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Abstract We study an interesting alternative of modified
gravity theory, namely, the unimodular f (R, T ) gravity in
which R is the Ricci scalar and T is the trace of the stress–
energy tensor. We study the viability of the model by using
the energy conditions. We discuss the strong, weak, null and
dominant energy conditions in terms of deceleration, jerk
and snap parameters. We investigate energy conditions for
reconstructed unimodular f (R, T ) models and give some
constraints on the parametric space of the model. We observe
that by setting appropriately free parameters, energy condi-
tions can be satisfied. Furthermore, we study the stability of
the solutions in perturbations framework. In this case, we
investigate stability conditions for de Sitter and power law
solutions and we examine viability of cosmological evolu-
tion of these perturbations. The results show that for some
values of the input parameters, for which energy conditions
are satisfied, de Sitter and power-law solutions may be stable.

1 Introduction

Observations of type Ia Supernova(SN Ia) indicate that
the universe currently is in a phase of positively acceler-
ated expansion [1–5]. General Relativity (GR) based on the
Einstein–Hilbert action can not explain the universe expan-
sion in the early and late time. From a Quantum Field Theory
(QFT) viewpoint, general relativity does not work as a fun-
damental theory. Therefore, it is reasonable to modify GR
at the large and short distance. The simplest model which
can explain the accelerated expansion of universe is �CDM
model that was originally introduced into general relativity
by Einstein [6]. However, there are several problems in this
model including fine tuning problem, coincidence problem
and lack of dynamics for �. In principle, quantum field the-
oretical models predict that the cosmological constant, orig-
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inating from the vacuum expectation value of certain quan-
tum fields, is 60–120 orders higher in magnitude, comparison
to the observed cosmological constant. In general relativity
the cosmological constant is added by hand in the Einstein–
Hilbert action, so essentially there is no intrinsic mechanism
in the theory that can dynamically induce the cosmologi-
cal constant. Consequently, for solving these problems many
theories have been suggested such as scalar field models,
modified gravity theories and extra dimension models which
provide the late time cosmic acceleration. One of the popu-
lar models to describe the cosmic acceleration is the f (R)

modified gravity model where f is an arbitrary function of
Ricci scalar R. This theory extensively studied and has the
interesting feature [7–15]. This model can explain the early
inflation as well as the late time acceleration without neces-
sity to introduce exotic matter. A generalization of f (R) is
included an arbitrary coupling between matter and geom-
etry. The non-minimal coupling of Ricci scalar and matter
Lagrangian density was studied in [16–22]. In [23] a mod-
ification of general gravity was proposed by including cou-
pling of an arbitrary function of the Ricci scalar with the
trace of stress–energy tensor T , f (R, T ) gravity. The cos-
mological aspects of this model were studied in [24–26]. The
gravitational baryogenesis mechanism for this model have
been studied in [27]. In [24], the author show the transition
from matter dominated phase to the late time accelerated
era of the universe in this scenario by using the cosmolog-
ical reconstruction. reconstruction of f (R, T ) describing is
performed.The dependence on T can be act as a source of
exotic fluid. In this scenario, the equations of motion show
the presence of an extra-force acting on the test particles,
and the motion are generally non-geodesic. This theory also
relates the cosmic acceleration, not only due to the contri-
bution of geometrical terms, but also to the matter contents
[28].

Unimodular gravity is an alternative theory of the gravita-
tional theories which solve the cosmological constant prob-
lem [29]. This theory first introduced by Einstein in 1919
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[30]. In this case the cosmological constant is not only added
by hand, but also derived from the trace-free part of the Ein-
stein field equations. So, the cosmological constant appears
as an integration constant in this theory. An interesting feature
of this model is that it can be explained the current expansion
of the universe by considering only single component such
as the cosmological constant, or by the nonrelativistic matter
[31,32]. The technique of the theory is that the determinant of
the metric

√−g to be a fixed number, or some function of the
space-time coordinates. The extension of this model to the
modified gravity is discussed in Refs. [33–40]. An interest-
ing result is that unimodular gravity is classically equivalent
to general relativity, however there is a discussion about this
equivalence at the quantum level. Some more aspects of this
model have been studied in [41–59]. During the last years
a new idea, called the generalized unimodular gravity was
developed in papers [60–63].

In this papar, we consider a generalization of unimodu-
lar gravity by coupling between Ricci scalar R and trace of
the stress–energy tensor T via a general function as unimod-
ular f (R, T ) gravity. We present the unimodular constrain
by inserting the Lagrange multiplier in the action. The cos-
mological reconstruction of the unimodular f (R, T ) gravity
have been studied in [40]. At that literature, the authors inves-
tigated inflationary cosmology in this model and showed for
some models of unimodular f (R, T ) gravity were in good
agreement with observational data from Planck probe. In this
paper We investigate the viability of some particular models
of unimodular f (R, T ) graviy according to the energy condi-
tions. Then we compare our results with observational data.
This analysis gives some constraints on the parameters of
model. The energy conditions are fundamental to the singu-
larity theorems like black hole thermodynamics [64]. The
energy condition have many important theoretical applica-
tions which is used in different contexts to derive general
results that would hold for a variety of situations(for more
detail see [65–68]). This scenario is firstly formulated in the
context of general relativity. Recently the extention of these
energy conditions to the modified gravity like f (R), f (G)

and f (T ) have been studied in several literature [69–80].
At end, we investigate stability of the cosmological solu-

tions in the framework of perturbations. In this sense, we
study the homogeneous and isotropic perturbations around
the background solutions and obtain a stability condition for
the power-law and de Sitter solutions. Then, we consider
some specific models of unimodular f (R, T ) gravity and
show that for some values of input parameters, the stability
of solutions are realized. Through this way and analyzing the
energy conditions we can check the viability of cosmological
solutions in this kind of extended theory of gravity.

