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Abstract The C-odd amplitude for the elastic pp and p p̄
scattering due to the exchange of the QCD odderon proposed
by J. Bartels, L.N. Lipatov and G.P. Vacca is calculated with
the Fukugita–Kwiecinski proton impact factor. The found
amplitude is very small and cannot be felt in the differential
cross-sections at 2.76 and 1.96 TeV respectively.

1 Introduction: the perturbative QCD odderon

The perturbative QCD odderon exists in two different states.
The first one was proposed as the C = −1 eigenstate of the
Hamiltonian for three reggeized gluons (the simplest of the
series of the so-called BKP states [1–3]). Its properties and
conformal invariance were discussed very long ago [4,5].
After several attempts to numerically estimate its intercept
(“energy”) and wave function these was finally found by
Janik and Wosiek [6]. The found intercept turned out to be
below unity

α
jw
0 = 1 − 0.24717ᾱ, ᾱ = αs Nc

π
.

Later another odderon state was constructed by J. Bartels,
L.N. Lipatov and G.P. Vacca as a state composed of three
reggeized gluons, which is a superposition of three states,
each of them with a pair of reggeized gluons located at the
same spatial point with the wave function satisfying the col-
orless BFKL equation with odd conformal spins [7]. Accord-
ingly the maximal intercept of its groundstate is exactly unity.
So inevitably in the limit of very high energies this BLV odd-
eron dominates, although in view of a little difference of its
intercept from the Janik–Wosiek odderon these high energies
may be indeed very high.

Possible manifestations of the odderon in the experiment
include first of all a series of processes which can occur
exclusively by the C = −1 exchanges, such as transitions
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γ (or γ ∗) to ηc. Numerical estimates of the corresponding
probabilities have given very small values, which practically
prohibit these direct searches for the odderon. Another possi-
bility, much discussed recently in view of the current exper-
imental data, is to look for the odderon in the difference
between pp and p p̄ elastic cross-sections. In these reac-
tions the odderon exchange enters with a different sign and
in the cross-sections it is multiplied by the leading and big
C = +1 exchange. So the above difference contains the odd-
eron exchange linearly and not quadratical in contrast to reac-
tions realizable only by the C = −1 exchange. This raises
some hopes to see the odderon more easily. The recent exper-
imental data seem to exhibit a definite difference between
pp and p p̄ cross-sections and so a presence of the odderon
exchange [8–11], although there are certain doubts on this
point [12,13].

Actually the role of the perturbative odderon in the pp and
p p̄ scattering was studied long ago in the approach in which
gluon interactions inside the odderon were neglected and the
odderon was considered as just the three gluon exchange
[14]. Later the problem of the nonperturbative proton impact
factor was discussed [15]. The conclusion of these earlier
papers was quite optimistic: with a suitable choice of the
QCD coupling constant use of the three gluon exchange for
theC = −1 amplitude lead to quite good agreement with the
experimental data existing at that moment:

√
s < 62.5 GeV

for pp scattering and
√
s = 53 GeV for p p̄ scattering. The

authors of [15] pointed out the importance of taking account
the gluon interactions inside the odderon.

In this paper we present a partial solution of this prob-
lem considering the BLV odderon exchange instead of the
simple triple gluon one. We calculate the C = −1 pp and
p p̄ amplitudes due to the interaction with the BLV odderon
and putting it together with the C = +1 amplitude find the
final cross-section for the two elastic processes. Of course the
immediate question is from where we can take the C = +1
amplitude. In absence of any trustful theory, as long ago, we
can use only phenomenological amplitudes. In this study we
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use two models which claim to successfully describe the data
up to

√
s = 7 TeV. The first, proposed in [16], is especially

convenient for our purpose, since it is based on the Regge
description of different contributions to the amplitude. The
second [17], although indirectly also based on the Regge
approach, does not distinguish between Regge components.
However with different parameterizations it describes both
the pp and p p̄ amplitudes and so allows to extract the desired
C = −1 amplitude.

