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Abstract We provide a dispersion-theoretical representa-
tion of the reaction amplitudesγ K → Kπ in all charge chan-
nels, based on modern pion–kaon P-wave phase shift input.
Crossed-channel singularities are fixed from phenomenol-
ogy as far as possible. We demonstrate how the subtraction
constants can be matched to a low-energy theorem and radia-
tive couplings of the K ∗(892) resonances, thereby providing
a model-independent framework for future analyses of high-
precision kaon Primakoff data.

1 Introduction

The Wess–Zumino–Witten anomaly [1,2] provides QCD
predictions for processes of odd intrinsic parity at low ener-
gies. The textbook example is the two-photon decay of the
neutral pion [3–5], which is determined, at zero quark masses,
by the elementary charge, e, and the pion decay constant, Fπ .
The next-more-complicated reactions involving strong and
electromagnetic interactions only are three-pseudoscalars–
photon processes [6] such as γπ → ππ , or η → ππγ .
Low-energy theorems for these are of a very similar struc-
ture, i.e., they provide parameter-free predictions in terms of
e and Fπ , e.g.

F3π = e

4π2F3
π

(1)

for γπ → ππ [7–9]. This reaction can be investigated exper-
imentally in a Primakoff reaction [10], with a charged-pion
beam scattered off the Coulomb field of a heavy nucleus.
Such experiments have been performed, with the objective
to test the prediction of Eq. (1), at Serpukhov [11], or are
being analyzed at COMPASS [12].
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The generalization of such Primakoff reactions to beams
of charged kaons was conceived as early as in the 1960s
[13], and put into practice in the 1970s both at the CERN
Proton Synchrotron [14] and at AGS in Brookhaven [15],
with refined experiments conducted in the 1980s at Fer-
milab [16–19]. The motivation here was mainly the explo-
ration of radiative couplings of strange resonances, predomi-
nantly the K ∗(892), and the supposed relation of these (mag-
netic) radiative transitions, in the quark model, to quark mag-
netic moments [16,18]. KTeV has investigated Primakoff
production of neutral strange resonances with a KL beam
[20], concentrating on radiative widths of heavier kaon res-
onances. Currently, the OKA experiment [21,22] analyzes
data on charged-kaon Primakoff reactions. In the future, high-
precision data is expected from the upgrade to a kaon beam
at COMPASS++/AMBER [23–25].

It was realized in Refs. [26,27] for the anomalous photon–
pion reaction that both aspects, low-energy theorem and chi-
ral anomaly on the one hand, and radiative resonance cou-
plings on the other, are intimately related to each other. Uni-
tarity implies a close link between the amplitude γπ → ππ ,
at zero energy and in the chiral limit, and its behavior in the
resonance peak region of the ρ(770). This has the practical
consequence that the prediction due to the anomaly can be
tested with much better statistics [26]. In addition, using a
dispersion-theoretical representation, the radiative coupling
ρ → πγ can be extracted in a model-independent way, from
the residue of the pole on the second Riemann sheet [27]. Fur-
thermore, such dispersive amplitudes will also help to link
lattice QCD calculations [28–30] to physical parameters [31].
The overarching interest in γπ → ππ is also justified by its
role in the dispersive reconstruction of the neutral-pion tran-
sition form factor [32–34] and the latter’s role for hadronic
light-by-light scattering and the muon’s anomalous magnetic
moment [35,36].

In this article, we construct a dispersion-theoretical repre-
sentation for γ K → Kπ (in all possible charge configura-
tions) that fulfills a similar feat. The chiral anomaly predicts
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the amplitudes for π0 production to have the exact same
value in the chiral limit and at zero energy as the analogous
photon–pion reaction, see Eq. (1); based on the fundamental
principles of analyticity and unitarity, the anomaly can also
here be related to the radiative couplings of K ∗(892) → Kγ

[18,19,37]. In this manner, our analysis provides a con-
sistent framework to analyze future data, from OKA or
COMPASS++/AMBER, in a theoretically sound setting. The
radiative K ∗ coupling constants are, inter alia, important
input quantities for coupled-channel descriptions of photon–
photon fusion reactions γ γ → ππ/K K̄ [38,39] and γ γ →
πη/K K̄ [40,41]. On a similar note, the full γ K → Kπ

amplitudes might serve as a building block for an advanced
analysis of Compton scattering on kaons, from which the
kaon polarizabilities [42] can be extracted, the main motiva-
tion of the COMPASS kaon Primakoff program [43].

Previous theoretical work on these reactions is rather elu-
sive. The channels with incoming charged kaons were cal-
culated in Ref. [44] in a tree-level model based on effective
Lagrangians for vector exchanges. For γ K− → K−π0 only,
one-loop corrections in the chiral expansion have been con-
sidered [45,46]. Here we derive Khuri–Treiman-type equa-
tions [47] for all possible charge configurations and solve
these self-consistently for the (crossing-symmetric) s- and
u-channels, while t-channel singularities are fixed from data
and symmetry arguments as much as possible. To guarantee
an accurate description of the universal kaon–pion final-state
interactions, we employ phase shift input from corresponding
Roy–Steiner analyses [48–50].

The outline of this article is as follows. We introduce the
necessary kinematics as well as partial-wave and isospin
formalism in Sect. 2, leading to the amplitude decomposi-
tion in terms of so-called reconstruction theorems. The fixed
t-channel amplitudes are determined in Sect. 3. Section 4
is devoted to derivation and solution of the Khuri–Treiman
equations for γ K → Kπ . In Sect. 5, we discuss the matching
of the subtraction constants, the free parameters of the dis-
persive representation, to the chiral anomaly and the radiative
K ∗ couplings. Results for partial waves and cross sections
are shown in Sect. 6. We summarize and conclude our study
in Sect. 7. Some technical aspects about dispersive kernel
functions are relegated to an appendix.

2 Decomposition of the amplitude

2.1 Kinematics and partial-wave decomposition

We decompose the amplitude for the reaction

γ (q)K (p1) → K (p2)π(p0) (2)

in terms of a kinematic prefactor of odd intrinsic parity and
the scalar amplitude F(s, t, u) according to

M = iεμναβεμ pν
1 p

α
2 p

β
0 F(s, t, u), (3)

where εμ is the polarization vector of the photon and the
Mandelstam variables [51] are given by s = (q + p1)

2,
t = (q − p0)

2, and u = (q − p2)
2. In the isospin limit with

Mπ = Mπ± and MK = 0.496 GeV (the convention used in
the pion–kaon scattering analysis of Ref. [49]), the on-shell
condition reads s+ t+u = 2M2

K +M2
π = 3s0 and the elastic

threshold is given by sth = (MK + Mπ )2. The cosine of the
s-channel center-of-mass scattering angle zs = cos θs and
the two-body phase space factor κ(s) are defined by

zs = s(t − u) − M2
K

(
M2

π − M2
K

)

s
(
s − M2

K

)
κ(s)

,

κ(s) = λ1/2(s, M2
π , M2

K )

s
, (4)

with the Källén function λ(x, y, z) = x2 + y2 + z2 −2(xy+
xz+ yz). The Mandelstam variables t and u can be expressed
in terms of s and zs according to

t = a+Δ(s) + b(s)zs , a±Δ(s) = 3s0 − s

2
∓ Δ

2s
,

u = a−Δ(s) − b(s)zs , b(s) =
(
s − M2

K

)
κ(s)