The outline of this paper is as follows. In next section we
introduce unimodular f (R, T ) gravity and drive the basic
equations of the model in FRW background. In Sect. 3 we

define the energy conditions in GR as well as in a general
modified gravitational framework. In Sect. 4 we analyze the
energy conditions in unimodular f (R, T ) gravity. In Sect. 5
we obtain the constraints imposed on the model in the frame-
work of energy condition. In Sect. 5 we investigate the linear
perturbations around the background solutions and derive the
evolution equations of perturbations. We study the stability
of de Sitter and power law solutions for some specific models
of unimodular f (R, T ). Finally we compare the results with
the obtained constraints from the energy conditions. Section
6 is devoted to conclusion.

2 The unimodular f (R, T ) gravity

The main motivation of unimodular gravity is to remove the
cosmological constant from the gravitational equations of
motion. Actually, the unimodular gravity solve the cosmolog-
ical constant problem. The cosmology that obtain in unimod-
ular gravity is classically equivalent to cosmology in general
relativity in presence of a cosmological constant. The uni-
modular gravity theory is based on the assumption that the
determinant of metrics is fixed, gμνδgμν = 0. Whereas all
of the components of metric are dynamical. This means that

√−g = ε0, (1)

where ε0 is constant. This constraint can obtain by inserting a
Lagrange multiplier in the action. We extend the unimodular
Einstein–Hilbert gravity formalism to the f (R, T ) modified
theory of gravity which the action is

S = 1

2κ2

∫
d4x

[√−g f (R, T ) − 2λ(
√−g − ε0)

]
+

∫
d4x

√−gLm , (2)

where f (R, T ) is an arbitrary function of the Ricci scalar, R,
and of the trace of the stress–energy tensor of the matter, Tμν .
Lm is the matter Lagrangian density which depends only on
the metric tensor components gμν . The stress–energy tensor
of matter is

Tμν = − 2√−g

δ(
√−gLm)

δgμν
= gμνLm − 2

∂Lm

∂gμν
. (3)

We obtain the modified Einstein field equations by variation
of action (2) with respect to the metric as follows

f,R(R, T )Rμν − 1

2
gμν f (R, T ) + (gμν� − ∇μ∇ν) f,R(R, T ) + λgμν

= κ2Tμν − f,T (R, T )(Tμν + 	μν). (4)

where comma denotes partial derivative of f (R, T ) with
respect to R and T . We introduce 	μν as

	μν ≡ gαβ δTαβ

δgμν
= −2Tμν + gμνLm − 2gαβ ∂2Lm

∂gμν∂gαβ
. (5)
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The variation of the action with respect to Lagrange multi-
plier, λ satisfy the unimodular constraint,

√−g = ε0. Taking
the trace of field equations (4) lead to

f,R(R, T )R+3� fR(R, T )−2 f (R, T )+4λ = κ2T − f,T (R, T )(T +	),

(6)

By using the above equation, the field equation (4) can be
written as

f,R(R, T )
[
Rμν − 1

3
gμνR

]

−∇μ∇ν f,R(R, T ) + 1

6
f (R, T )gμν − 1

3
λgμν

= κ2
[
Tμν − 1

3
gμνT

]
− f,T (R, T )

[
Tμν − 1

3
gμνT

]

− f,T (R, T )
[
	μν − 1

3
gμν	

]
. (7)

So, we yield the usual f (R, T ) equations with an addi-
tional cosmological constant. Now, we assume matter to be
described by a perfect fluid with the stress–energy tensor

Tμν = (ρm + pm)uμuν + pmgμν, (8)

where uμ is the four-velocity, uμuμ = −1. ρm and pm are
the energy density and pressure of matter with equation of
state pm = ωmρm . With comparison Eqs. (3) and (8) the
matter Lagrangian can be taken as Lm = pm [23]. So, for
	μν we find

	μν = −2Tμν + pmgμν. (9)

Then, we can rewritten the field equation (4) as

f,R(R, T )Rμν − 1

2
gμν f (R, T )+(gμν�−∇μ∇ν) f,R(R, T )

+λgμν = κ2Tμν + f,T (R, T )Tμν

−pmgμν f,T (R, T ), (10)

By taking the covariant divergence of the field equation (4)
we get the following relation for the stress–energy tensor

∇μTμν = 1

κ2 + f,T (R, T )

[
(pmgμν − Tμν)∇μ f,T

−1

2
gμν f,T∇μT + f,T gμν∇μ pm + gμν∇μλ

]
.

(11)

where we have used (∇μ� − �∇μ) f,R = Rμν∇ν f,R . This
equation shows that the stress–energy tensor of matter is not
conserved. This is due to interaction between matter and cur-
vature.

3 Energy conditions

The energy conditions are used in different contexts to derive
general results that can constraint parameters of model. The
energy conditions arise originally from the Raychaudhuri
equations that describe the behavior of space-time congru-
ence which is used to study the singularities of space-time.
The Raychaudhuri equation firstly come from the strong and
null energy conditions. For a congruence of timelike and
nulllike geodesics with tangant vector field uμ and κμ, Ray-
chaudhuri equations as the temporal variation of expansion
θ [81,82] are defined as

dθ

dτ
= −1

3
θ2 − σμνσ

μν + ωμνω
μν − Rμνu

μuν (12)

dθ

dτ
= −1

2
θ2 − σμνσ

μν + ωμνω
μν − Rμνκ

μκν (13)

where θ and Rμν are expansion scalar and Ricci tensor
respectively. σμν present the shear tensor to measure the dis-
tortion of the volume. ωμν is the velocity tensor to measure
the rotation of the curves. Since the shear is a spatial tensor, it
implies σ 2 = σμσμ ≥ 0. For any hypersurface of orthogonal
congruence(ωμν = 0), the conditions for attractive gravity
is θ < 0 which the Raychaudhuri equations impose

