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Abstract In this paper we perform systematic investigation
of all possible solutions with static compact extra dimensions
and expanding three-dimensional subspace (“our Universe”).
Unlike previous papers, we consider extra-dimensional sub-
space to be constant-curvature manifold with both signs of
spatial curvature. We provide a scheme how to build solu-
tions in all possible number of extra dimensions and per-
form stability analysis for the solutions found. Our study
suggests that the solutions with negative spatial curvature of
extra dimensions are always stable while those with positive
curvature are stable for a narrow range of the parameters and
the width of this range shrinks with growth of the number of
extra dimensions. This explains why in the previous papers
we detected compactification in the case of negative curva-
ture but the case of positive curvature remained undiscovered.
Another interesting feature which distinguish cases with pos-
itive and negative curvatures is that the latter do not coexist
with maximally-symmetric solutions (leading to “geometric
frustration” of a sort) while the former could – this difference
is noted and discussed.

1 Introduction

Einstein–Gauss–Bonnet Gravity (EGB) is the simplest exam-
ple of a larger family of gravity theories known as Lovelock
Gravities [1]. Lovelock gravities are characterized by the fact
that their actions possess higher power curvature terms but
whose variation lead to equations of motion which remain
of second order derivative in the metric. Lovelock gravities
are therefore the most natural generalization of General Rel-
ativity to higher space-time dimensions. EGB gravity whose
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action has additional term quadratic in the curvature with
respect to general relativity exists for space-time dimensions
d ≥ 5 (in four dimensions the quadratic Gauss Bonnet term
does not affect the equations of motion being topological).
It is the most studied Lovelock gravity in literature as it has
many of the features of more generic Lovelock gravities but
keeping a relatively simple action. Moreover EGB gravity
can also be seen as the low energy limit of certain string
theories [2].

EGB gravity, whose action holds �-term, Einstein–
Hilbert term and quadratic Gauss-Bonnet term, has the
remarkable feature that it can possess up to two independent
maximally symmetric solutions (even with different sign of
the curvature scale). Indeed, in opposition to General Relativ-
ity, the curvature scale of the maximally symmetric solutions
is not determined only by the �-term but is a function of all
three couplings of the theory. This can be immediately seen
by plugging the ansatz of a maximally symmetric space-
time in the equations of motion of EGB gravity. One gets a
quadratic equation in the scale and therefore up to two inde-
pendent maximally symmetric solutions. Indeed also for the
EGB black hole solutions one gets in general two branches
with different asymptotic behavior [3]. However the discrim-
inant of the quadratic equation for the curvature scale can also
be negative for a range of values of the coupling constants.
In this case there exist no maximally symmetric space-time
solution at all. This situation remained almost unexplored in
literature due to the fact that it is difficult to give reason-
able asymptotic falloff conditions in such cases. However
this situation of non existing maximally symmetric solutions
can be of interest in the context of dynamical compactifi-
cation in cosmology. Indeed one may wonder why a space-
time should tend to a compactified manifold with three large
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dimensions and D compact dimensions instead of tending to
an isotropic space-time which seems more natural. The non-
existence of a maximally-symmetric solution would force
the space-time to search for a less symmetric configuration
and give a very natural explanation for compactification. This
has been explored, to the best knowledge of the authors for
the first time in [4–6]. The situation where the EGB theory
does not admit maximally symmetric solutions was called
in these papers “geometric frustration”. The term “geomet-
ric frustration” is normally used in the context of condensed
matter physics when a system can not take the configura-
tion of minimal energy due to topological obstructions. In
the previously cited papers, for simplicity it was assumed
that space-time had the structure of a warped product of a
4-dimensional flat FRW space-time with a D dimensional
constant curvature space with an independent scale factor. In
the case that curvature of the compact dimensions is negative
and moreover the couplings of the EGB are chosen from the
open region of couplings space where geometric frustration
occurs it was shown that realistic compactification scenarios
exist where the scale factor of the extra dimensions tends
to a constant (i.e., stabilizes). No realistic compactification
scenario was found for the case when the extra dimensions
have positive curvature or when there is no geometric frus-
tration. Considering that the cited papers were focused on a
generic number D of extra dimensions and especially to the
large D limit it is still possible that some cases with positive
curvature of the extra dimensions for some particular value
of D have just been overseen.