2
,

Δ = M2
K

(
M2

π − M2
K

)
. (5)

The partial-wave decomposition and its inversion are given
by [52]

F(s, t, u) =
∑

�

f�(s)P
′
�(zs) ,

f�(s) = 1

2

∫ 1

−1
dzs

[
P�−1(zs) − P�+1(zs)

]F(s, t, u) , (6)

in terms of derivatives of the Legendre polynomials. In par-
ticular, the P-wave that dominates at low energies is found
to be

f1(s) = 3

4

∫ 1

−1
dzs(1 − z2

s ) F(s, t, u) . (7)

Finally, the total cross section for γ K → Kπ is given by
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σ(s) = (s − M2
K )λ3/2(s, M2

π , M2
K )

1024πs2

×
∫ 1

−1
dzs(1 − z2

s )|F(s, t, u)|2

= (s − M2
K )λ3/2(s, M2

π , M2
K )

768πs2

(
| f1(s)|2 + . . .

)
, (8)

where the ellipsis denotes D- and higher partial waves.
In the following, we will also discuss the corresponding

t-channel reaction

γ (q)π(−p0) → K (p2)K̄ (−p1) , (9)

for which the partial-wave expansion is defined analogously
to Eq. (6) with the cosine of the t-channel scattering angle zt

zt = t (s − u)

s(s − M2
π )σK (s)

, where σP (s) =
√

1 − 4M2
P

s
(10)

is the two-body phase space for equal masses. We will ana-
lyze the t-channel in terms of intermediate ππ states, for
which the photon–pion amplitude Fγπ→ππ (s, t, u) defined
analogously to Eq. (3) serves as an input. We denote the
corresponding partial waves (which necessarily have isospin
I = 1) by h1

�(t),

Fγπ→ππ (s, t, u) =
∑

� odd

h1
�(t)P

′
�(zt ) . (11)

Finally, we need to introduce the partial waves for two
meson–meson scattering amplitudes. In the s-channel, pion–
kaon elastic scattering of isospin I is expanded in partial
waves t I� (s) according to

T I
Kπ→Kπ (s, t, u) = 16π

∞∑

�=0

(2� + 1)P�(zs)t
I
� (s) , (12)

which are parameterized in terms of the scattering phase
shifts δ I� (s) according to

t I� (s) = eiδ
I
� (s) sin δ I� (s)

κ(s)
. (13)

In the t-channel, we employ a slightly different convention
for the ππ → K K̄ partial waves gI� (t) to keep them free of
kinematical singularities,

T I
ππ→K K̄

(s, t, u)

= 16π
√

2
∞∑

�=0

(2� + 1)
[
qπ (t)qK (t)

]�
P�(zt )g

I
� (t) , (14)

where qP (t) = √
t σP (t)/2.

2.2 Isospin decomposition and reconstruction theorems

In terms of isospin, the reaction γ K → Kπ is equivalent
to pion photoproduction off a nucleon γ N → Nπ studied,
e.g., in Refs. [53–58]. The isospin decomposition for the
latter process thus also applies here:

F−0(γ K− → K−π0) = A(+) − A(0) ,

F0−(
γ K− → K̄ 0π−) = −√

2
(
A(−) − A(0)

)
,

F00(γ K̄ 0 → K̄ 0π0) = A(+) + A(0) ,

F−+(
γ K̄ 0 → K−π+) = √

2
(
A(−) + A(0)

)
. (15)

The amplitude A(0) is associated with the isoscalar photon
component. It has total isospin I = 1/2 in the s- and u-
channels and isospin I = 1 in the t-channel. The amplitudes
A(+) and A(−) on the other hand correspond to an isovector
photon. In the t-channel, they have pure isospin I = 0 and
I = 1, respectively. A(+) and A(−) can be decomposed in
terms of amplitudes A(1/2) and A(3/2) of definite isospin I =
1/2 and I = 3/2 in the s- and u-channels according to

A(+) = 1

3

(
A(1/2) + 2A(3/2)

)
,

A(−) = 1

3

(
A(1/2) − A(3/2)

)
. (16)

For dispersion-theoretical analyses of scattering or (three-
body) decay amplitudes, it is highly advantageous to decom-
pose these in terms of single-variable amplitudes (SVAs).
Decompositions of such a kind are commonly referred to as
reconstruction theorems [59–61]. While the end results have
the simple appearance of a combined partial-wave expan-
sion simultaneously in all three Mandelstam variables, the
derivation requires a careful analysis of the amplitudes using
fixed-s, -t , and -u dispersion relations [62]. With one excep-
tion, we neglect discontinuities of partial waves with � ≥ 2,
resulting in the following reconstruction theorems for A(0),
A(+), and A(−):

A(0)(s, t, u) = F (0)(s) + G(0)(t) + F (0)(u) ,

A(+)(s, t, u) = F (1/2)(s) + F (3/2)(s) + G(+)(t)

+ F (1/2)(u) + F (3/2)(u) ,

A(−)(s, t, u) = F (1/2)(s) − 1

2
F (3/2)(s) + (u − s)H(−)(t)

− F (1/2)(u) + 1

2
F (3/2)(u) . (17)

It can be shown that the decomposition (17), omitting the
D-wave SVA H(−)(t), is sufficient to reproduce the chiral
expansion of the γ K → Kπ amplitudes exactly up to cor-
rections of O(p10). We retain H(−)(t) since the correspond-
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ing P-wave is forbidden by charge conjugation, such that the
D-wave SVA represents the leading t-channel discontinuity
in A(−). Moreover, H(−) is enhanced due to the resonant
a2(1320) contribution.

Despite the (potentially) very high accuracy of the rep-
resentation (17) at low energies, the range of applicability
towards higher energies is clearly limited. One of the main
limiting factors for a description of cross-section data in the
direct or s-channel is the appearance of a resonant Kπ D-
wave around the K ∗

2 (1430), which has been measured to
also couple to γ K at least in the charged case [17]. Given a
width of ΓK ∗

2 (1430) = 100(2) MeV, this suggests our repre-
sentation to be applicable up to well below

√
s = 1.3 GeV.

Furthermore, for the dominant Kπ P-wave, we will stick to
the implementation of elastic unitarity with Kπ intermedi-
ate states only, which will break down around the K ∗(1410)

resonance (ΓK ∗(1410) = 232(21) MeV) with its large inelas-
tic coupling mainly to Kππ .1 For this reason, the disper-
sive amplitude representation we aim for is supposed to be
valid to good approximation up to

√
s = 1.2 GeV. As a side

remark, we point out that our analysis is at this point limited
to real photons, and hence its isovector part is not immedi-
ately transferable to the vector current in corresponding τ

decays, τ− → (K K̄π)−ντ .
The quantum numbers of all aforementioned SVAs and

the corresponding dominant resonances in the low-energy
regime are summarized in Table 1.