SEC : Rμνu
μuν ≥ 0,

NEC : Rμνκ
μκν ≥ 0. (14)

For equivalence to GR, we can write the Eq. (10) in the fol-
lowing effective gravitational field equation

Gμν ≡ Rμν − 1

2
gμνR = T ef f

μν , (15)

where

T ef f
μν = 1

f,R

[
κ2Tμν + f,T Tμν + 1

2
gμν( f − R f,R − 2pm f,T − 2λ)

−(gμν� − ∇μ∇ν) f,R
]
. (16)

T ef f
μν is an effective stress–energy tensor which is depended

on geometry and matter contributions. This relation shows
that corrections of this modified gravity are applied to the
right hand side of the Einstein’s field equations. This means
that accelerated expansion of the universe comes from a geo-
metrical contribution to the total cosmic energy density and
the matter content of the universe. By taking the trace of the
field equation we get R = −T ef f , so the Eq. (15) is equiva-
lent to

Rμν = T ef f
μν − 1

2
T ef f gμν. (17)
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The combination of relation (17) and energy conditions (14)
yeild

Rμνu
μuν =

(
T ef f

μν − 1

2
T ef f gμν

)
uμuν ≥ 0,

Rμνκ
μκν =

(
T ef f

μν − 1

2
T ef f gμν

)
κμκν ≥ 0. (18)

where κμ and uμ are lightlike and timelike vectors. So we
have κμκμ = 0. If we consider the perfect fluid as a total
content of the universe the null and strong energy condition
(18) reduce to

ρe f f + pef f ≥ 0, ρe f f + 3pef f ≥ 0. (19)

Note that from the strong energy condition Rμνuμuν =
(T ef f

μν − 1
2T

ef f gμν)uμuν ≥ 0 where equivalent to T ef f
μν uμuν

≥ 1
2T

ef f gμνuμuν the weak enegy condition impose that

T ef f
μν uμuν ≥ 0 −→ ρe f f ≥ 0. (20)

The dominant energy condition state that matter must be
move in the null or time-like world line. This means that no
signal can propagate faster than light. It imply that pef f ≤
ρe f f . Now, we summerize the enegy conditions as follows

• Null energy condition(NEC): ρe f f + pef f ≥ 0
• Weak energy condition(WEC): ρe f f ≥ 0, ρe f f +

pef f ≥ 0
•Strong energy condition(SEC): ρ+3pef f ≥ 0, ρe f f +

pef f ≥ 0
• Dominant energy condition(DEC): ρe f f ≥ 0, ρe f f ±

pef f ≥ 0.

We result from these conditions that the violation of NEC
leads to violation of other conditions. We can express the
energy conditions in modified theory of gravity are similar
to those in general relativity with the difference that ordi-
nary energy density ρm and pressure pm is replaced by the
effective one, ρe f f and pef f .

4 Energy condition in unimodular f (R, T ) gravity

In this section, we investigate the energy conditions in the
modified gravity of unimodular f (R, T ) gravity. For this
purpose, at first we need to derive the effective energy density
and pressure corresponding to the model. In present study
for simplicity and also because the universe is nearly flat
we consider the spatially flat Friedmann- Robertson-Walker
(FRW) metric as

ds2 = −dt2 + a2(t)dxidx
i , i = 1, 2, 3 (21)

where a(t) is the scale factor. For this metric to satisfy the
unimodular constraint we introduce a new time variable as

dτ = a3(t)dt, (22)

Note that this introduction is nothing but the change and
the fixation of the lapse function in a certain way, which
guarantees the unimodularity. So, the FRW metric (21) can
be rewritten as the following form

ds2 = −a−6(τ )dτ 2 + a2(τ )dxidx
i , i = 1, 2, 3 (23)

where gμν = diag(−a−6(τ ), a2(τ ), a2(τ ), a2(τ )). It can
be easily checked the unimodular constraint is satisfied. The
Ricci scalar and non-vanishing component of Ricci tensor
for FRW metric are as follows

Rττ = −3Ḣ − 12H2, Ri j = a8(Ḣ + 6H2), R = a6(6Ḣ + 30H2).

(24)

where H = 1
a
da
dτ

is the generalized Hubble parameter. Thus,
we derive the ττ and i i components of the field equations as

−(3Ḣ + 12H2) f,R + 1

2
( f − 2λ)a−6 + 3H ḟ,R

= [κ2ρm + f,T (ρm + pm )]a−6 (25)

(Ḣ + 6H2) f,R − 1

2
( f − 2λ)a−6 − 5H ḟ,R − f̈,R = κ2 pma

−6 (26)

where a ”dot” marks derivative with respect to τ . By using
the metric (23), the Eq. (11) reach

ρ̇m + 3H(ρm + pm ) = − 1

κ2 + f,T

[
(ρm + pm ) ḟ,T + ṗm f,T + λ̇

]
.

(27)

This equation shows that the general f (R, T ) model not sat-
isfy the normal conservation law. So, the massive test parti-
cles does not follow a geodesic line due to presence of extra
force. In other word, the interaction of matter with geometry
imposes an extra acceleration acting on the particle. To satisfy
the standard conservation equation ρ̇m + 3H(ρm + pm) = 0
the righ hand side of the above equation must be zero

− 1

2
Ṫ f,T + (ρm + pm) ḟ,T + ṗm f,T + λ̇ = 0 (28)

this equation induces an additional constraint on the theory.
If we assume T ef f

μν behave as the perfect fluid, then the Eq.
(16) get

ρe f f = 1

f,R

[
ρm (1+ f,T )− 1

2
( f −R f,R−2pm f,T −2λ) − 3a6H ḟ,R

]
,

(29)

pe f f = 1

f,R

[
1

2
( f − R f,R − 2pm f,T − 2λ) + a6( f̈,R + 5H ḟ,R)

