the former should not.

ing this coupling beyond NLL accuracy, denoted by A0,i and
AT,i .4 We will refer to these cases as the “A0-scheme” and
the “AT -scheme” below. We note that the complete expres-
sion for the M coefficient is currently not known in the AT -
scheme, hence in our analysis we approximate this coefficient
with its value in the A0-scheme and set MT = M0. In order
to facilitate the comparison of our results with previous work
[38], we also define the “cusp-scheme”, in which we simply
set the K , L and M coefficients of Eq. (4) equal to the appro-
priate cusp anomalous dimension. In the following, we will
denote the results obtained in the A0-scheme by A0, in the
AT -scheme by AT and in the cusp-scheme by Acusp. The
explicit expressions for the K , L and M coefficients in all
three schemes are presented in Appendix C.

Finally, the power correction takes the following form up
to N3LO,

P(αS, Q, α0) = 4CF

π2 M × μI

Q
×

{
α0(μI ) −

[
αS(μR)

+
(
K + β0

(
1 + ln

μR

μI

))
α2
S(μR)

2π

+
(

2L + (4β0 (β0 + K ) + β1)

(
1 + ln

μR

μI

)

+2β2
0 ln2 μR

μI

)
α3
S(μR)

8π2

+ (
4M + (

2β0 (12β0(β0 + K ) + 5β1) + β2

+4β1K + 12β0L
) (

1 + ln
μR

μI

)

+ β0(12β0(β0 + K ) + 5β1) ln2 μR

μI

+4β3
0 ln3 μR

μI

)
α4
S(μR)

32π3

]}
, (5)

where μI is the scale at which the perturbative and non-
perturbative couplings are matched in the dispersive model
and M is the so-called Milan factor [42] with an estimated
value of Mest. ± δMest. = 1.49 ± 0.30 [38,42]. α0(μI )

corresponds to the first moment of the effective coupling
below the scale μI

α0(μI ) = 1

μI

∫ μI

0
dμαCMW (μ),

and it is a non-perturbative parameter of the model. Following
the usual choice, we will set μI = 2 GeV. We note that
the value of α0(μI ) is in principle scheme-dependent, i.e. it
depends on the precise relation between the strong coupling
in the MS and CMW schemes. In contrast, αS(μR) always
refers to the value of the strong coupling in the MS scheme,
at scale μR .

4 The definition of the soft coupling proposed in Ref. [43] is equivalent
to AT,i of Ref. [44].
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Before moving on, let us make two comments regard-
ing Eq. (5). First, it can be argued (see e.g. the discussion
in Ref. [39]) that the L and M coefficients that appear in
P(αS, Q, α0) do not coincide precisely with those in Eq. (4),
but receive modifications due to the non-inclusive nature of
the observables we are studying. As such, L and M in Eq. (5)
might be different for different observables. Second, beyond
NLO, there is some doubt that the non-inclusive corrections
parametrized by the Milan factorM can still be captured by a
simple overall multiplicative factor in P(αS, Q, α0). Never-
theless, here we take the pragmatic viewpoint that Eq. (5) pro-
vides a reasonable model for non-perturbative corrections.
In particular, as in other analyses [38,39], the Milan factor
appears as a multiplicative constant. However, the applicabil-
ity of this approach should be investigated in detail in future
studies, either when new data or more precise estimations of
the Milan factor become available.

5 Fit procedure and systematic uncertainties

The values of αS were determined in the optimization pro-
cedures using the MINUIT2 [55,56] program and the mini-
mized function

χ2(αS) =
all data sets∑

i

χ2
i (αS), (6)

where for data set i we have χ2
i (αS) = (D−P(αS))V−1(D−

P(αS))
T , with D standing for the vector of data points, P(αS)

for the vector of calculated predictions and V for the covari-
ance matrix of D. In this analysis the covariance matrix V
was diagonal with the values of the diagonal elements cal-
culated by adding the statistical and systematic uncertainties
in quadrature for every measurement.