It is interesting to note that the presence of higher-order
curvature terms in the Lagrangian is one of the features of
string-inspired theories. Historically, Scherk and Schwarz [7]
were the first to demonstrate the presence of the R2 and
RμνRμν terms in the Lagrangian of the Virasoro–Shapiro
model [8,9]. A presence of curvature-squared term of the
RμνλρRμνλρ types was demonstrated [10] for the low-energy
limit of the E8×E8 heterotic superstring theory [11] to match
the kinetic term for the Yang–Mills field. Later it was demon-
strated [2] that the only combination of quadratic terms that
leads to a ghost-free nontrivial gravitation interaction is the
Gauss–Bonnet (GB) term:

LGB = L2 = RμνλρR
μνλρ − 4RμνR

μν + R2.

This term, initially discovered by Lanczos [12,13] (therefore
it is sometimes referred to as the Lanczos term) is an Euler
topological invariant in (3+1)-dimensional space-time, but
not in (4+1) and higher dimensions. Zumino [14] extended
Zwiebach’s result on higher-than-squared curvature terms,
supporting the idea that the low-energy limit of the unified
theory should have a Lagrangian density as a sum of contri-
butions of different powers of curvature. In this regard the
Einstein–Gauss–Bonnet (EGB) gravity could be seen as a
subcase of more general Lovelock gravity [1], but in the cur-

rent paper we restrain ourselves with only quadratic correc-
tions and so to the EGB case.

Generally speaking, all extra-dimensional theories have
one thing in common – we need to explain where additional
dimensions are “hiding” – since we do not sense them, at
least with the current level of experiments. One of the pos-
sible ways to hide extra dimensions and to recover four-
dimensional physics, is to build a so-called “spontaneous
compactification” solution. Exact static solutions with the
metric set as a cross product of a (3+1)-dimensional man-
ifold and a constant curvature “inner space”, were found
for the first time in [15], where (3+1)-dimensional mani-
fold being Minkowski (the generalization for a constant cur-
vature Lorentzian manifold was done in [16]). In the con-
text of cosmology, it is more useful to consider spontaneous
compactification with the four-dimensional part given by a
Friedmann–Robertson–Walker (FRW) metric. In this case it
is also natural to consider the size of the extra dimensions
being time dependent rather than static. Indeed, in [17] it
was exactly demonstrated that in order to have more real-
istic model one needs to consider the dynamical evolution
of the extra-dimensional scale factor. In [16], the equations
of motion with time-dependent scale factors were written
down for arbitrary Lovelock order in the special case of spa-
tially flat metric (the results were further proven in [18]).
The results of [16] were further analyzed for the special case
of 10 space-time dimensions in [19]. In [20], the dynamical
compactification was studied with the use of Hamiltonian
formalism. More recently, searches for spontaneous com-
pactifications were performed in [21], where the dynamical
compactification of the (5+1) Einstein–Gauss–Bonnet model
was considered; in [22,23] with different metricAnsätzen for
scale factors corresponding to (3+1)- and extra-dimensional
parts; and in [4–6] (mentioned above), where general (e.g.,
without any Ansätz) scale factors and curved manifolds were
considered. Also, apart from cosmology, the recent analysis
was focused on properties of black holes in Gauss-Bonnet
[3,24–27] and Lovelock [28–32] gravities, features of grav-
itational collapse in these theories [33–35], general features
of spherical-symmetric solutions [36], and many others.

When we are looking for exact cosmological solutions,
two main ansätzen are involved – power-law and exponen-
tial. One of first approaches to power-law solutions in EGB
gravity performed in [16,37] and more recently they were
studied in [18,38–41]. One of the first approaches to the
exponential solutions was done in [42], the recent works
include [43–45]. We separately described the exponential
solutions with variable [46] and constant [47] volume; let
us note [48] for the discussion of the link between existence
of power-law and exponential solutions as well as for the dis-
cussion about the physical branches of the solutions. General
scheme for finding exponential solutions in arbitrary dimen-
sions and with arbitrary Lovelock contributions taken into
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account described in [49]. Deeper investigation revealed that
not all of the solutions found in [49] could be called “stable”
[50]; see also [44] for more general approach to the stability
of exponential solutions in EGB gravity.

The simplest case – when the spatial section is the product
of spatially-flat three- and extra-dimensional subspaces, sys-
tematic study of all possible regimes in EGB and partially in
cubic Einstein-Lovelock gravity was performed in [51–56].
In particular, for vacuum EGB case it was done in [51] and
reanalyzed in [52]. We also added cubic Lovelock term and
analyzed the resulting vacuum Einstein–Lovelock cosmol-
ogy in [53,54]. Similar analysis for EGB model with �-term
was performed in [55,56] and reanalyzed in [52]. All these
studies demonstrate that there are exponential regimes with
expanding three and contracting extra dimensions and they
are not suppressed. On the contrary, it is relatively difficult
to reach power-law regime naturally.