]
,

(30)
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where ρe f f and pef f are the effective energy density and
pressure. By using these relations we obtain the energy con-
ditions as

NEC : ρe f f + pef f = 1

f,R

[
(ρm + pm)(1 + f,T )

+a6( f̈,R + 2H ḟ,R)
]

≥ 0, (31)

WEC : ρe f f = 1

f,R

[
ρm(1 + f,T )

−1

2
( f − R f,R − 2pm f,T − 2λ) − 3a6H ḟ,R

]
≥ 0,

ρe f f + pef f ≥ 0 (32)

SEC : ρe f f + 3pef f = 1

f,R

[
(ρm + 3pm)(1 + f,T )

+( f − R f,R − 2pm f,T − 2λ)

+3a6( f̈,R + 4H ḟ,R)
]

≥ 0, ρe f f + pef f ≥ 0, (33)

DEC : ρe f f − pef f = 1

f,R

[
(ρm − pm)(1 + f,T )

−( f − R f,R − 2pm f,T − 2λ)

−a6( f̈,R + 8H ḟ,R)
]

≥ 0,

ρe f f + pef f ≥ 0, ρe f f ≥ 0, (34)

For simplicity we assume κ2 = 1. In the following, we con-
sider some special models of unimodular f (R, T ) gravity
and apply energy conditions to restrict the parameters of
model. To study this bounds, we express the Hubble param-
eter, Ricci scalar and their derivatives in terms of cosmic of
the parameters as

Ḣ = −H2(4 + q), (35)

Ḧ = H3( j + 15q + 32), (36)
...H = H4(s − 25 j − 249q − 366), (37)

R = −6a6H2(1 − q), (38)

Ṙ = −6a6H3( j − q − 2), (39)

R̈ = −6a6H4(s + q2 − 11q + 3 j − 12). (40)

where q, j and s are the deceleration, jerk and snap param-
eters respectively and are defined as

q = − 1

H2

d2a
dt

a(t)
, j = − 1

H3

d3a
dt

a(t)
, s = − 1

H4

d4a
dt

a(t)
.

(41)

In our discussion the present day values of the Hubble param-
eter, deceleration parameter,the jerk and the snap parameters
are H0 = 73.8 [83], q0 = −0.81 ± 0.14, j0 = 2.16+0.81

−0.75

and s0 = −0.22+0.21
−0.19 [84]. In this work we assume the ordi-

nary matter of the universe is pressureless. By using these
parameters we can rewrite energy conditions (31)–(34) in

the explicit forms, as follows

NEC :
ρm(1 + f,T ) − 6H4a12(s + q2 − 13q + 5 j − 16)

f,RR + 36H6a18( j − q − 2)2 f,RRR ≥ 0, (42)

WEC :
ρm(1 + f,T ) − 1

2
f + λ − 3a6H2(1 − q)

f,R + 18a12H4( j − q − 2) f,RR ≥ 0,

ρe f f + pef f ≥ 0, (43)

SEC :
ρm(1 + f,T ) + f − 2λ + 6a6H2(1 − q)

f,R − 18a12H4(s + q2 − 15q + 7 j − 20) f,RR

+108a18H6( j−q−2)2 f,RRR ≥ 0, ρe f f +pef f ≥ 0,

(44)

DEC :
ρm(1 + f,T ) − f + 2λ − 6a6H2(1 − q)

f,R − 6a12H4(s + q2 − 19q + 11 j − 28) f,RR

−36a18H6( j − q − 2)2 f,RRR ≥ 0,

ρe f f + pef f ≥ 0, rhoef f ≥ 0. (45)

5 Constraining F(R, T )models using energy conditions

To get some intersting feature of energy conditions, we con-
sider some specific models of unimodular f (R, T ) gravity.
We can find the exact form of model trough reconstruction
method and constraint the free parameters of model by using
the energy conditions.

• f (R, T ) = f (R) + βT
As a first case of a unimodular f (R, T ) gravity model we

assume that f (R, T ) is given by

f (R, T ) = f (R) + βT . (46)

where β is an arbitrary constant. For this case, the field equa-
tions get the following form

−(3Ḣ + 12H2) f,R

+1

2

(
f (R) + βT − 2λ

)
a−6 + 3H ḟ,R = (1 + β)ρma

−6,

(47)

and

(Ḣ + 6H2) f,R

−1

2

(
f (R) + βT − 2λ

)
a−6 − 5H ḟ,R − f̈,R = 0, (48)

Now, we obtain the exact form of the model through the
reconstruction method. To this end, we consider the scale
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factor in the form of

a(τ ) =
(

τ

τ0

)m

⇒ H = m

τ
, (49)

which is corresponding to power law and de sitter solutions.
τ0 andm are arbitrary constant. If we considerm = α

3α+1 and
τ0 = t0

3α+1 , the scale factor (49) is corresponding to power
law solutions, a(t) = ( t

t0
)α . Also, a de Sitter cosmological

evolution occurs when m = 1
3 and τ0 = 1

3H0
which can

describe the initial inflation and late-time cosmic accelera-
tion [36,40]. So, the unimodular FRW metric (23) takes the
following form

ds2 = −
(

τ

τ0

)−6m

dτ 2 +
(

τ

τ0

)2m

dxidx
i , i = 1, 2, 3

(50)

in this case, if 1
4 < m < 1

3 which implies α > 1, shows an
an acceleration expansion of the universe. The radiation and
dust dominated erea is described by m = 2

9 and m = 1
5 .