In the theoretical C = −1 amplitude the BLV odderon is
attached to two (anti)proton impact factors, which are non-
perturbative and so model-dependent We use the impact fac-
tor proposed by Fukugita and Kwiecinski based on the per-
turbative picture for the interaction of three quarks with three
gluons [18]:

�p = d

[
F(q, 0, 0) −

3∑
i=1

F(ki , q − ki , 0)

+2F(k1, k2, k3)

]
, (1)

where

F(k1, k2, k3)

= 2a2

2a2 + (k1 − k2)2 + (k2 − k3)2 + (k3 − k1)2 , (2)

with d = 8(2π)2g3
p and the scale parameter a = mρ/2.

The impact factor (1) satisfies the basic requirement that it
should vanish when any of the three gluon momenta goes
to zero. It is proportional to g3

p where gp is an effective and
so unknown QCD coupling constant inside the proton. So
strictly speaking the magnitude of the odderon-(anti)proton
coupling is unknown and is in fact an arbitrary parameter.
From the comparison with the two gluon exchange model for
hadronic cross-sections the authors of [19] estimated αp =
g2
p/4π � 1.

Our calculations show that the gluon interactions respon-
sible for the formation of the BLV odderon strongly diminish
the odderon amplitude (around 1000 times). With αp = 1 the
odderon exchange turns out to be far below any significant
effect in the pp or p p̄ scattering. To obtain results which
more or less agree with the experimental contribution of the
C = −1 component of the relevant amplitudes one has to
augment the value of αp from unity to ∼ 14, which does not
seem reasonable.

As we noted our result only partially resolves the QCD
odderon problem in the pp and p p̄ elastic scattering. The
remaining task is to study the different JW odderon, which
is made of three reggeons at different spatial points. This
is a much more difficult question since the total spectrum
of the JW odderon states and so its Green function remain

unknown and the relevant technical problems seem great.
This is a problem for future studies.

2 pp and p p̄ elastic scattering: phenomenological
description

We use the normalization in which the differential cross-
section for pp and p p̄ scattering is given by the formula

dσ

dt
(p( p̄) + p → p( p̄) + p) = π

s2 |A|2. (3)

HereA(s, t), is corresponding amplitude. which splits into
the sum or difference of its C = +1 and C = −1 parts

Ap p̄
pp = A+ ± A−. (4)

. The odderon contribution included into A− is given by a
convolution of the two proton impact factors �p and the
Odderon Green function G3

AO = s

128π

5

6

1

3!
1

(2π)8 〈�p|G3|�p〉. (5)

Here the matrix element is

〈�p|G3|�p〉
=

∫
dμ(k)

∫
dμ(k′)�∗

p({ki })G3(y, {ki } · {k′
i })�p({k′

i })
(6)

and the measure is dμ(k) = d2k1d2k2d2k3δ
3(k1 +k2 +k3 −

q) where q2 = −t .
In the literature we have found two phenomenological

descriptions of the elastic pp and p p̄ scattering, which on
the one hand successfully describe the data up to 7 TeV and on
the other hand allow for the separation of theC−1 amplitude.

The first one was proposed in [16] in 2018. It presentedA±
as a sum of contributions from different Regge exchanges.
The pomeron and odderon were taken as dipole Regge sin-
gularities. The pomeron contribution was taken as

AP = i
aPs

bPs0P

(
r2

1P (s)er
2
1P (s)(αP−1)−εPr

2
2P (s)er

2
2P (s)(αP−1)

)
,

(7)

where

r1P(s) = bP + lP − i
π

2
, r2P = lP − i

π

2
, lP = ln

s

s0P

and the pomeron trajectory αP

αP (t) = 1 + �P + α′
P t.
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It contained 6 parameters: aP , bP ,�P , α′
P , εP and s0P . The

odderon contribution AO was taken in the same form with
new parameters aO , bO ,�O , α′