In the studies described above we made two important
assumptions – both subspaces (three- and extra-dimensional)
were considered to be spatially flat and isotropic. But neither
of these conditions could be called “natural”, so it is interest-
ing to investigate what happens if we left these conditions? In
the Friedmann cosmology spatial curvature plays important
role, for example, positive curvature changes the possibility
to reach inflationary asymptotic [57,58]. As we previously
mentioned, in EGB gravity the influence of the spatial cur-
vature was studied in [4,5], where we described “geometric
frustration” regime and further investigated it in [6].

We addressed effects of both curvature and anisotropy
earlier in [59]. Particularly, we considered initially totally
anisotropic (Bianchi-I-type) (5+1)- and (6+1)-dimensional
models and numerically studied their evolution. The former
of them has only one stable anisotropic exponential solution
– with expanding three and contracting two dimensions –
and it is the only dynamical attractor of the system. On the
contrary, the latter has two possibilities – expanding three
and contracting three or expanding four and contracting two
dimensions, and depending on the initial conditions we could
end up in both of the possibilities. So that if (in)appropriate
exponential solution exists and stable, initially anisotropic
Universe could end up with “wrong” compactification.

We can also note that apart from vacuum and �-term
models we considered models with perfect fluid as a source:
initially we considered them in [43], some deeper studies
of (4+1)-dimensional Bianchi-I case was done in [40] and
deeper investigation of power-law regimes in pure GB grav-
ity in [41]. Systematic study for all D was started in [60] for
low D and is currently continued for high D cases.

The aim of this paper is actually to check again the com-
pactification, and to do it also for smaller values of D and
see if for some particular value there exist compactification
with stabilized extra dimensions. The interest in checking
again the positive curvature in extra dimensions is that from

a point of view of Kaluza-Klein theory the positive curvature
of extra dimensions allows to include non-abelian interac-
tions. In order to do so we check separately the existence of
solutions and then their stability due to the fact that if solu-
tion exist but is unstable it is useless from a practical point of
view. The stability issue of the solutions was not addressed
in the previous papers.

The structure of the manuscript is as follows: first we write
down equations of motion and then consider several particu-
lar cases which differs from each other (for several low D –
number of extra dimensions – equations of motion simplify
via dropping some of the terms), ending with general case
(which has all possible terms). For each of these cases we
obtain a solution, write down perturbed equations and solve
them around the found solution. After all cases described, we
summarize the results, discuss them and draw conclusions.

2 Equations of motion

We start with the standard Einstein–Gauss–Bonnet Lagra-
ngian in the cosmological background (see, e.g., [18])

L = R + αLGB − �, (1)

where R is the Ricci scalar, � is �-term (or boundary term)
and LGB ,

LGB = Rμναβ R
μναβ − 4RμνR

μν + R2 (2)

is the Gauss–Bonnet Lagrangian while α is its coupling con-
stant. We consider space-time to be warped product of Loren-
zian and constant curvature manifolds. The former is (3+1)-
dimensional while the latter is D-dimensional. Then its met-
ric could be written as

gμν = diag

{
− 1, a2(t), a2(t), a(t)2, b(t)2, b(t)2χ2(x4)

. . . , b2(t)
D−4∏
i=4

χ2(xi )

}
, (3)

where χ(x) = sin(x) for positive and χ(x) = sinh(x) for
negative curvature of extra dimensions.

Now we modify the metric above by inserting lapse func-
tion N (t) (−1 �→ −N 2(t) and substitute the modified met-
ric into the Lagrangian (2), we calculate the action and vary
it with respect N (t), a(t) and b(t) to obtain equations of
motion: constraint and dynamical equations for a(t) and b(t),
respectively:

D(D − 1)

(
H2
b + γD

b(t)2

)
+ 6DHHb + 6H2

+α (D(D − 1)(D − 2)(D − 3)

×
(
H2
b + γD

b(t)2

)2

+ 24DH3Hb
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+12D(D − 1)H2(H2
b + γD

b(t)2 ) + 24D(D − 1)H2H2
b

+12D(D − 1)(D − 2)H2
(
H2
b + γD

b(t)2

))
= �,

D(D − 1)