For pressureless fluid, the conservation equation get

ρ̇m = −3Hρm −→ ρm =
(

τ

τ0

)−3m

, (51)

For the scale factor (49), the trace of stress–energy tensor
and the Ricci scalar get

T = −
(

τ

τ0

)−3m

, R = 6m(5m − 1)

τ 2
0

(
τ

τ0

)6m−2

. (52)

By contracting field equations (47) and (48) and by using
Eqs. (49)–(52), we obtain partial differential equation as

2m(3m − 1)

τ 2 f,R + 2
m

τ
ḟ,R + f̈,R + (1 + β)

(
τ

τ0

)−9m

= 0,

(53)

Note that we consider the pressurless fluid. The general solu-
tion of this differential equation is

f,R(τ ) = C1τ
μ1 + C2τ

μ2 + Cτ−9m+2, (54)

where C1,2 are integration constants and

μ1,2 = −m + 1

2
± 1

2

√
−20m2 + 4m + 1,

C = (1 + β)

69m2 − 25m + 2
τ 9m−2

0 . (55)

By inserting the scalar Ricci and integrating of this equation,
we obtain

f (R) = D1R
μ1+6m−2

6m−2 + D2R
μ2+6m−2

6m−2 + DR
−3m

6m−2 , (56)

where

D1,2 = C1,2τ0
μ1,2

(
6m − 2

μ1,2 + 6m − 2

)(
τ 2

0

30m2 − 6m

) μ1,2
6m−2

,

(57)

D = −Cτ0
−9m+2

(
6m − 2

3m

)(
τ 2

0

30m2 − 6m

)−9m+2
6m−2

. (58)

Then, we find the unimodular Lagrange multiplier from the
Eq. (47)

λ(τ) = N1τ
μ1+6m−2 + N2τ

μ2+6m−2 + Nτ−3m . (59)

where

N1,2 =
[

6m(5m − 1)

(
3m − 1

μ1,2 + 6m − 2
+ 3m(1 − 4m)

)]
τ−6m

0 C1,2,

(60)

N = − 1

2
(3β − 2)τ3m

0

+ 6m(1 − 4m)(1 + β)

69m2 − 25m + 2
τ3m−2

0

− 2(1 + β)(5m − 1)

69m2 − 25m + 2
τ6m

0 . (61)

Now, we investigate the energy conditions for the f (R, T )

given in Eq. (46). Using this model, the energy conditions in
terms of present day values of q, j and s become

NEC :
ρ0m (1 + β) − 6H4

0a
12
0 (s0 + q2

0 − 13q0 + 5 j0 − 16) f,0RR

+36H6
0a

18( j0 − q0 − 2)2 f,0RRR ≥ 0, (62)
WEC :

ρ0m (1 + 1

2
β) − 1

2
f (R)

+λ0 − 3a6
0H2

0(1 − q0) f,0R + 18a12
0 H4

0( j0 − q0 − 2) f,0RR ≥ 0,

ρe f f + pe f f ≥ 0, (63)
SEC :

ρ0m + f (R) − 2λ0 + 6a6
0H2

0(1 − q0) f,0R

−18a12
0 H4

0(s0 + q2
0 − 15q0 + 7 j0 − 20) f,0RR

+108a18
0 H6

0( j0 − q0 − 2)2 f,0RRR ≥ 0, ρe f f + pe f f ≥ 0, (64)
DEC :

ρ0m (1 + 2β) − f (R) + 2λ0 − 6a6
0H2

0(1 − q0) f,−R

−6a12
0 H4

0(s0 + q2
0 − 19q0 + 11 j0 − 28) f,0RR

−36a18
0 H6

0( j0 − q0 − 2)2 f,0RRR ≥ 0,

ρe f f + pe f f ≥ 0, ρe f f ≥ 0. (65)

we take the f (R) which is given in Eq. (56). By considering
the present day values of jerk, deceleration and snap parame-
ters we find acceptable range of the parameters of the model
for the energy conditions. Figures 1, 2 and 3 show the posi-
tively increasing behavior of energy conditions with respect
to m and C2 parameters which C2 is the integral constant. In
this case, all energy conditions are satisfied for all values of
C1. Figures 1 and 2a show the WEC is satisfied for C2 > 0
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Fig. 1 The allowed range of parameter m for energy conditions

Fig. 2 The allowed range of parameter m for energy conditions

and 0.243 < m < 0.257. For C2 < 0 the energy conditions
are decrease and violate of WEC. Figure 2 shows the accept-
able range of SEC. For 0.243 < m < 0.345 and all vallues
of C2 the SEC is satisfied. Figures 1, 2a and 3 show the DEC
is satisfied in 0.243 < m < 0.244

• f (R, T ) = R + ξ Rn + 2T
Now, we take the special case of f (R, T ) as

f (R, T ) = R + ξ Rn + 2T (66)

where ξ and n are constant. For analysis the energy con-
ditions we subsitute this f (R, T ) in the energy conditions
(42)–(45) and find viable range for the free parameters of the
model. We constraint the model through this way. In follow-
ing we address the evident conditions for which the energy
conditions are satisfied

∗ For ξ > 0 the acceptable values of n are n =
{. . . ,−6,−4,−1, 3, 5, 7, . . .} and ξ < 0 withn = {. . . ,−7,

−5,−3,−2, 2, 4, 6, . . .}. Hence the NEC and WEC are sat-
isfied. These results except values of n = −1,−2 are also
valid for SEC.
∗ ξ > 0 with acceptable range of n as n = {. . . ,−8,−6,−1,

3, 5, 7, . . .} and {. . . ,−7,−5,−2, 4, 6, 8, . . .} for ξ < 0 the
DEC is satisfied. To analyze the energy conditions in this
case one can state that for example if we consider f (R, T ) =
R + ξ R2 + 2T the weak energy condition is satisfied if and

only if ξ is negative. The function f (R, T ) = R − μ4

R + 2T
violates the WEC because for ξ = −μ4, n = −1 is not
acceptable.
• f (R, T ) = R + 2 f (T )
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Fig. 3 The allowed range of parameter m for energy conditions