The decompositions in Eq. (17) are not unique, as only
the full amplitudes are physically observable, not the indi-
vidual SVAs. It is easily checked that A(0), A(+), and A(−)

are invariant under the following shifts in the SVAs:

δF (0)(s) = α + δ(s − s0) ,

δG(0)(t) = −2α + δ(t − s0) ,

δF (1/2)(s) = β − γ + 2ε(s − s0) − 2η s ,

δF (3/2)(s) = −β − γ + 2ε(s − s0) + 2η s ,

δG(+)(t) = 4γ + 4ε(t − s0) ,

δH(−)(t) = ε − 3η . (18)

In the following, we omit non-constant polynomial shifts
from consideration, as we will constrain the SVAs not to
grow for large arguments; this implies δ = ε = η = 0.
Therefore these shifts are forbidden if and only if the SVAs
satisfy the asymptotic constraints. We will furthermore fix
the t-channel SVAs, such that the only remaining ambiguity
in Eq. (18) is due to β, which allows us to shift a constant
between F (1/2) and F (3/2).

1 See, e.g., Refs. [63,64] for a coupled-channel treatment of Kπ ↔
Kππ in the P-wave.

Fig. 1 t-channel contributions to γ K → Kπ ; see main text for the
individual terms

3 Singularities in the t-channel

The usual approach to analyzing Khuri–Treiman-type sys-
tems is to solve the unitarity relations for the single-variable
amplitudes in all three channels fully self-consistently. This
is an obvious strategy for perfectly crossing-symmetric sys-
tems such as γπ → ππ [26], related three-pion decays [65],
or even pion–pion scattering [66], but has also been followed
for less symmetric processes such as η → π+π−π0 [67],
η′ → ηππ [68], or D → K̄ππ [69,70]. We do not pursue
this approach here as far as the t-channel is concerned, for the
following reasons: the t-channel singularities in γ K → Kπ

are either dominantly inelastic (ρ, a2), or consist of very nar-
row poles (φ), or both (ω). For this reason, in our analysis we
approximate these by fixed t-channel contributions, similar
in spirit e.g. to various analyses of γ γ → ππ [38,71] or the
description of left-hand cuts in η(′) → π+π−γ [72].

3.1 G(+) using vector meson dominance

The isospin I = 0 P-wave amplitude G(+)(t) is dominated
by the ω and φ vector mesons. We calculate this SVA via tree-
level exchanges with intermediate vector resonances V ∈
{ω, φ}, see Fig. 1. To this end we use the effective Lagrangian
from Ref. [73]. Encoding the relevant Goldstone bosons in

Φ = √
2

⎛

⎜
⎝

π0√
2

π+ K+

π− −π0√
2

K 0

K− K̄ 0 0

⎞

⎟
⎠ (19)

and the vector mesons in

Vμ = √
2

⎛

⎜
⎝

ρ+ω√
2

ρ+ K ∗+

ρ− −ρ+ω√
2

K ∗0

K ∗− K̄ ∗0 φ

⎞

⎟
⎠

μ

, (20)

the VΦγ interaction Lagrangian is given by [74]

LVΦγ = edV
4

εμναβFμνTr
({Q, Vα}∂βΦ

)
, (21)
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Table 1 Quantum numbers of the six single-variable amplitudes. The
isospin in the s-, t-, and u-channels is denoted by Is , It , and Iu , respec-
tively. Iγ refers to the isospin of the photon. TheC and G eigenvalues of

the single-variable amplitudes are denoted by ηC and ηG . The ‘/’ sym-
bol indicates a non-definite value. In the last column the resonances that
dominate the respective SVAs are given

Is It Iu Iγ ηG ηC Resonance

F (1/2) 1/2 / 1/2 1 / / K ∗

F (3/2) 3/2 / 3/2 1 / /

F (0) 1/2 / 1/2 0 / / K ∗

G(0) / 1 / 0 + − ρ

G(+) / 0 / 1 − − ω, φ

H(−) / 1 / 1 − + a2

Table 2 The absolute values of the coupling constants required for
the tree-level resonance exchange calculations are determined via the
partial widths [78] of the corresponding two-body decays

Partial width Coupling constant

ω → π0γ 713.2(19.9) keV |dω| = 2.32(4) GeV−1

ρ0 → π0γ 70.1(9.0) keV |dn
ρ | = 2.22(15) GeV−1

ρ± → π±γ 66.5(7.4) keV |dc
ρ | = 2.16(12) GeV−1

φ → π0γ 5.5(2) keV |d̄φ | = 0.135(3) GeV−1

φ → K+K− 2.091(22) MeV |gc
φ | = 6.33(3)

φ → K 0
L K

0
S 1.445(18) MeV |gn

φ | = 6.48(4)

ω → K K̄ |gω| = 7.1(8)

a2 → K K̄ 5.2(9) MeV |gT | = 22(2) MeV

a2 → γπ 311(32) keV |cT | = 0.062(3) GeV−1

with the quark charge matrix Q = diag(2,−1,−1)/3 and the
electromagnetic field strength tensor Fμν = ∂μAν − ∂ν Aμ.
Expanding Eq. (21), we find the interaction Lagrangian for
Vπ0γ vertices

LVπ0γ = e

2
εμναβFμν

[
dV (cρρ0

α + cωωα) + d̄φφα

]
∂βπ0 ,

(22)

where the Clebsch–Gordan coefficients cρ = 1/3, cω = 1
account for SU (3) symmetry, and we have added an OZI-
suppressed [75–77] φπ0γ coupling d̄φ by hand, normalized
in analogy to the ωπ0γ vertex. The couplings dV are fixed
via the corresponding partial widths

Γ (V → π0γ ) = e2c2
V d

2
V

96π

(
M2

V − M2
π

MV

)3

. (23)

For the results listed in Table 2, we have determined the
couplings dω, dn/c

ρ separately, which however agree with each
other within uncertainties.

The interaction Lagrangian for VΦΦ vertices reads

LVΦΦ = gV
4

Tr
(
Vμ

[
∂μΦ,Φ

])
. (24)

We fix the coupling gc
φ via the φ → K+K− partial width

Γ
(
φ → K+K−) = (gc

φ)2

96π
Mφ

(

1 − 4M2
K±

M2
φ

) 3
2

. (25)

The result is also shown in Table 2, and deviates slightly from
the one for neutral kaons. Both agree with the ρππ coupling
at the 5% level, |gρ | = 6.01

(+0.04
−0.07

)
[79]. Note that we neglect

complex phases for the t-channel couplings throughout.
The ω → K K̄ coupling required for the dominant ω-

exchange contribution cannot be determined from a direct
decay. One option is to simply fix it using SU (3) symmetry,
with plausible guesses at best of the uncertainty attached. A
somewhat more data-driven access to this coupling can be
obtained by relying on a vector-meson-dominance (VMD)
model fitted to time-like kaon form factor data from e+e− →
K+K−, KSKL , and τ− → K−KSντ , see Model II in Ref.
[80]. Together with the ω–photon coupling from ω → e+e−
[27] we obtain gω as shown in Table 2. The error is dominated
by the fit value from Ref. [80]; within uncertainties, gω is
indeed compatible with SU (3) symmetry.