(
H2
b + γD

b(t)2

)
+ 4(Ḣ + H2)

+2D(Ḣb + H2
b ) + 4DHHb + 2H2

+α

(
D(D − 1)(D − 2)(D − 3)

(
H2
b + γD

b(t)2

)2

+16D(Ḣ + H2)HHb

+8D(D − 1)(Ḣ + H2)

(
H2
b + γD

b(t)2

)

+8D(Ḣb + H2
b )H2 + 16D(D − 1)(Ḣb + H2

b )HHb

+4D(D − 1)(D − 2)(Ḣb + H2
b )

(
H2
b + γD

b(t)2

)

+4D(D − 1)H2
(
H2
b + γD

b(t)2

)

+8D(D − 1)(Ḣ + H2)H2
b

+8D(D − 1)(D − 2)HHb

(
H2
b + γD

b(t)2

))
= �,

(D − 1)(D − 2)

(
H2
b + γD

b(t)2

)
+ 6(Ḣ + H2)

+2(D − 1)(Ḣb + H2
b ) + 6(D − 1)HHb + 6H2

+α

(
(D − 1)(D − 2)(D − 3)(D − 4)

(
H2
b + γD

b(t)2

)2

+24(Ḣ + H2)H2

+12(D − 1)(D − 2)(Ḣ + H2)

(
H2
b + γD

b(t)2

)

+48(D − 1)(Ḣ + H2)HHb + 24(D − 1)(Ḣb + H2
b )H2

+4(D − 1)(D − 2)(D − 3)(Ḣb + H2
b )

(
H2
b + γD

b(t)2

)

+24(D − 1)(D − 2)(Ḣb + H2
b )HHb

+12(D − 1)(D − 2)(Ḣ + H2)

(
H2
b + γD

b(t)2

)

+24(D − 1)H3Hb

+12(D − 1)(D − 2)(D − 3)HHb

(
H2
b + γD

b(t)2

)

+ 24(D − 1)(D − 2)H2H2
b

)
= �, (4)

where H ≡ ȧ(t)/a(t) is the Hubble parameter associated
with “ordinary” space, Hb ≡ ḃ(t)/b(t) is the Hubble param-
eter associated with extra dimensions and γD is normalized
curvature of extra dimensions.

Equation that defines maximally symmetric solutions
reads

(D + 3)(D + 2)(D + 1)Dα2H4

+(D + 3)(D + 2)αH2 − ξ = 0, (5)

and cosmologically it corresponds to isotropic solution. It
has real solutions iff

ξ � − (D + 2)(D + 3)

4D(D + 1)
. (6)

where ξ = α�.

3 (3+2)-dimensional case with curvature

For D = 2 system (4) takes form

2
(γD + ḃ(t)2)

b(t)2 + 4
ä(t)

a(t)
+ 4

b̈(t)

b(t)
+ 8

ȧ(t)ḃ(t)

a(t)b(t)
+ 2

ȧ(t)2

a(t)

+α

(
16

ä(t)(γD + ḃ(t)2)

a(t)b(t)2

+ 32
ä(t)ȧ(t)ḃ(t)

a(t)2b(t)
+ 16

b̈(t)ȧ(t)2

a(t)2b(t)
+ 8

ȧ(t)2(γD + ḃ(t)2)

a(t)2b(t)2

+ 32
b̈(t)ȧ(t)ḃ(t)

a(t)b(t)2 + 16
ȧ(t)2ḃ(t)2

a(t)2b(t)2

)
= �,

6
ä(t)

a(t)
+ 2

b̈(t)

b(t)
+ 6

ȧ(t)ḃ(t)

a(t)b(t)
+ 6

ȧ(t)2

a(t)
+ α

(
24

ä(t)ȧ(t)2

a(t)3

+ 48
ä(t)ȧ(t)ḃ(t)

a(t)2b(t)
+24

b̈(t)ȧ(t)2

a(t)2b(t)
+24

ȧ(t)3ḃ(t)

a(t)3b(t)

)
=�,

(7)

complimented with a constraint equation

2
(γD + ḃ(t)2)

b(t)2 + 12
ȧ(t)ḃ(t)

a(t)b(t)
+ 6

ȧ(t)2

a(t)

+α

(
24

ȧ(t)2(γD + ḃ(t)2)

a(t)2b(t)2

+48
ȧ(t)3ḃ(t)

a(t)3b(t)
+ 48

ȧ(t)2ḃ(t)2

a(t)2b(t)2

)
= �. (8)

We rewrote the system in terms of scale factors, as we
are going to look for solutions with “stabilized extra dimen-
sions” (so that the size of extra dimensions naturally becomes
constant with respect to time). On the same time we require
that three-dimensional subspace to expand with acceleration
(after all, we are looking for a solution which could describe
observed Universe), then, the conditions for such solution
to exist are a(t) = exp(H0t), b(t) = b0 ≡ const, and the
system (7)–(8) takes a form:

2γD

b2
0

+ 6H2
0 + 24γDαH2

0

b2
0

= �, 12H2
0 + 24αH4

0 = �.