We consider a type of f (R, T ) that includes a usual
Einstein–Hilbert term plus terms of f (T ) function which
is depondent on the trace of stress–energy tensor

f (R, T ) = R + 2 f (T ). (67)

The field equations can be obtain

3H2 = [(1 + 2 f,T )ρm − f (T ) + λ]a−6, (68)

and

− 2Ḣ − 9H2 = ( f (T ) − λ)a−6, (69)

Contracting these two equation result the following equation

−2Ḣ − 6H2 = (1 + 2 f,T )ρm, (70)

whose solution is given by

f (T ) = −3m2

2τ 2
0

(−T )
2(1−3m)

3m − 1

2
T, (71)

where T = −ρm . Then, by solving the constraint Eq. (28)
we obtain the Lagrange multiplier as

λ = (15m − 4)

12(5m − 1)
R − 1

2
T, (72)

We analyze the energy conditions in the form of f (R, T ) that
is given in Eq. (67). Hence, we rewrite the Eqs. (42)–(45) as
follows

NEC : ρm(1 + 2 f,T ) ≥ 0, (73)
WEC : ρm(1 + 2 f,T ) − f (T ) + λ ≥ 0, ρe f f + pef f ≥ 0, (74)

SEC : ρm(1 + 2 f,T ) + 2 f (T ) − 2λ ≥ 0, ρe f f + pef f ≥ 0, (75)
DEC : ρm (1+2 f,T )−2 f (T )+2λ≥0, ρe f f +pef f ≥0, ρe f f ≥0.

(76)

In order to find the constraints on paremeters of the model,
we assume that the standard matter satisfies all the energy
conditions. Therefore, the NEC condition (73) reduces to
1 + 2 f,T ≥ 0. Then by substituting the f (T ) from the Eq.
(71) we obtain

2m(1 − 3m)(0.42)
2(1−3m)

3m ≥ 0. (77)

According to this relation the NEC is satisfied for 0 < m <

0.33. Other choices of this parameter leads to violation of
NEC. Figure 4 shows the behavior of energy conditions. In
this figure the ρe f f and ρe f f − pef f behave similarly but
ρe f f +3pef f behave oppositely. We express the viable range
of m for energy conditions as fllows

(a) If 0 < m < 0.2 or 0.26 < m < 0.33 the WEC and
DEC are satisfied.

(b) If 0.2 < m < 0.27 or 0 < m < 0.18 the SEC is
satisfied.

6 Perturbations of flat FRW solutions in f (R, T )
gravity

In this section, we study the homogenous and isotropic per-
turbations in our model and investigate the stability of de
Sitter and power law solutions. At first, we assume a general
solution in FRW cosmological background. For this purpose,
we consider small deviations from the scale factor, energy
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Fig. 4 The allowed range of parameter m for energy conditions

density and Lagrange multiplier as

a(τ ) = a0(τ )
(

1 + δ(τ )
)
, ρm(τ )

= ρm0(τ )
(

1 + δm(τ )
)
, λ(τ ) = λ0(τ )

(
1 + δλ(τ )

)
.

(78)

where δ(τ ), δm(τ ) and δλ(τ ) express the perturbations of
background scale factor, matter density and Lagrange mul-
tiplier. To explore the behavior of linear perturbations, we
expand the f (R, T ) function in the power of R and T as

f (R, T ) = f 0 + f 0
,R(R − R0)+ f 0

,T (T − T0)+O(2), (79)

In what follows, to study the stability of solutions we consider
two cosmological solutions including de Sitter and power law
solutions.

6.1 Stability of de Sitter solutions

Let us consider the de Sitter solutions which enable to
describe the inflation and late-time cosmic acceleration.
Therefore, we set

H(t) = H0, a(t) = a0e
H0t (80)

where H0 is constant. In unimodular gravity and by definition
of time variable (22) we obtain

a(τ ) = (3H0τ)
1
3 , (81)

where H0 is constant. By inserting the expression (78) into
Eqs. (25) and (26) we obtain the perturbation equations up

to the first order perturbations as follows

a1
...
δ (τ ) + a2δ̈(τ ) + a3δ̇(τ )

+a4δ(τ ) + a5δm(τ ) + a6δλ(τ ) = 0, (82)

b1
....
δ (τ ) + b2

...
δ (τ ) + b3δ̈(τ )

+b4δ̇(τ ) + b5 δ(τ ) + b6δm(τ ) + b7 δλ(τ ) = 0, (83)

and the conservation equation gives

c1δ̇(τ ) + c2δ̇m(τ ) + c3 δ(τ ) + c4 δm(τ ) = 0. (84)

where the coefficients a1 . . . a6, b1 . . . b7 and c1 . . . c4 are
given in Appendix A. These coefficients depend on the values
of the scale factor, f (R, T ) and their derivatives evaluated in
the background solution. Perturbations equations (82)–(84)
get solutions in the forms δ j = �ηi eνi τ where ηi are integral
constants. The stability of the perturbations will depend on
the sign of νi . The negative sign of νi get the stable solutions,
while the unstable solutions are obtained from the positive
sign of νi . the parameters νi depend on f (R, T ) and other
free parameters in the perturbation equations. So, we con-
sider the unimodular f (R, T ) models which was proposed
in previous section and analyze the stability of solutions. Note
that we assume the ordinary matter content of the universe is
pressureless.

• f (R, T ) = f (R) + βT
For this model and by using the f (R) is given in (56) and

solving the perturbations equations we obtain the perturba-
tions δ, δm and δλ. By increasing the time, the νi are negative
and perturbations are decay for −1 < m < 3. Thus, the de
Sitter solutions of perturbations are stable. For other values
of m the perturbations will grow exponentially.