For all the fits with MC hadronization models the central
results for αS(MZ ) (as well as the D〈On〉 coefficients in the
N3LO fits) were extracted with the HL setup. The uncertainty
on the fit result was estimated using the χ2 + 1 criterion
as implemented in MINUIT2 (exp.). The systematic effects
related to the modeling of hadronization with MCEGs were
estimated as the difference of results obtained with HL and
HC setups (hadr.). To estimate the systematic effects related
to the choice of renormalization scale, the latter was varied by
a factor of two in both directions (scale). The scale variation
at N3LO was performed with the perturbative coefficients
D〈On〉 fixed to their values obtained in the nominal fit. The
uncertainty was estimated as half of the difference between
the maximal and minimal obtained values among the three
results.

When using the analytic hadronization model (with any of
the three schemes discussed above), in addition to αS(MZ )

and D〈On〉, the quantities α0(μI ) and M were also treated as

fit parameters to be extracted from data. Although the value of
the Milan factor is in principle fixed by a theoretical calcula-
tion, including it as a constrained parameter in the fit provides
a way of taking into account its uncertainty. For the fits with
a constrained Milan factor a term (M − Mest.)

2/(δMest.)
2

is added to Eq. (6).
As previously, the χ2+1 criterion was used to estimate the

fit uncertainty (exp.), while the systematic effects of missing
higher-order terms were estimated using the same renormal-
ization scale variation procedure as for MC hadronization
models (scale.). In particular, when varying the scale to esti-
mate the related αS(MZ ) (α0(μI )) uncertainties, the D〈On〉
coefficients, α0(μI ) (αS(MZ )) and M were fixed to the val-
ues obtained in the nominal fits.

6 Results and discussion

The results of the NNLO and N3LO fits are presented in
Tables 3 and 4, while the predictions of the N3LO fits for
individual energy points are shown in Fig. 3.

The presented NNLO results for αS(MZ ) obtained with
both MC and analytic hadronization models are in good
agreement between the fits to 〈(1 − T )1〉 and 〈C1〉, which
can be viewed as a check of the internal consistency of the
αS(MZ ) extraction method at NNLO. However, similarly to
previous studies [38] which used less data,5 a large discrep-
ancy between the results obtained with the MC hadronization
model and the analytic hadronization models are seen.6

Turning to α0(2 GeV) still at NNLO, we recall that this
parameter is scheme-dependent, so the fitted values in the
three schemes should not be directly compared to each other.
Nevertheless, we see that the choice of scheme has only a
small numerical impact on the extracted values of α0(2 GeV).
The values of the Milan parameterM, constrained in fits, are
seen to be unaffected by the choice of scheme and agree with
the theoretical prediction within the somewhat large fit uncer-
tainty. Furthermore, the extracted values of both α0(2 GeV)

and M obtained form the 〈(1 − T )1〉 and 〈C1〉 observables
agree well with each other.

Turning to the N3LO results, we see that the overall pic-
ture is quite similar to the one at NNLO: the fits for αS(MZ )

are in good agreement between the two observables for both
MC and analytic hadronization models. The extracted values

5 The analysis of Ref. [38] employed several other event shape variables
besides thrust and the C-parameter (as well as higher moments of event
shapes), but the present study uses a more extensive data set for the
observables considered here.
6 In previous studies [38] the results obtained with the MC hadroniza-
tion model were systematically higher than those obtained with the
analytic hadronization model, while in the presented study an opposite
relation is seen. This difference can be attributed to differences in the
used data sets and MC setups.
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Table 3 Results of the
extraction analyses using the
〈(1 − T )1〉 observable

Analysis Results from analysis of 〈(1 − T )1〉 data

NNLO, αS(MZ ) = 0.11459 ± 0.00022(exp.) ± 0.00024(hadr.) ± 0.0025(scale)

MC had. χ2/ndof = 324.3/64

HL

NNLO, αS(MZ ) = 0.11927 ± 0.00125(exp.) ± 0.0018(scale)

analytic χ2/ndof = 77.0/62

had., A0 α0(2 GeV) = 0.48 ± 0.03(exp.) ± 0.02(scale)