Adding the ω and φ tree-level contributions, we obtain the
SVA

G(+)(t) = e

[
gωdω

M2
ω − t

−
√

2gc
φ d̄φ

M2
φ − t

]
. (26)

Note that the sign difference arises due to the Clebsch–
Gordan coefficients in the VΦΦ Lagrangian. We use zero-
width propagators for the vector mesons as t is negative in
γ K → Kπ .
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3.2 G(0) with ππ intermediate states

The isospin I = 1 γπ → K K̄ P-wave G(0)(t) is dominated
by the rather broad ρ(770). Since the ρ is a ππ P-wave res-
onance, we can employ a more sophisticated approach than
the VMD approximation and compute this SVA dispersively,
taking into account intermediate ππ states; see Fig. 1. The
corresponding unitarity relation reads

discG(0)(t) = −i
t

2
√

2
σ 3

π (t)
[
g1

1(t)
]∗
h1

1(t) , (27)

with the isospin I = 1 P-waves h1
1(t) for γπ → ππ and

g1
1(t) for ππ → K K̄ as defined in Eqs. (11) and (14), respec-

tively.
We cast G(0) into a dispersion integral

G(0)(t) = −1

4
√

2π

∫ ∞

4M2
π

dt ′
t ′σ 3

π (t ′)
[
g1

1(t ′)
]∗
h1

1(t
′)

t ′ − t
. (28)

The input partial waves are taken from Refs. [26,81] for
h1

1(t) and g1
1(t), respectively. Modulus and phase of g1

1(t)
are shown in Fig. 2 including uncertainties, and compared to
a previous parameterization [48].

Performing the integration is straightforward and results
in the SVA G(0) shown in Fig. 3. In addition, calculating the
isovector γπ → K K̄ amplitude via neutral ρ0 exchange in
strict analogy to the amplitudes derived in Sect. 3.1, we obtain
a VMD approximation forG(0). Here, we have fixed the ρK K̄
coupling from gcφ and SU (3) symmetry for simplicity, while

the ρπγ coupling is determined via the decay ρ0 → π0γ

(which is compatible with ρ± → π±γ within uncertainties
as required by isospin symmetry), see Table 2. The VMD
approximation is also presented in Fig. 3. For the purpose
of this illustration we show the amplitudes for positive t and
use a Breit–Wigner propagator 1/(t − M2

ρ + iMρΓ̃ρ(t)) for
the simplified ρ exchange. An energy-dependent width

Γ̃ρ(t) = Γρ

t

M2
ρ

(
σπ(t)

σπ (M2
ρ)

)3

(29)

ensures the correct threshold behavior of the phase. The
VMD approximation agrees with the dispersive solution at
the 20% level in the region of the ρ peak.

3.3 H(−) using tensor meson dominance

For the resonant t-channel D-wave contribution we follow
the approach of Ref. [72]. We compute the SVA H(−) via
the tree-level diagram with an intermediate a2(1320) tensor
meson, see Fig. 1. For the interaction vertices we use the

formalism presented in Ref. [82]. The coupling gT for the
a2K K̄ vertex is related to the partial width via

Γ (a2 → K K̄ ) = g2
Tm

3
a2

120πF4
π

σ 5
K

(
m2

a2

)
. (30)

The extracted value gT = 22(2) MeV is about 20% smaller
than the ones extracted from a2 → πη [72] or f2 → ππ

[82], indicating a certain amount of SU (3) breaking. Simi-
larly, the coupling cT for the a2γπ vertex can be determined
via the partial width of radiativea2 decays [78] (updated com-
pared to Ref. [72] due to the inclusion of the new COMPASS
measurement [83]),

Γ (a2 → γπ) = e2c2
T

160πF2
π

(
m2

a2
− M2

π

)5

m5
a2

. (31)

The results are shown in Table 2. The tree-level contribution
of the a2 meson reads

H(−)(t) = 2
√

2ecT gT
F3

π

1

m2
a2

− t
. (32)

Following the arguments presented in Ref. [72] we fix the
signs of the coupling constants via

cT gT = +|cT gT |. (33)

The high-energy behavior of the t-channel amplitudes will
become important in the following sections. We observe that
the P-waves run like 1/t and the D-wave behaves like a
constant due to the kinematic factor in front of H(−)(t).

4 Dispersive representations and Khuri–Treiman
solutions

In this section, we discuss the main part of the dispersive rep-
resentation of the γ K → Kπ amplitudes, the reconstruction
of the s- and u-channel partial waves or SVAs. This consis-
tently incorporates Kπ P-wave rescattering in the elastic
approximation.

From the reconstruction theorems in Sect. 2.2, we can
obtain the relevant partial waves, i.e., the P-waves of differ-
ent isospins, via Eq. (7) with the result

f (i)
1 (s) = F (i)(s) + F̂ (i)(s) , i = 0, 1/2, 3/2 . (34)

Here, the functions F̂ (i)(s) originate from the t- and u- chan-
nel SVAs; they only contribute left-hand cuts to the partial
waves and hence have no discontinuities along the right-
hand cut. The F̂ (i)(s) can be collected from appropriate lin-
ear combinations of the different reconstruction theorems,
resulting in
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1(s)

F̂ (0)(s) = 3

4

∫ 1

−1
dzs

(
1 − z2

s

) [
G(0)(t) + F (0)(u)

]
,

F̂ (1/2)(s) = 1

4

∫ 1

−1
dzs

(
1 − z2

s

) [
G(+)(t) + 2(u − s)H(−)(t)

−F (1/2)(u) + 2F (3/2)(u)
]

,

F̂ (3/2)(s) = 1

2

∫ 1

−1
dzs

(
1 − z2

s

) [
G(+)(t) − (u − s)H(−)(t)

+2F (1/2)(u) + 1

2
F (3/2)(u)

]
. (35)

We observe that the isoscalar and isovector parts of the pho-
ton completely decouple from each other, since the isovector
inhomogeneities only depend on the isovector SVAs and vice
versa for the isoscalar part.

In the approximation of elastic unitarity, a right-hand cut
in the amplitude is induced by intermediate Kπ states, see
Fig. 4. Along the right-hand cut, the corresponding unitarity

γ

K

K

π

K

π

Fig. 4 Diagram of the s-channel contribution to γ K → Kπ

relation for the P-waves f (i)
1 (s) reads

Im f (i)
1 (s) = κ(s)

[
t I1 (s)

]∗
f (i)
1 (s) θ (s − sth) , (36)

with the Kπ P-wave amplitude t I1 (s). Here, the partial waves
for i = 0, 1/2 are both associated with I = 1/2, while
i = 3/2 requires I = 3/2. The unitarity relation implies
Watson’s final-state theorem, which states that the phase
of f (i)

1 (s) coincides with δ I1 (s) [84]. Inserting Eq. (34) and
remembering that the F̂ (i)(s) are free of right-hand-cut dis-
continuities, we find a unitarity relation for the SVAs,

Im F (i)(s) =
(
F (i)(s) + F̂ (i)(s)

)
e−iδ I1 (s) sin δ I1 (s). (37)

Due to Eq. (37), the functions F̂ (i)(s) are usually referred
to as inhomogeneities, as they constitute the inhomogeneous
contributions to the unitarity relations for F (i)(s).