• f (R, T ) = R + ξ Rn + 2T
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In this case, for n > 0 the perturbations of scale factor,
matter and Lagrange multiplier are unstable. If n < 0 and
ξ < 0 as time evolves the amplitude of perturbations decrease
and de Sitter solutions are stable while for ξ > 0 the solutions
become unstable.

We observed that some of conditions for stability are com-
patible with some constraints to satisfy the energy conditions.
This present for some values of the input parameters, the
acceptable models can be obtained.

• f (R, T ) = R + 2 f (T )

Let us now investigate the behavior of perturbations in the
linear regime for this unimodular f (R, T ) model. We expand
the f (T ) function in power of T

f (T ) = f 0 + f 0
,T (T − T0) + O(2), (85)

By using the expression (78) and (85) the fields equations
(68) and (69) get

6a5
0 ȧ0 δ̇ + 18a4

0 ȧ
2
0δ

+(2ρ2
m0 f 0

,T T − 5ρm0 f 0
,T − ρm0)δm − λ0δλ − 2 f 0

,T ρm0 = 0

(86)
−2a6

0 δ̈ − 18a5
0 ȧ0 δ̇ − 6a4

0(2a0ä0 + 7ȧ2)δ

+ρm0 f 0
,T δm + λ0δλ = 0. (87)

We consider the f (T ) function which is given in (71). By
solving the perturbations equations (86) and (87) with the
conservation Eq. (84) we find the general solution of pertur-
bation equations in this case. In the range of 0 < m < 1 we
have νi < 0 and the perturbations of δ, δm and δλ behave
as damp oscillators with decreasing amplitude and tend to
zero with cosmic time. Therefore, the de Sitter solutions are
stable.

6.2 Stability of power law solutions

Now we consider the power law solutions which is corre-
sponding to different phases of cosmic evolution such as radi-
ation dominated, matter dominated or dark energy eras. For
this case, the scale factor and Hubble parameter are expressed
as

a(t) =
(
t

t0

)α

, H(t) = α

t
, (88)

where t0 and α are constant. α = 1
2 and α = 2

3 correspond to
solutions of radiation and matter dominated universe respec-
tively. Also, α > 1 gives an accelerated expansion. Then,
using the time variable (22) the scale factor get the following
form

a(τ ) =
(

3α + 1

t0
τ

) α
3α+1

, (89)

Now, we explore the stability of these solutions in the frame-
work of perturbations in the f (R, T ) models which present
in previous subsection.

• f (R, T ) = f (R) + βT
In this model, we solve the differential Eqs. (82)–(84). We

find that for α = 2
3 the evolution of δ, δm and δλ increase

oscillatory with time. For α > 1 and m < 0 the amplitude of
perturbations decrease with time. So the power law solutions
for this conditions are stable.

• f (R, T ) = R + ξ Rn + 2T
In this case, for α = 2

3 , the perturbations behave as a
damped oscillator by decreasing amplitude and the solutions
are stable. If we consider α > 1 we find the stable solution
for the conditions β > 0 and n > 4 and also the solutions
become unstable for n < 4. The evolution of perturbations
grow exponentially with β < 0 and all of the parameters n
and the power law solutions are not stable for this case.

• f (R, T ) = R + 2 f (T )

By solving the perturbation equations (86), (87) and (84)
we obtain evolution of perturbation parameters. We can find
the stability conditions by studying the perturbation equa-
tions. For α > 1 the perturbations increase with time. For
the stable solutions we need to set the conditions α = 2

3 and
0 < m < 0.6.

7 Conclusion

In this work we have studied a modified gravity theory
namely unimodular f (R, T ) gravity which is an alternative
theory to explain the current cosmic acceleration without
introducing the exotic component of dark energy or extra
dimension. The main motivation to introduce the unimod-
ular gravity is to solve the cosmological constant problem.
The cosmological constant appears as a Lagrange multiplier
in unimodular gravity. So, the huge discrepancy between the
theoretical prediction and the observed value of the cosmo-
logical constant can be canceled in this theory. The unimod-
ular f (R, T ) gravity is equivalent to standard f (R, T ) grav-
ity with a cosmological constant. This theory was capable
to explain the late time speed up and early time cosmolog-
ical inflation. This modified gravity includes lots of mod-
els with some unknown parameters. The energy conditions
is an approach to restrict these parameters. We constraint
on the input parameters for each of the models by analysis
the energy conditions in this theory and show which mod-
els of unimodular f (R, T ) gravity can satisfy the energy
conditions. To investigate the energy conditions we have
introduced the effective energy density and pressure. In this
respect, we have developed energy conditions for some spe-
cific models of unimodular f (R, T ) gravity and expressed
the null, weak, strong and dominant energy conditions for
FRW universe with the pressureless ordinary matter in terms
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of present day values of deceleration (q), jerk (j) and snap (s)
parameters. In order to get the application of energy con-
ditions we have taken some special models of unimodu-
lar f (R, T ) gravity. We can summarize the results as fol-
lows

• For f (R, T ) = f (R)+βT we found the function f (R)

from reconstruction way and investigate the energy condi-
tions for this kind of model. We showed that for a range of
parameter −0.144 < m < −0.06 and 0.243 < m < 0.25
the WEC,NEC and DEC are satisfied.

• We applied the energy conditions to study the possible
constraints on the f (R, T ) = R+ξ Rn+2T . In this case, we
observed that all conditions for which the NEC is satisfied,
lead to achievement of WEC.