M = 1.53 ± 0.30(exp.)(constrained)

NNLO, αS(MZ ) = 0.11906 ± 0.00126(exp.) ± 0.0017(scale)

analytic χ2/ndof = 76.9/62

had., AT α0(2 GeV) = 0.48 ± 0.03(exp.) ± 0.02(scale)

M = 1.53 ± 0.29(exp.)(constrained)

NNLO, αS(MZ ) = 0.11940 ± 0.00125(exp.) ± 0.0019(scale)

analytic χ2/ndof = 77.1/62

had., Acusp α0(2 GeV) = 0.47 ± 0.03(exp.) ± 0.025(scale)

M = 1.53 ± 0.30(exp.)(constrained)

N3LO, αS(MZ ) = 0.14092 ± 0.00116(exp.) ± 0.00111(hadr.) ± 0.0090(scale)

MC had. χ2/ndof = 79.2/63

HL D〈(1−T )1〉 = −7.51 × 104 ± 1.14 × 103(exp.)

N3LO, αS(MZ ) = 0.12911 ± 0.00177(exp.) ± 0.0123(scale)

analytic χ2/ndof = 76.3/61

had., A0 D〈(1−T )1〉 = −9.36 × 104 ± 1.33 × 104(exp.)

α0(2 GeV) = 0.89 ± 0.07(exp.) ± 0.29(scale)

M = 1.50 ± 0.17(exp.)(constrained)

N3LO, αS(MZ ) = 0.12665 ± 0.00193(exp.) ± 0.0096(scale)

analytic χ2/ndof = 76.3/61

had., AT D〈(1−T )1〉 = −7.97 × 104 ± 1.52 × 104(exp.)

α0(2 GeV) = 0.84 ± 0.07(exp.) ± 0.23(scale)

M = 1.50 ± 0.19(exp.)(constrained)

N3LO, αS(MZ ) = 0.13011 ± 0.00171(exp.) ± 0.0137(scale)

analytic χ2/ndof = 76.3/61

had., Acusp D〈(1−T )1〉 = −9.87 × 104 ± 1.26 × 104(exp.)

α0(2 GeV) = 0.91 ± 0.07(exp.) ± 0.31(scale)

M = 1.50 ± 0.17(exp.)(constrained)

of α0(2 GeV) and M are also consistent between the deter-
minations based on 〈(1 − T )1〉 and 〈C1〉. However, for all
of these quantities we find rather large uncertainties, primar-
ily related to the insufficient amount and quality of data and
the extraction method itself. Nevertheless, these uncertain-
ties are not very much larger than those from some classical
αS(MZ ) extraction analyses in the past [57]. Moreover, the
obtained values of both D〈(1−T )1〉 and D〈C1〉 are in reasonable
agreement between fits using MC and analytic hadronization
models. This demonstrates the viability of the extraction of
the higher-order coefficients D〈On〉, once a large amount of
precise and consistent data will be available, e.g. from CEPC

[58] or FCC-ee [59]. For this extraction the precise high-
energy data would be especially valuable. Finally, in Fig. 4
we present the extracted values of αS(MZ ) and α0(2 GeV)

at NNLO and N3LO accuracy in the A0-scheme. The results
at each perturbative order are quite consistent across the two
observables and the fits for 〈(1 − T )1〉 and 〈C1〉 have rather
similar precision. However, the fits at N3LO clearly prefer
larger values for both αS(MZ ) and α0(2 GeV).