A solution to the corresponding homogeneous unitarity
relation, setting the inhomogeneities to zero, is given by the
Omnès function

Ω I (s) = exp

(
s

π

∫ ∞

sth

ds′

s′
δ I1 (s′)

(s′ − s)

)

, (38)
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determined entirely by the corresponding Kπ phase shifts.
The input for the latter is taken from Ref. [49]. We smoothly
continue the I = 1/2 phase shift to π starting at

√
s =

1.7 GeV. As a result, we obtain the high-energy behavior of
the corresponding Omnès function Ω1/2(s → ∞) ∝ 1/s.
Since we approximate the I = 3/2 phase shift to be zero, the
Omnès function is just Ω3/2(s) = 1. We therefore suppress
the superscript Ω1/2(s) = Ω(s) in the following. The Omnès
function and its phase are shown in Fig. 5.

The solution of the full, inhomogeneous unitarity rela-
tion (37) for the single-variable amplitudes is subsequently
obtained using a separation ansatz with the Omnès function.
The results are the Khuri–Treiman equations [47] for the
SVAs

F (0,1/2)(s) = Ω(s)

(
P(0,1/2)
n−1 (s)

+ sn

π

∫ ∞

sth

ds′

s′n
F̂ (0,1/2)(s′) sin δ

1/2
1 (s′)

|Ω(s′)|(s′ − s)

)
,

F (3/2)(s) = P(3/2)

n′−1 (s) . (39)

We can solve for the SVAs by inserting the fixed t-channel
contributions from Sect. 3 into the inhomogeneities and then
solving Eq. (39) iteratively. The system is linear in the sub-
traction constants, so that it is possible to construct basis func-
tions. The calculation of the latter converges very quickly,
such that they remain practically unchanged after at most
five iterations.

Demanding that the single-variable amplitudes in Eq. (39)
have the same high-energy behavior leads to constraints on
the order of the subtraction polynomials of the form n = n′+
1. We will investigate two different subtraction schemes. The
first one is n = 1, which we will call the minimal subtraction
scheme. In this case the I = 3/2 component needs to vanish
and we are not able to include the D-wave in the t-channel.
As a result, the subtraction polynomials are simply given by

P(0)
0 (s) = a(0)

1 , P(1/2)
0 (s) = a(1/2)

1 . (40)

Asymptotically, the scattering amplitudes A(i)(s, t, u) drop
with one inverse power of the Mandelstam variables, hence
no polynomial ambiguity, see Eq. (18), can be exploited.
If we subtract one more time, we obtain n = 2 and the
I = 3/2 component is a constant, while the isospin I = 1/2
subtraction polynomials are linear:

P(0)
1 (s) = a(0)

2 + b(0)
2 s ,

P(1/2)
1 (s) = a(1/2)

2 + b(1/2)
2 s ,

P(3/2)
0 (s) = a(3/2)

2 . (41)

In this scheme, the A(i)(s, t, u) approach a constant for high
energies. The constant ambiguity of Eq. (18) (due to the
parameter β) allows us to reduce the number of free parame-
ters by one, as we can eliminate a(3/2)

2 and absorb its effects

into a(1/2)
2 . This means that we can drop the SVA F (3/2)(s)

also in the n = 2 subtraction scheme, due to Eq. (39).
While the angular projection integrals for the inhomo-

geneities in Eq. (35) are straightforward to calculate for phys-
ical values of s, the continuation into the complex s-plane and
onto the second Riemann sheet for the investigation of reso-
nance poles and their residues is far less obvious. For this pur-
pose, we use an alternative kernel method [27]: we replace the
SVAs by their dispersive representations, given through inte-
grals along the right-hand discontinuities, and evaluate the
angular integrals explicitly. In the twice-subtracted scheme,
and neglecting for simplicity the t-channel D-wave contri-
butions, this procedure results in

f (s) = 3

4

∫ 1

−1
dzs

(
1 − z2

s

)
[A(s) + B(t) + C(u)]

= 3

4

∫ 1

−1
dzs

(
1 − z2

s

) [
c(1)
s,2 + c(2)

s,2s

+ 1

π

∫ ∞

sth

ds′

s′2
s2

s′ − s
Im A(s′)

]

+ 3

4

∫ 1

−1
dzs

(
1 − z2

s

) [
c(1)
t,2 + c(2)

t,2 t

+ 1

π

∫ ∞

sth

ds′

s′2
t2

s′ − t
Im B(s′)

]

+ 3

4

∫ 1

−1
dzs

(
1 − z2

s

) [
c(1)
u,2 + c(2)

u,2u

+ 1

π

∫ ∞

sth

ds′

s′2
u2

s′ − u
Im C(s′)

]

= c(1)
s,2 + c(2)

s,2s + 1

π

∫ ∞

sth

ds′Ks
2(s, s′)Im A(s′)

+ c(1)
t,2 + c(2)

t,2a
+Δ + 1

π

∫ ∞

sth

ds′K t
2(s, s

′)Im B(s′)

+ c(1)
u,2 + c(2)

u,2a
−Δ + 1

π

∫ ∞

sth

ds′Ku
2 (s, s′)Im C(s′)

(42)

for a generic partial wave f . In the concrete applications, the
complete reconstruction theorems from Sect. 2.2 need to be
inserted in place of the functions A(s), B(t), and C(u). The
explicit forms of the kernel functions, as well as analogously
defined kernels for the once-subtracted form and the gener-
alization including the effect of the t-channel D-wave SVA,
are given in Appendix A.

Using this method it is possible to calculate the partial
waves in the full complex plane with the correct analytic con-
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tinuation. The solution depends on two or four free parame-
ters in the different subtraction schemes.

5 Matching

In this section, we discuss how to fix the free parameters of
the dispersive representation, the subtraction constants, by
matching them to the chiral anomaly on the one hand, and
the radiative couplings of the K ∗(892) resonances on the
other.

5.1 Chiral anomaly

The Wess–Zumino–Witten anomaly [1,2] yields low-energy
theorems for the different γ K → Kπ amplitudes in the limit
of vanishing energies (s = t = u = 0) and vanishing (light
as well as strange) quark masses. It contributes to the neutral-
pion-production amplitudes, but not to the charge-exchange
processes:

F−0/00(0, 0, 0) = FKKπ , F0−/−+(0, 0, 0) = 0 , (43)

where [45,46]

FKKπ = e

4π2F3
π

= 9.8 GeV−3 (44)

is given in terms of the pion decay constant Fπ =
92.28(3)MeV and the electric charge e, and is actually iden-
tical to the similarly defined anomaly F3π for γπ → ππ

[7–9]. Equation (44) is quoted for fixed number of colors
Nc = 3 only; compare Ref. [85] for an extended discussion
on how to properly generalize this to Nc �= 3.

In contrast to F3π , however, we cannot safely assume
higher-order corrections to be small. For the former, quark-
mass renormalization effects were estimated to enhance F3π

by 6.6(1.0)% [6,26], based on resonance saturation. As this
correction term in fact scales with s + t + u = 3M2

π , it
is not unreasonable to caution that a similar effect might
potentially be much larger for γ K → Kπ . In addition, we
would naturally expect the denominator of Eq. (44) to be
modified according to F3

π → Fπ F2
K at higher orders, which,

as FK is much further away from the common chiral-limit
value, FK /Fπ = 1.193(2) [78], would be another large effect
(although in the opposite direction). Since it is hard to esti-
mate the correlations between all these higher-order correc-
tions, we simply estimate a resulting uncertainty of 25% on
FKKπ . A complete next-to-leading-order calculation of all
γ K → Kπ channels in chiral perturbation theory would
certainly be highly desirable (see Refs. [45,46] for partial
results).