• It is shown that for the f (R, T ) = R + 2 f (T ) the
conditions for which the WEC is satisfied, also lead to the
accomplishment of the DEC. The NEC is satisfied for 0 <

m < 0.33.
Furthermore, we have analyzed the stability of cosmo-

logical perturbations in this setup. For this purpose we per-
turbed the scale factor, matter density and Lagrange multi-
plier to check the viability of the model. In this respect, we
have studied stability conditions for de Sitter and power law
solutions for FRW metric in the framework of perturbations.
We have obtained the differential equations under linear per-
turbations. We observed that the coefficient of these equa-
tions have been depended on functions of f (R, T ) and their
derivatives. So, to check the viability of the model we con-
sider particular unimodular f (R, T ) gravity and showed that
this stability analysis can constraint the input parameters of
model. Finally, we compared this result with the energy con-
ditions. We showed that some of the stability conditions are
compatible with the accomplishment of some of the energy
conditions.
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Appendix A

In this section we present the coefficients a1 . . . a6 and
b1 . . . b7 of Eqs. (82) and (83):

a1 = 54a11
0 ȧ0 f 0

,RR, (90)

a2 = +3a6
0 f 0

,1R

+108a14
0 ȧ0 f 0

,RRR(a2
0

...
a 0 + 13a0ȧ0ä0 + 16ȧ3

0)

+18 f 0
,RRa

9
0(a2

0 ä0 + 72ȧ3
0 + 51a0ȧ

2
0), (91)

a3 = +1080a13
0 ȧ2

0 f 0
,RRR(a2

0
...
a 0 + 13a0ȧ0ä0 + 16ȧ3

0)

+18 f 0
,RRa

9
0 ȧ0(a2

0
...
a 0 + 228ȧ3

0 + 97a0ȧ0ä0)

+18ȧ0a
5
0 f 0

,R, (92)

a4 = 36a4
0 f 0

,R(2ȧ2
0 + a0ä0)

+108ȧ0a
8
0 f 0

,RR(6a2
0

...
a 0a

5
0 + 85ȧ0ä0a0 + 108ȧ3

0 + a2
0 ä

2
) )

+648 ȧ0a
15
0 f 0

,RRR(a3
0

...
a 0ä0 + 64ȧ5

0

+4a2
0 ȧ

2
0

...
a 0 + 13a2

0 ȧ0ä
2
0

+48a0ȧ
3
0 ä0), (93)

a5 = 3

2
βρ0m + ρ0m , (94)

a6 = λ0, (95)

b1 = 18a12
0 f 0

,RR, (96)

b2 = 54a10
0 ȧ0(9a0 + 8ȧ0) f 0

,RR

+288a15
0 (a2

0
...
a 0 + 13a0ȧ0ä0 + 16ȧ3

0) f 0
,RRR, (97)

b3 = +36a13
0 (a4

0
....
a0 + 13a3

0 ä
2
0) f 0

,RRR

+2304a13
0 ȧ2

0(3
...
a 0 a

2
0 + 48ȧ3

0 + 34a0ȧ
2
0) f 0

,RRR

+216a18
0 (32a2

0 ȧ
3
0

...
a 0 + 169a2

0 ȧ
2
0 ä

2
0

+416a0ȧ
4
0 ä0 + a4

0
...
a 2

0 + 256ȧ6
0

+26a3
0 ȧ0ä0

...
a 0) f 0

,RRRR

+6a9
0(648ȧ3

0 + 97a2
0 ä0 + 635a0ȧ

2
0

+144a0ȧ0ä0) f 0
,RR + 89856a14

0 ȧ3
0 ä0 f 0 + 5a6

0 f 0
,R (98)

b4 = 2160a17
0 ȧ0(a4

0
...
a 2

0 + 32a2
0 ȧ

3
0

...
a 0

+416a0ȧ
4
0 ä0 + 256ȧ6

0

+26a3
0 ȧ0ä0

...
a 0) f 0

,RRRR

+365040a19
0 ȧ3

0 ä
2
0 f 0

,RRRR + 72a13
0 (5a3

0 ȧ0
....
a 0 + 64a3

0
...
a 0ä0

+897a2
0 ä

2
0 ȧ0 + 3840ȧ5

0) f 0
,RRR

+6a9
0(81

...
a 0 a

2
0 + 192ȧ3

0 + 1219a0ȧ0ä0) f 0
,RR

+54a5
0 ȧ0 f 0

,R, (99)
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b5 = 1296a16
0 (a5

0 ä0
...
a 2

0 + 4a4
0 ȧ

2
0

...
a 2

0

+169a3
0 ȧ

2
0 ä

3
0 + 128a2

0 ȧ
5
0
...
a 0

+1092a2
0 ȧ

4
0 ä

2
0 + 1920a0ȧ

6
0 ä0 +

1024ȧ8
0 + 26a4

0 ȧ0ä
2
0

...
a 0

+136a3
0 ȧ

3
0 ä0

...
a 0) f

0
,RRRR

+216a12
0 (a4

0 ä0
...
a 0 + 4a3

0 ȧ
2
0

...
a 0 + 12a4

0
...
a 2

0 +
13a3

0 ä
3
0 + 335a3

0 ȧ0ä0
...
a 0

+476a2
0 ȧ

3
0
...
a 0 + 2245a2

0 ȧ
2
0 ä

2
0

+3584ȧ6
0 + 5780a0ȧ

4
0 ä0) f

0
,RRR +

36a8
0(6a3

0
....
a 0 + 79a2

0 ä
2
0 + 788ȧ4

0 + 999a0ȧ
2
0 ä0

+138a2
0 ȧ0

...
a 0) f

0
,RR + 6a4

0(22ȧ2
0 + 5a0ä0) f

0
,R, (100)

b6 = −1

2
βρ0m, (101)

b7 = −λ0, (102)

Next we obtain the coefficients c1 . . . c4 related to conser-
vation Eq. (84)

c1 = 3a0ρ0m, (103)

c2 = a0ρ̇0m + 3ȧ0ρ0m, (104)

c3 = a0ρ0m, (105)

c4 = a0ρ̇0m + 3ȧ0ρ0m, (106)

We see that these coefficients depend on the values of the
scale factor, f (R, T ) and their derivatives evaluated in the
background solution.
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