At the same time, the discrepancy between results obtained
with the MC hadronization model and the analytic hadroniza-
tion model remains in place at N3LO accuracy. This sug-
gests that the discrepancy pattern has a fundamental origin
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Table 4 Results of the extraction analyses using the 〈C1〉 observable

Analysis Results from analysis of 〈C1〉 data

NNLO, αS(MZ ) = 0.11298 ± 0.00020(exp.) ± 0.00019(hadr.) ± 0.0022(scale)

MC had. χ2/ndof = 436.0/41

HL

NNLO, αS(MZ ) = 0.11958 ± 0.00120(exp.) ± 0.0012(scale)

analytic χ2/ndof = 41.2/39

had., A0 α0(2 GeV) = 0.43 ± 0.02(exp.) ± 0.01(scale)

M = 1.57 ± 0.29(exp.)(constrained)

NNLO, αS(MZ ) = 0.11934 ± 0.00122(exp.) ± 0.0011(scale)

analytic χ2/ndof = 41.0/39

had. AT α0(2 GeV) = 0.43 ± 0.02(exp.) ± 0.01(scale)

M = 1.57 ± 0.29(exp.)(constrained)

NNLO, αS(MZ ) = 0.11973 ± 0.00119(exp.) ± 0.0013(scale)

analytic χ2/ndof = 41.3/39

had., Acusp α0(2 GeV) = 0.42 ± 0.02(exp.) ± 0.01(scale)

M = 1.57 ± 0.29(exp.)(constrained)

N3LO, αS(MZ ) = 0.14120 ± 0.00096(exp.) ± 0.00097(hadr.) ± 0.0100(scale)

MC had. χ2/ndof = 40.8/40

HL D〈C1〉 = −3.10 × 105 ± 3.21 × 103(exp.)

N3LO, αS(MZ ) = 0.13021 ± 0.00132(exp.) ± 0.0176(scale)

analytic χ2/ndof = 39.7/38

had. A0 D〈C1〉 = −4.12 × 105 ± 4.21 × 104(exp.)

α0(2 GeV) = 0.86 ± 0.05(exp.) ± 0.285(scale)

M = 1.50 ± 0.15(exp.)(constrained)

N3LO, αS(MZ ) = 0.12778 ± 0.00142(exp.) ± 0.0134(scale)

analytic χ2/ndof = 39.6/38

had. AT D〈C1〉 = −3.62 × 105 ± 4.68 × 104(exp.)

α0(2 GeV) = 0.81 ± 0.05(exp.) ± 0.24(scale)

M = 1.50 ± 0.16(exp.)(constrained)

N3LO, αS(MZ ) = 0.13119 ± 0.00128(exp.) ± 0.0193(scale)

analytic χ2/ndof = 39.7/38

had. Acusp D〈C1〉 = −4.31 × 105 ± 4.05 × 104(exp.)

α0(2 GeV) = 0.88 ± 0.05(exp.) ± 0.305(scale)

M = 1.50 ± 0.14(exp.)(constrained)

and would hold even in future analyses, regardless of the
availability of the exact N3LO predictions. Consequently,
the improvement of the hadronization modeling and a better
understanding of hadronization itself is more important for
increasing the precision of αS(MZ ) extractions than the cal-
culation of perturbative corrections beyond NNLO. In order
to achieve this better understanding and improved modeling
of hadronization, in the future it would be important to per-
form dedicated studies using observables strongly affected by
hadronization, e.g. measurements of the hadronic final state

in future e+e− experiments at
√
s ≈ 20−50 GeV performed

with radiative events or in dedicated collider runs.

7 Conclusions

The aim of the present analysis was to assess the factors that
will determine the precision of QCD analyses of e+e− data
after the recent and foreseen rapid developments of QCD
calculation techniques and the appearance of even more pre-
cise theoretical predictions. To do this, we have performed an
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Fig. 3 Data and fits obtained with different hadronization models. All
available data points from Table 2 are shown

Fig. 4 The values of αS(MZ ) and α0(2 GeV) obtained from the NNLO
and N3LO fits with analytic hadronization model in theA0 scheme. The
contours correspond to 1-, 2- and 3 standard deviations obtained in the
fit. Systematic uncertainties are not included

extraction of the strong coupling αS(MZ ) from averages of
event shapes 〈(1 − T )1〉 and 〈C1〉 and found that the results
obtained using NNLO predictions and analytic hadronization
corrections based on the dispersive model are consistent with
the last PDG average α(MZ )PDG2020 = 0.1179 ± 0.0010.