O , εO and s0O . Apart from
the pomeron the A+ amplitude was taken to have a contri-
bution from the f meson

A f = a f e
−iπα f (t)/2+b f t

(
s

s0 f

)α f (t)

with α f (t) = α f 0 + α′
f 0t . It contained 5 parameters

a f , b f , α0 f , α
′
0 f and s0 f . The odd amplitude apart from

the odderon was assumed to have a contribution from the ω

mesonAω of the same form with parametersaω, bω, α0ω, α′
0ω

and s0ω. From the total set of 26 parameters 7 were fixed
on physical grounds and the rest were fitted to the existing
experimental data on the differential elastic pp and p p̄ cross-
sections as well as to the data on the total cross-section and
ρ-parameter. One can find the values of the fitted parame-
ters in Ref. [16]. Calculation show that at

√
s = 1 GeV and

higher the contribution to the C-odd amplitude of the ω is sev-
eral orders smaller than that of the odderon. At the energy
of interest

√
s ∼ 2 GeV the ratio |Aω/AO | has its maximal

value 0.6% at quite small |t |, of the order 0.01 (Gev/c)2 and
rapidly diminishes with the growth of |t |: at |t | = 0.5, 1 and
2 (GeV/c)2 the ratio is 2 · 10−5, 2 · 10−8 and 10−12.

The second description was proposed in [17] in 2019. It
was based on the modified Phillips–Barger model [20] in
which the scattering amplitude was parameterized as follows

A(s, t) = i
[
F2
p

√
AeBt/2 + eiφ

√
CeDt/2

]
. (8)

Here Fp is the Dirac form-factor of the proton. It contains a
set of only 5 parameters, different for pp and p p̄ scattering.
They all depend on the energy. In [17] an interpolation of the
pp parameters was proposed for energies in the range from
25 GeV to 13 TeV as quadratic functions of ln s. For the
p p̄ scattering two sets of parameters were given for energies
546 GeV and 1.8–1.96 TeV. This parametrization does not
allow to separate the odderon exchange amplitude but rather
the total C = −1 amplitude as A− = Ap p̄ −App. However
the mentioned results from [16] convince that at energies of
the order 2 TeV contributions from C = −1 exchanges other
than the odderon are insignificant, so that one can identify
A− with the odderon exchange.

3 The BLV odderon

The QCD BLV Odderon was found in [7]. Its properties and
coupling to the proton impact factor were discussed in some
details in [21]. Here we reproduce some main points neces-
sary for understanding our calculations.

The odderon wave function in the 3-gluon momentum
space is constructed from the known pomeron solutions
E (ν,n) [22,23], with odd n = ±1,±3, . . . . Their intercept χ

quickly goes down with |n| and ν and is greater than unity
by

χ(ν, n) = ᾱs

(
2ψ(1) − ψ

(
1 + |n|

2
+ iν

)

−ψ

(
1 + |n|

2
− iν

))
, ᾱs = Ncαs

π
. (9)

It was demonstrated in [7] that

�(ν,±1)(k1, k2, k3)

= c
∑
(123)

(k1 + k2)
2

k2
1k

2
2

E (ν,±1)(k1 + k2, k3),

c(ν, n) = 3

(2π)3/2

1√−120χ(ν, n)/g2
s

(10)

satisfies the odderon equation.
Function E (ν,±1)(k1, k2) is the Fourier transform of the

well-known BFKL eigenfunctions

E (h,h̄)(r10, r20) =
(

r12

r10r20

)h (
r̄12

r̄10r̄20

)h̄

, (11)

where r10 = r1 − r0 etc, h = (1 + n)/2 + iν, h̄ = (1 −
n)/2 + iν, n = ±1 and the standard complex notation for
two-dimensional vectors is used on the right-hand side.