Obviously, also the vanishing charge-exchange amplitude
will be modified due to higher-order corrections. Since a rel-
ative error estimate is not meaningful here, we use the abso-
lute uncertainty given for the anomaly also for the charge-
exchange amplitudes. Our combined assumption on the dif-
ferent amplitude normalizations in the soft-meson limits is
therefore

F−0/00(0, 0, 0) = 9.8(2.4) GeV−3 ,

F0−/−+(0, 0, 0) = 0.0(2.4) GeV−3 . (45)

Inserting the reconstruction theorems, we find the two sub-
traction constants given explicitly by
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a(0)
n = 1

2

[
F0−/−+(0, 0, 0) − G(0)(0)

]

= 0.9(1.2) GeV−3 ,

a(1/2)
n = 1

2

[
F−0/00(0, 0, 0) − G(+)(0)

]

= 1.0(1.3) GeV−3 , n ∈ {1, 2} . (46)

Here we have used G(+)(0) = e
(
gωdω/M2

ω −√
2gφdφ/M2

φ

)

= 7.8(8) GeV−3, cf. Eq. (26), where the error is entirely
dominated by gω, see Table 2. The ρ contribution G(0)(0)

can be evaluated by a sum rule based on Eq. (28),

G(0)(0) = −1

4
√

2π

∫ ∞

4M2
π

dt ′σπ(t ′)3[g1
1(t ′)

]∗
h1

1(t
′)

= −1.7(2) GeV−3 . (47)

The uncertainty is given by the one in the ππ → K K̄ P-
wave [81], which at the same time covers the difference to
the alternative parametrization of Ref. [48], see Fig. 2.

5.2 Radiative couplings of the K ∗(892)

In the narrow-width approximation, the radiative widths of
the K ∗(892) vector mesons are given by

1

4
ΓK ∗0→K 0γ = ΓK ∗±→K±γ = e2d2

K ∗
864π

(
M2

K ∗ − M2
K

MK ∗

)3

,

(48)

where the conventions for the coupling constants dK ∗ are
chosen such that they coincide with dω in the SU (3) symme-
try limit, see Eq. (23) and Table 2. The Particle Data Group
[78] lists only three measurements from which these radia-
tive widths have been extracted, one for K ∗0 → K 0γ [19]
and two for K ∗± → K±γ [18,37]. The extracted charged
and neutral radiative couplings read

dc
K ∗ = 2.50(12) GeV−1 , dn

K ∗ = 1.93(8) GeV−1 , (49)

and thus violate SU (3) symmetry at the 20% level.
For the further discussion, we require amplitudes, and

hence radiative couplings, of definite (photon) isospin, d(0)
K ∗

and d(1/2)
K ∗ . To this end, we use the decomposition of the quark

charge matrix into its isoscalar and isovector components via
the Gell-Mann matrices according to

Q = 1

2
λ3 + 1

2
√

3
λ8 , (50)

which leads to the relations

d(0)
K ∗ = 2dn

K ∗ − dc
K ∗ = 1.3(20) GeV−1 ,

d(1/2)
K ∗ = 1

3

(
2dn

K ∗ + dc
K ∗

) = 2.12(6) GeV−1 . (51)

In the SU (3) symmetry limit, all couplings would be equal:
d(0)
K ∗ = d(1/2)

K ∗ = dc
K ∗ = dn

K ∗ . Phenomenologically, Eq. (51)
even enhances the symmetry breaking found in the physical
charge channels, Eq. (49). As our formalism only relies on
isospin symmetry and not on SU (3), there is no a priori prob-
lem in incorporating such seemingly large SU (3) violation.

For a model-independent extraction of the radiative K ∗
coupling constants, we have to analytically continue the
γ K → Kπ amplitudes onto the second Riemann sheet and
connect them to the residues of the corresponding poles. The
continuation to the second sheet can be found from the dis-
continuity in Eq. (36),

f (i)
1,I (s) − f (i)

1,I I (s) = −2κ̂(s)t1/2
1,I I (s) f

(i)
1,I (s) , (52)

where I (I I ) denotes the first (second) Riemann sheet, and

κ̂(s) =
√

−λ(s, M2
π , M2

K )

s
, κ̂(s ± iε) = ∓iκ(s) , (53)

which leads to the correct analytic structure including the
branch cut. In the vicinity of the pole we have [86]

t1/2
1,I I (s) = g2

K ∗s κ2(s)

64π(sK ∗ − s)
,

f (0)
1,I I (s) = 1

3

ed(0)
K ∗gK ∗

sK ∗ − s
,

f (1/2)
1,I I (s) = ed(1/2)

K ∗ gK ∗

sK ∗ − s
, (54)

with conventions for the coupling constants chosen such that
they match onto the VMD expressions with the Lagrangians
introduced in Eqs. (21) and (24). Inserting these in Eq. (52)
we find

f (i)
1,I I (sK ∗)

t1/2
1,I I (sK ∗)

= ec(i)
K ∗d

(i)
K ∗

gK ∗
128π

sK ∗κ2(sK ∗)

= 2iκ(sK ∗) f (i)
1,I (sK ∗) , (55)

where c(0)
K ∗ = 1/6 and c(1/2)

K ∗ = 1/2 take the two dif-
ferent normalizations into account. This is the connection
between the (radiative) couplings and the dispersive solu-
tion, depending linearly on the subtraction constants and
evaluated on the physical (first) Riemann sheet only. Tak-
ing the K ∗ → Kπ coupling |gK ∗ | = 6.07(67) with a small
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phase of arg(gK ∗) = −3.1(2)◦ and the K ∗ pole position
sK ∗ = 0.7948(20) − i 0.0515(20) GeV2 from a dispersive
analysis of Kπ scattering [87,88], all other parameters are
determined. With the basis functions and the kernel method
from Sect. 4 we are able to calculate the partial waves at the
pole position as linear functions of the subtraction constants.
The errors are the propagated uncertainties of the pole posi-
tion not including other sources, as for example the phase
shift or t-channel parameters. For the minimal subtraction
scheme we obtain

f (0)(sK ∗) = a(0)
1 [1.58(17) − 8.59(16)i]

− [0.914(20) − 1.046(20)i] GeV−3 ,

f (1/2)(sK ∗) = a(1/2)
1 [0.88(15) − 7.16(14)i]

+ [1.427(22) − 1.767(21)i] GeV−3 , (56)

while the twice subtracted case yields

f (0)(sK ∗) = a(0)
2 [1.53(17) − 7.94(16)i]

+ b(0)
2 [0.39(11) − 5.71(11)i] GeV2

− [0.869(20) + 0.383(20)i] GeV−3 ,

f (1/2)(sK ∗) = a(1/2)
2 [0.89(15) − 7.41(14)i]

+ b(1/2)
2 [0.47(12) − 6.16(12)i] GeV2

+ [1.336(22) − 0.580(21)i] GeV−3 , (57)

omitting the a2 contribution. Note that the subtraction-
constant-independent terms originate from the t-channel
contributions. Including the a2 resonance changes the
isovector-photon amplitude only,

f (1/2)(sK ∗) = a(1/2)
2 [0.89(15) − 7.41(14)i]

+ b(1/2)
2 [0.47(12) − 6.16(12)i] GeV2

+ [1.091(12) + 0.451(12)i] GeV−3 . (58)

We do not quote the uncertainties due to the t-channel con-
tributions separately as, in any fit to experimental data, these
will be strongly correlated with the subtraction constants;
see, e.g., Eq. (46).