Furthermore, we considered a method for extracting
αS(MZ ) at N3LO precision in perturbative QCD, employing
exact NNLO predictions and estimations of the N3LO cor-
rections from the data. The method produced results which

are compatible with the current world average within the
somewhat large uncertainties, e.g.

αS(MZ )N
3LO+A0 = 0.12911 ± 0.00177(exp.) ± 0.0123(scale)

from the 〈(1 − T )1〉 data. The obtained precision can
be increased with more high-quality data from future
experiments. For the extraction, Monte Carlo and analytic
hadronization models were used, the latter being extended
to N3LO for the first time. The comparison of the results
for these models suggests that extractions of αS(MZ ) in
future analyses will be strongly affected by the modeling
of hadronization effects even when the exact higher-order
corrections will be included. However, the improvements in
the modeling of high-energy physics phenomena by MCEGs
in the recent decades were closely tied to the experimen-
tal measurements performed at the LEP, HERA and LHC
colliders and therefore had limited impact on the descrip-
tion of phenomena at lower energies. As a consequence, the
advances in modeling of particle collisions at lower energies
and understanding of hadronization can be expected only
with the availability of new measurements in the correspond-
ing energy ranges.
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Appendix A: Perturbative coefficients Atot, Btot and Ctot

In this Appendix, we recall the total cross section, σtot, of
electron-positron annihilation into hadrons. In massless QCD
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with NF number of light flavors we have [13],

σtot = σ0

[
1 + αS

2π

1
Atot +

( αS

2π

)2
Btot+

+
( αS

2π

)3
Ctot + O(α4

S)

]
, (7)

with

Atot = 3

2
CF ,

Btot = CF

[(
123

8
− 11ζ3

)
CA − 3

8
CF −

(
11

4
− 2ζ3

)
NF

]
,

Ctot = CF

[(
90445

432
− 2737

18
ζ3 − 55

3
ζ5

)
C2

A

−
(

127

8
+ 143

2
ζ3 − 110ζ5

)
CACF − 69

16
C2
F

−
(

1940

27
− 448

9
ζ3 − 10

3
ζ5

)
CANF

−
(

29

16
− 19ζ3 + 20ζ5

)
CF NF

+
(

151

27
− 38

9
ζ3

)
N 2
F − π2

8

(
11

3
CA − 2

3
NF

)2 ]

+ (
∑

Q f )
2

3
∑

Q2
f

dabcdabc

16

(
22

3
− 16ζ3

)
.

We recall that we use TR = 1/2 and so CA = Nc = 3,
CF = (N 2

c − 1)/(2Nc) = 4/3 and dabcdabc = 40/3. Fur-
thermore, Q f denotes the electric charge of quarks and NF

is the number of light quark flavors.

Appendix B: Analytic calculations of the perturbative
coefficients for the event shape moments

The LO analytic results for 〈(1 − T )n〉, i.e. A〈(1−T )n〉
0 use the

calculations from Ref. [60] and read

A〈(1−T )1〉
0 = CF

(
−3

4
ln(3) − 1

18
+

+π2

3
+ 4Li2(3/2) + 2 ln(2)2

)
= 2.1034701 . . . ,

A〈(1−T )2〉
0 = CF

(
−9

4
ln(3) + 17

108
+

+π2

3
+ 4Li2(3/2) + 2 ln(2)2

)
= 0.1901961 . . . ,

A〈(1−T )3〉
0 = CF

(
−83

32
ln(3) + 56

135
+

+π2

3
+ 4Li2(3/2) + 2 ln(2)2

)
= 0.0298753 . . . ,

A〈(1−T )4〉
0 = CF

(
−649

240
ln(3) + 1259

2430
+

+π2

3
+ 4Li2(3/2) + 2 ln(2)2

)
= 0.0058581 . . . ,

A〈(1−T )5〉
0 = CF

(
−527

192
ln(3) + 45667

81648
+

+π2

3
+ 4Li2(3/2) + 2 ln(2)2

)
= 0.0012947 . . . .