The Green function G3 corresponding to the propagation
of the BLV odderon turns out to be given by

G3(y|k1, k2, k3|k′
1, k

′
2, k

′
3)

=
∑
n=±1

∫ +∞

−∞
dνey χ(ν,n) (2π)2(ν2 + 1/4)

ν2(ν2 + 1)
�(ν,n)

×(k1, k2, k3)�
(ν,n)∗(k′

1, k
′
2, k

′
3), (12)

where �(ν,n)(k1, k2, k3) are given by (10) and y = ln(s/s0)

is the rapidity. In our calculations we take s0 = 100 GeV2,
the value used in the parametrization [16]. In (12) one sees ν2

in the denominator. However, as we shall presently find this
ν2 will be fully canceled by the ν4 coming from the product
of the proton–odderon couplings. As a result the integrand
of (10) behaves as ν2 at ν → 0.

The matrix element in (5) becomes

〈�p|G3|�p〉 =
∑
n=±1

∫ +∞

−∞
dνey χ(ν,n) (2π)2(ν2 + 1/4)

ν2(ν2 + 1)

×
∣∣∣〈�p|�(ν,n)

〉∣∣∣2
, (13)

where

〈
�p|�(ν,n)

〉
=

∫
dμ(k)�p({ki })�(ν, n)({ki }), (14)
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or using (10)

〈
�p|�(ν,±1)

〉
= 3c

∫
d2l f (l)E (ν,±1)(l,q − l), (15)

where

f (l) =
∫

d2k
l2

k2(l − k)2 �p(k1, k2, k3) (16)

with k1 = k, k2 = l − k and k3 = q − l .
Performing Fourier transformation one obtains the explicit

expression for E (hh̄)(k1, k2) [21]

E (hh̄)(k1, k2) = C(X (k1, k2) + −X (k2, k1)),

C = ν

(4π)2 (1 + iν)�(1 − iν)�(2 − iν) (17)

where X is expressed via hypergeometric functions. Forn=1

X (k1, k2) =
(
k1

2

)iν−2 (
k̄2

2

)iν−1

F

(
−iν, 1 − iν; 2;− k̄1

k̄2

)
F

(
1 − iν, 2 − iν; 2;−k2

k1

)
.

(18)

The behavior of χ(ν) indicates that at large y the con-
tribution comes from the region of small ν. This means
that in the limit of large y it is sufficient to know function
E (ν,±1)(k1, k2) at small values of ν. One obtains in the first
order in ν

E1(k1, k2) = ν

2π2q

(
1

k1k̄2
− 1

k2k̄1

)
. (19)

This function is antisymmetric in the azimuthal angle. So it
is orthogonal to the two impact factors which are azimuthal
symmetric. For this reason a non-zero contribution only
comes from the terms quadratic in ν. Omitting those of them
which have the same structure as (19) we find

E2(k1, k2) = iν2

2π2q

[
1

k2
2

ln k2
1 − 1

k2
1

ln k2
2

+
(

1

k2
1

− 1

k22

)
ln q2

]
≡ ν2g(k1, k2) (20)

As a result the matrix element (22) behaves as ν2 at small ν.
Its square gives ν4, which converts ν2 in the denominator of
(13) to ν2 in the numerator.

Leaving in the integrand of (13) only the exponential factor
multiplied by ν2, performing integration over ν and summa-
tion over n = ±1 and absorbing their result into factor b one
finally obtains

〈�p|G3|�p〉 = by−3/2 J 2(q), b = 9

320
√

2π
ᾱ−3/2ζ(3)−5/2.

(21)

Here

J (q) =
∫

d2l f (l)g(l,q − l). (22)

The matrix element (21) diminishes with energy as y−3/2.

4 The impact factor and the final odderon amplitude

The proton impact factor is nonperturbative. We use the
Fukugita–Kwiecinski impact factor (1), (2) proposed in [18]
and used in [19,21] with αp = 1. As mentioned the impact
factor (1) vanishes when any of the three gluon momenta
goes to zero. This guarantees that calculation of f (l) given
by (16) is infrared convergent.