6 Results

We begin the discussion of numerical results with the min-
imal subtraction scheme, which contains two subtractions
constants. According to the discussion of the previous sec-
tion, we can choose to fix these in two different ways: via
matching to the chiral anomaly or, more precisely, our esti-
mate of the amplitudes at the kinematical point s = t =

u = 0, cf. Eq. (46); or by reproducing the experimentally
measured radiative K ∗ couplings via Eqs. (55) and (56).

We start with the first option and match the subtraction
constants to the low-energy theorems. Figure 6 shows real
and imaginary parts of the full s-channel partial waves for all
four charge configurations, and compares these to a tree-level
model for the two γ K− channels with Breit–Wigner prop-
agators for all vector exchanges taken from Ref. [44]. We
propagate the uncertainties both on the subtraction constants
and the t-channel amplitudes. Obviously, the error bands
are huge; a strong deviation of the central values from the
tree-level model is also observed. This illustrates the very
strong dependence of the partial waves, and in particular the
K ∗(892) resonance signals, on the amplitudes in the low-
energy limit. By reversing the argument, a concise measure-
ment of the cross section around the resonance peak will help
determine the anomaly and, potentially, its higher-order cor-
rections very accurately if the minimal subtraction scheme
can be validated experimentally to be sufficient. This is in
strict analogy to the argument of Ref. [26] that the full res-
onance signal of the ρ(770) can be employed to extract the
chiral anomaly in γπ → ππ .

We note that the anomaly-matched amplitude for γ K− →
K−π0 shows no zero crossing in the real part around the
K ∗(892), since it includes the I = 3/2 partial wave as well.
The latter is non-vanishing due to its inhomogeneity also for
a vanishing I = 3/2 single-variable amplitude; cf. Eq. (35).
Watson’s final-state theorem is fulfilled for the I = 1/2
amplitudes by construction. This effect is incorporated in all
partial waves for physical charge channels with the different
subtraction schemes, but only easily discernible in Fig. 6. The
radiative K ∗ couplings calculated from this solution corre-
spondingly have huge uncertainties:

d(0)
K ∗ = [1.7(2.6) + 0.06(14)i] GeV−1 ,

d(1/2)
K ∗ = [0.7(7) − 0.2(6)i] GeV−1 . (59)

The central value for the isoscalar coupling is closer to the
experimental result, while the isovector one differs from its
phenomenological value by two standard deviations. The
large errors reflect the variation of the ω-exchange amplitude,
which is used explicitly in the matching, and the higher-order
corrections to the anomaly, which we have estimated rather
conservatively. Furthermore the complex phases are small
as expected (cf. analogous ρ couplings [27]), but the signs
cannot be determined due to the large uncertainties. Overall,
the tendency towards smaller radiative couplings is in agree-
ment with Fig. 6, where the K ∗ resonance peaks are seen
to be significantly less pronounced than what the tree-level
model predicts in the γ K− amplitudes [44].

As the second approach, we fix the real subtraction con-
stants in the minimal subtraction scheme using the radiative
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Fig. 6 Results for γ K− → K−π0, γ K− → K̄ 0π−, γ K̄ 0 → K̄ 0π0,
and γ K̄ 0 → K−π+ P-wave amplitudes (from top to bottom) in the
minimal subtraction scheme, matched to the chiral anomaly and the
K ∗ radiative couplings separately. Left and right panels show real and

imaginary parts of the partial waves, respectively. For comparison a
Breit–Wigner model [44] is also shown. The error bands refer to the
uncertainties on the subtraction constants and the t-channel amplitudes
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K ∗ couplings derived from experiment. This results in

a(0)
1 = 0.74(12) GeV3 , a(1/2)

1 = 3.18(42) GeV3 . (60)

Real and imaginary parts of the resulting partial waves are
also shown in Fig. 6 for all four charge configurations.
We observe that the uncertainties are much smaller in this
scheme. The heights of the resonance peaks match the sim-
ple Breit–Wigner parameterization [44] around the reso-
nance mass. When calculating the different amplitudes at
s = t = u = 0 for these subtraction constants, we find

F−0(0, 0, 0) = 14.4(1.8) GeV−3 ,

F0−(0, 0, 0) = −1.4(4) GeV−3 ,

F00(0, 0, 0) = 13.8(2.0) GeV−3 ,

F−+(0, 0, 0) = −1.4(4) GeV−3 . (61)

While the low-energy limits for the charge-exchange ampli-
tudes, to which the Wess–Zumino–Witten anomaly does not
contribute, come out well within the range we have esti-
mated roughly due to possible higher-order corrections, see
Eq. (45), the amplitudes for π0 production exceed the value
of the chiral anomaly by 40–50%, or 2–2.5σ in terms of the
experimental uncertainties. This confirms the statement we
have made above: if the minimal subtraction scheme turns
out to be sufficient to describe the cross section data up to
and around the K ∗ resonance, even the rather time-honored
data of Refs. [18,19,37] will allow us to draw strong conclu-
sions on quark mass corrections to the chiral amplitudes for
γ K → Kπ .

To obtain a larger degree of flexibility for the description
of future high-precision cross section data, we can apply the
twice subtracted version with four degrees of freedom. This
allows us to include both constraints, low-energy theorems
and resonance couplings, and combine them into a prediction
for experiment. Using the subtraction constants a(i)

2 found
from low-energy matching, we can calculate the remaining
b(i)

2 via the resonance couplings, with the result

b(0)
2 = −0.4(1.7) GeV−5, b(1/2)

2 = 2.7(1.7) GeV−5. (62)

The corresponding amplitude plots are shown in Fig. 7, again
for all four charge configurations. The uncertainty bands for
the partial waves are smaller due to the large anti-correlation
of the errors of the two subtraction constants in each isospin
channel.

Furthermore, in the twice subtracted representation it is
possible to include the a2 t-channel contribution, which
changes the isovector part of the photon only. The corre-
sponding plots are also included in Fig. 7; the updated sub-

traction constants b(i)
2 read

b(0)
2 = −0.4(1.7) GeV−5, b(1/2)

2 = 2.9(1.7) GeV−5. (63)

Comparing the two solutions with and without a2-exchange,
we observe that this mechanism is fully negligible below
1 GeV for neutral-pion production. Furthermore, the devia-
tions in the charge-exchange channels are inside the uncer-
tainty bands and therefore also small. We conclude that it is
unnecessary to take D- and higher partial waves into account
when considering the left-hand cuts at the current level of
accuracy.