The analytic result for A〈C1〉
0 has been known for a long

time [61]. This result, as well as the results for the higher
moments can be also obtained with a direct integration, e.g.
using the calculations from Ref. [62]. These read:

A〈C1〉
0 = CF

(
−33 + 4π2

)
= 8.6378901 . . . ,

A〈C2〉
0 = CF

(
594 − 60π2

)
= 2.4316479 . . . ,

A〈C3〉
0 = CF

(
−6750 + 684π2

)
= 1.0792137 . . . ,

A〈C4〉
0 = CF

(
65088 − 26379

4
π2

)
= 0.5685012 . . . ,

A〈C5〉
0 = CF

(
−570024 + 1848177

32
π2

)
= 0.327216 . . . .

The NLO coefficient B〈C1〉
0 was calculated for the first time

using the analytic expression for the energy-energy correla-
tions (EEC) from Ref. [63] and the identity on the event level
〈C1〉 = 3

2

∫ 1
−1 EEC(θ) sin2 θd(cosθ) and we find:

B〈C1〉
0 = CF NFTR

(
18759

140
− 7π2 − 2728ζ3

35

)

+ C2
F

(
−8947

224
+ 101π2

24
+ 2π4

15
− 201ζ3

7

)

+ CACF

(
−209821

840
+ 247π2

18
− 8π4

15
+ 7057ζ3

35

)

= 172.85901 . . . .

The results that account for non-zero quark masses are
not known analytically even at LO, however the coefficient

A〈C1〉
mb �=0 could be derived in a closed from using the results for

EECmb �=0 from Refs. [64,65] or the results for the dC
dσ

∣∣
mb �=0

from Ref. [62].
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Appendix C: The K , L and M coefficients in different
schemes

The K , L and M coefficients in the cusp-scheme are sim-
ply given by the one-, two- and three-loop cusp anomalous
dimensions (for quarks) and read [66–71]:

Kcusp = CA

(
67

18
− π2

6

)
− 5

9
NF ,

Lcusp = C2
A

(
245

24
− 67π2

54
+ 11ζ3

6
+ 11π4

180

)

+ CF NF

(
− 55

24
+ 2ζ3

)

+ CANF

(
− 209

108
+ 5π2

27
− 7ζ3

3

)
− 1

27
N 2
F ,

Mcusp = 3

128
(20702 − 5171.9NF + 195.5772N 2

F

+ 3.272344N 3
F ).

The K , L and M coefficients in the A0-scheme read [43,
44]:

K0 = Kcusp,

L0 = Lcusp + C2
A

(
77ζ3

6
− 1111

81

)

+ CANF

(
−11π2

27
+ 356

81
− 7ζ3

3

)
+ N2

F

(
π2

27
− 28

81

)
,

M0 = Mcusp + C3
A

(
121π2ζ3

26
− 21755ζ3

108
+ 66ζ5 + 847π4

2160

−41525π2

1944
+ 3761815

23328

)
+ C2

ANF

(
−11π2ζ3

18
+ 6407ζ3

108

−12ζ5 − 11π4

54
+ 9605π2

972
− 15593

243

)

+ CACF NF

(
136ζ3

9
+ 11π4

180
+ 55π2

72
− 7351

288

)

+ CAN
2
F

(
−179ζ3

54
+ 13π4

540
− 695π2

486
+ 13819

1944

)

+ CF N
2
F

(
−19ζ3

9
− π4

90
− 5π2

36
+ 215

48

)

+ N3
F

(
−2ζ3

27
+ 5π2

81
− 116

729

)
.

The K , L and M coefficients in the AT -scheme read [44]:

KT = Kcusp,

LT = Lcusp + C2
A

(
77ζ3

6
− 111

81

)
− CANF

(
7ζ3

3
− 356

81

)

− 28

81
N 2
F .

We remind the reader that the complete expression for M is
currently not known in the AT -scheme, hence as an approxi-
mation, we set MT = M0 in this analysis. However, we hope
that in the future it will be possible to extend the calculations
in the Ref. [44] to higher orders and calculate MT explicitly.
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