Explicitly one finds

f (l) =
∫

d2k
l2

k2(l − k)2

×
⎡
⎣F(q, 0, 0) −

3∑
j=1

F(k j , q − k j , 0) + 2F(k1, k2, k3)

⎤
⎦

(23)

where k1 = k, k2 = l−k and k3 = q−l . The integral (23) is
infrared finite, since the square bracket vanishes if any of the
gluon momenta go to zero. However, individual terms inside
the square bracket are infrared divergent. So at intermedi-
ate stages it is convenient to introduce an auxiliary infrared
regularization. The integral J (q) given by (22) contains 4
integrations. One of them in f (l) can be done analytically
due to the simple form of �p (see [21] for details). The other
three require numerical integration.

The final odderon amplitude AO depends on the two cou-
pling constants ᾱ and αp, the latter referring to the nonper-
turbative coupling inside the proton. In fact only the overall
magnitude of the amplitude depends on them: it is propor-
tional to α3

pᾱ
−3/2. In our calculations we fixed ᾱ = 0.2.

With the original value αp = 1 our results are presented
in Fig. 1. To avoid energy dependence of the plot we actually
show y3/2AO which is energy independent. The two panels
in Fig. 1 illustrate on the one hand the t dependence in the
whole region 0 < −t < 100 GeV2 with particular atten-
tion to the behavior at very small |t | and on the other the t
dependence in the region 0.2 < −t < 4 GeV2 relevant for
the experimental setup. As we observe the odderon ampli-
tude exhibits a rather whimsical behavior in t . At t = 0 it
goes to zero as ∝ |t |. So it does not contribute to the ratio
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Fig. 1 The calculated odderon amplitude AO , Eq. (5), with the proton coupling αp = 1 multiplied by y3/2 for 0 < −t < 100 GeV2 in the
logarithmic scale (left panel) and for 0.2 < −t < 4 GeV2 in the natural scale (right panel)

ρ = ReA/ImA at t = 0, which is important in relation to
experimental observations (see [9,12]).

To study the influence of the gluon interaction in the 3-
gluon exchange we also calculated the C = −1 amplitude
corresponding to the non-interacting three-gluon exchange,
used in the old paper [15] for low energies with very opti-
mistic conclusions. The three gluon exchange A3g is given
by the same formula (5) in which the matrix element is just

〈�p|G3|�p〉3g =
∫

dμ(k)
∣∣∣�p({ki })

∣∣∣2 1

k2
1k

2
2k

2
3

. (24)

In this case all 4 integrations have to be performed numeri-
cally. Our results show that, first,A3g shows a smooth behav-
ior in t . At t = 0 it is finite and equal to 4.29

√
mb/GeV.

With the growth of |t | it monotonously diminishes. Second,
A3g is much greater than the odderon amplitude AO . With
the same αp three-gluon exchange amplitude is roughly 300
times greater than y3/2AO . This is illustrated in Fig. 2 where
we compare A3g/300 and y3/2AO . Note that in [15] the
pomeron coupling constant αp was equal to 0.3, which means
that their A3g was 27 times smaller than in Fig. 2 How-
ever this still remains far above the odderon amplitude with
αp = 1. So it turns out that gluon interactions drastically
diminish the three-gluon exchange in the BLV odderon.

5 Cross-sections

In this section we study the cross-sections which are obtained
with the found odderon amplitude and compare them with
the existing experimental data. The pp data cover a wide
energetic interval from low energies up to 13 TeV. Unfortu-
nately the p p̄ data are much more scarce. At high energies
we shall consider both data at the closest possible energies:

 0
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Fig. 2 The calculated odderon amplitudeAO with the proton coupling
αp = 1 multiplied by y3/2 for 0.6 < −t < 2 GeV2 compared with the
exchange of three non-interacting gluons in the C = −1 state with the
same αp and divided by 300

pp at 2.76 GeV and p p̄ at 1.96 GeV. The two models dis-
cussed in the Sect. 1 give possibilities to present the relevant
odderon amplitudes (in [16] and in [17] assuming in the latter
case that all other reggeon exchanges are insignificant).