Using Eq. (8) and the respective partial-wave amplitudes,
we can calculate the cross sections for all physical channels,
shown in Fig. 8. While the differences between the various
channels at low energies, very discernible in the amplitudes,
are hardly observable due to the phase space factors – the
onset of the visible cross sections only seems to be deferred
by about 50 MeV for the charge-exchange reactions with
their suppressed near-threshold amplitudes – we see a sig-
nificant difference between the π0 and the charge-exchange
channels above the K ∗(892), where we predict a strong sup-
pression of the π0 production cross sections around 1.1 GeV.
As we expect D-wave corrections to become important only
above those energies, such a suppression should be realisti-
cally observable in experiments. Note that the order of mag-
nitude for the cross sections is the same as for the related
γπ → ππ process [27]. Furthermore we observe that with
incoming neutral kaons, the cross sections are enhanced by
about a factor of two compared to their charged-kaon coun-
terparts, while the outgoing-neutral-pion channels are sup-
pressed by again roughly a factor of two in the peak region
in comparison to the charge-exchange reactions.

7 Summary

In this paper, we have constructed a dispersive representation
for the reaction γ K → Kπ that can be measured with kaon
beams using the Primakoff mechanism. Our formalism relies
on isospin symmetry and describes all four physical charge
channels simultaneously. We have solved Khuri–Treiman-
type equations for the dominant s-(and u-)channel P-wave,
based on fixed t-channel singularities that are constrained by
data and phenomenology as far as possible. We have demon-
strated that subtraction constants, the free parameters of the
theory, can be matched to the low-energy prediction by the
chiral anomaly, or the radiative couplings of the K ∗(892)

resonance, or both. The dispersive amplitudes provide the
correct, model-independent framework to continue data both
to the subthreshold region, where it can be matched to chi-
ral perturbation theory, and into the complex-energy plane,

123



221 Page 14 of 18 Eur. Phys. J. C (2021) 81 :221

−20

−15

−10

−5

0

5

10

15

20

25

30

35

0.6 0.7 0.8 0.9 1 1.1 1.2

R
e(

f
− 0

)
in

G
eV

−3

√
s in GeV

2 sub with a2
2 sub

Breit–Wigner

−5

0

5

10

15

20

25

30

35

40

45

50

0.6 0.7 0.8 0.9 1 1.1 1.2

Im
(f

−0
)

in
G

eV
−3

√
s in GeV

2 sub with a2
2 sub

Breit–Wigner

−40

−30

−20

−10

0

10

20

30

40

0.6 0.7 0.8 0.9 1 1.1 1.2

R
e(

f
0 −

)
in

G
eV

−3

√
s in GeV

2 sub with a2
2 sub

Breit–Wigner

70

−60

−50

−40

−30

−20

−10

0

10

Im
(f

0−
)

in
G

eV
−3

−
0.6 0.7 0.8 0.9 1 1.1 1.2√

s in GeV

2 sub with a2
2 sub

Breit–Wigner

−30

−20

−10

0

10

20

30

40

50

0.6 0.7 0.8 0.9 1 1.1 1.2

R
e(

f
00

)
in

G
eV

−3

√
s in GeV

2 sub with a2
2 sub

−10

0

10

20

30

40

50

60

70

0.6 0.7 0.8 0.9 1 1.1 1.2

Im
( f

00
)

in
G

eV
− 3

√
s in GeV

2 sub with a2
2 sub

−50

−40

−30

−20

−10

0

10

20

30

40

50

0.

R
e(

f
− +

)
in

G
eV

−3

6 0.7 0.8 0.9 1 1.1 1.2√
s in GeV

2 sub with a2
2 sub

−10

0

10

20

30

40

50

60

70

80

90

100

0.6 0.7 0.8 0.9 1 1.1 1.2

Im
(f

−+
)

in
G

eV
−3

√
s in GeV

2 sub with a2
2 sub

Fig. 7 Results for γ K− → K−π0, γ K− → K̄ 0π−, γ K̄ 0 → K̄ 0π0,
and γ K̄ 0 → K−π+ P-wave amplitudes (from top to bottom), matched
to the anomaly and the couplings simultaneously in the twice subtracted
scheme, with and without the a2 resonance. Left and right panels show

real and imagnary parts of the partial waves, respectively. For compari-
son a Breit–Wigner model [44] is also shown. For the solution without
the a2 resonance, the error bands refer to the uncertainties on the sub-
traction constants and the t-channel amplitudes
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Fig. 8 Cross section results for γ K− → K−π0, γ K− → K̄ 0π−,
γ K̄ 0 → K̄ 0π0, and γ K̄ 0 → K−π+ (from top to bottom) including
P-wave amplitudes. Left panels: minimal subtraction scheme, matched
to the chiral anomaly and the K ∗ radiative couplings separately. Right

panels: twice subtracted scheme, matched to anomaly and radiative cou-
plings simultaneously, with and without the a2 contribution. The error
bands correspond the propagated error of the real and imaginary parts
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where resonance couplings are defined as pole residues on
unphysical Riemann sheets.

Options for future theoretical improvement comprise in
particular the calculation of the next-to-leading-order, or
O(p6), corrections to the chiral anomaly for this reaction.
Furthermore, a reduction of the uncertainty in the ω → K K̄
coupling, which affects our amplitude representation rather
strongly, would be highly desirable; this may be achievable
via a refined analysis of the kaon vector form factor.

Once high-precision, high-statistics experimental data
is available, from COMPASS++/AMBER or elsewhere, a
simultaneous fit to the two observable charge configura-
tions in γ K− fixes the subtraction constants, from where
it is possible to extract the physical quantities of interest.
The dispersive representation therefore allows future exper-
iments to determine precise information on the anomaly in
a photon–kaon reaction as well as the radiative couplings of
the K ∗(892) resonance from the complete measured energy
range up to

√
s ≈ 1.2 GeV.
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Appendix A: Kernel functions

Starting from the definition in Eq. (42) we can calculate the
twice subtracted kernel functions explicitly. The form of the
three kernel functions is given by [86]

Ks
2(s, s′) = s2

s′2 (s′ − s)
,

K t
2(s, s

′) = 3

2b

[(
1 − x2

)
Q0(x) + x

]
− 1

s′ − a+Δ

s′2 ,

Ku
2 (s, s′) = 3

2b

[(
1 − x2

)
Q0(x) + x

]
− 1

s′ − a−Δ

s′2 ,

(A.1)

where we use the definitions

x(s, s′) = s′ − a±Δ(s)

b(s)
,

Q0(x) = 1

2

∫ 1

−1

dz

x − z
,

Q0(x ± iε) = 1

2
log

∣∣∣
∣
1 + x

1 − x

∣∣∣
∣ ∓ i

π

2
θ

(
1 − x2

)
. (A.2)

The once subtracted kernel functions look very similar and
read

Ks
1(s, s′) = s

s′ (s′ − s)
,

K t
1(s, s

′) = 3

2b

[(
1 − x2

)
Q0(x) + x

]
− 1

s′ ,

Ku
1 (s, s′) = 3

2b

[(
1 − x2

)
Q0(x) + x

]
− 1

s′ . (A.3)

Finally, also the D-wave kernel for the a2 contribution can
be calculated, which reads

K t,D
2 (s, s′) = (

a+Δ − s
)
K t

2(s, s
′)

− 3

2
x

(
1 − x2

)
Q0(x) + 1 − 3(a+Δ)2

2b2

+ b2

5s′2 + 3a+Δs′

b2 − 3s′2

2b2 . (A.4)
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