Remarkably in both models the odderon amplitude is com-
plex (in [16] because the odderon is not taken as a pole in the
complex j-plane but rather as a dipole). The odderon ampli-
tudes in both models are presented in Fig. 3. Apart from a
large imaginary part both amplitudes are much greater than
our calculated (real) AO at these energies.

So should one try to adjust to the data the cross-sections
obtained after our calculatedAO takes the role of the odderon
amplitude, apart from the absence of the imaginary part, one
is compelled to seriously increase its magnitude by taking αp

considerably higher than unity. In the two following pictures
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Fig. 3 The odderon amplitude extracted from the phenomenological models [16] (left panel) and [17] right panel0
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Fig. 4 The differential cross-section for elastic pp (left panel) and p p̄
(right panel) scattering obtained after the substitution of the C = −1
amplitude in [16] by the calculated odderon amplitudeAO at

√
s = 2.76

and 1.96 TeV respectively. The experimental data are from [8] and [24]
respectively

we show our attempts in this direction for the two models
[16,17]. In both cases the original amplitude with αp = 1
(Fig. 1) does not practically change the cross-section without
the C = −1 component at all, that is with αp = 0. In fact
the difference between the curves with αp = 0 and αp = 1
is indistinguishable on the adopted scale. The results more
or less in the range of the data for the parametrization of
[16] require αp in the region of ∼ 14. The optimal value to
simultaneously describe pp and p p̄ data is 13.9 (shown in
Fig. 4). For the parametrization of [17] the situation is worse
(Fig. 5): with the same large αp one gets a nice agreement for
pp but any variation of αp crudely fails for p p̄, since with
the growth of αp the curve moves upwards as compared to
the data.

Since values of αp of the order 14 do not seem physically
reasonable the true result of this comparison is that the BLV
odderon is simply too small to be felt in pp and p p̄ elastic
scattering.

6 Conclusions

We have calculated the C = −1 amplitude corresponding to
the exchange of the BLV odderon with the maximal inter-
cept equal to exactly unity. This amplitude is real and shows
a rather peculiar t dependance (Fig. 1). At t = 0 it is equal
to zero. Compared to the amplitude coming from the inter-
change of three non-interacting gluons in the C = −1 state
our calculated amplitude is ∼ 1000 times smaller with the
same coupling constant. In the existing phenomenological
models the C = −1 amplitude is complex and about 200
times larger in magnitude. So if one believes in these models
the BLV odderon with a reasonable values for the coupling
constant is far smaller to manifest itself in the pp and p p̄
elastic scattering. At t = 0 the BLV odderon doles not con-
tribute to the ratio ρ.

In fact this conclusion is not unexpected. In the processes
like γ ∗ + p → ηc + p the cross-sections come exclu-
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Fig. 5 The differential cross-section for elastic pp (left panel) and p p̄
(right panel) scattering obtained after the substitution of the C = −1
amplitude in [17] by the calculated odderon amplitudeAO at

√
s = 2.76

and 1.96 TeV respectively. The experimental data are from [8] and [24]
respectively

sively from the BLV odderon exchange. Previous calcula-
tions found that these cross-sections were extremely small,
far beyond our present experimental facilities.

The remaining open question is the role of the JW odderon
with all three reggeized gluons at different spatial points.
It does not contribute to γ ∗ + p → ηc + p but certainly
does in the elastic pp and p p̄ scattering. It is possible that
its contribution is much greater than of the BLV odderon.
So although theoretically it diminishes with energy stronger
that the BLV odderon, the dominance of the latter is not
effective at presently achieved energies and the JW odderon
can be discovered in (anti)proton elastic scattering. However
the JW odderon is an object much more complicated than
the BLV odderon. Its Green function is not known at present.
So, although very important, its study is postponed for future
investigations.
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or the data will not be deposited. [Authors’ comment: There is no data
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the paper.]
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