(9)
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One can see that three dynamical equations shrink to two
– one of the variables becomes static (b(t) = b0 ≡ const),
so there is no “dynamical” equation which corresponds to
it anymore. One can also note that we keep γD arbitrary,
unlike analysis for “geometric frustration” regime [4–6].
Now choosing new variables x = 1/b2

0 and y = H2
0 , we

can rewrite (9) as

2z + 6y + 24αzy = �, 12y + 24αy2 = �, (10)

where we absorbed γD into x : z = γDx . Formally we now
can get a direct solution: solve second of (10) w.r.t. y, sub-
stitute resulting y± into first of (10) and get z± for each
branch. But to keep analysis consistent with the following
sections, dedicated to higher-dimensional cases, where the
equations will be cubic (for (3 + 3)) or even quartic (for
higher-dimensional cases), we use same approach as we will
be using further. Namely, we introduce ξ = α� and use
scaling of the variables with respect to each other:

� = ξ/α, b2
0 = ζα, H2

0 = θ/α. (11)

With these redefinitions the system (10) takes a form

24γDθ + 6θζ − ξζ + 2γD = 0,

12θ + 24θ2 = ξ.
(12)

We can immediately solve the second of it w.r.t. ξ :

ξ = 12θ(2θ + 1), (13)

and substitute it into the first of (12) to get ζ :

ζ = γD(12θ + 1)

3θ(4θ + 1)
. (14)

Now the initial system is brought to just 1-parametric
solution for ξ (13) and ζ (14) with θ as a parameter. Let
us investigate existence of the solutions for each particular
combination of {α, γD}; the solutions are illustrated in Fig. 1.

Case 1 α > 0, γD > 0. From definitions (11) α > 0
means θ > 0 and ζ > 0; from (14) one can see that it is
always fulfilled (see Fig. 1a) and from (13) one can see that
ξ > 0 for this case (see Fig. 1b).

Case 2 α < 0, γD > 0. Now α < 0 and it means θ < 0
and ζ < 0; from (14) one can see that it is fulfilled for
θ ∈ (−∞;−1/4)∪ (−1/12; 0) (see Fig. 1c). From (13) one
can see that ξ > −3/2 in this case (see Fig. 1d).

Case 3 α > 0, γD < 0. As in Case 1, α > 0 means θ > 0
and ζ > 0, but now (14) one can see that it is never fulfilled,
which means there ar no solutions for this case (see Fig. 1e).

Case 4 α < 0, γD < 0. In a way this case is “opposite”
to the Case 2, as now θ < 0 and ζ < 0 are fulfilled for
θ ∈ (−1/4;−1/12) (see Fig. 1f). The corresponding range
for ξ : ξ ∈ (−3/2;−5/6) and the graph is the same as in Case
2 (see Fig. 1d).

3.1 Linear stability of the solutions

To address the linear stability, we perturb the system (7)
around the solution with stabilized extra dimensions (a(t) =
exp(H0t), b(t) = b0 ≡ const). For simplicity, we rewrite
the system (7) back in terms of Hubble parameter H(t) =
ȧ(t)/a(t) (additionally, this effectively diminish number of
degrees of freedom by one which is crucial for our task), and
we perturb the system around solution H(t) = H0 + δH(t),
b(t) = b0 + δb(t) with H0 and b0 governed by (9). The
resulting system of perturbed equations takes a form

4b0(1 + 4αH2
0 )δ̈b(t) + 8b0H0(1 + 4αH2

0 )δ̇b(t)

+2b0(6H
2
0 − �)δb(t) + (16αγD + 4b2

0)δ̇H(t) +
+12H0(4αγD + b2

0)δH(t) = 0,

2(1 + 12αH2
0 )δ̈b(t) + 6H0(1 + 12αH2

0 )δ̇b(t)

+(12H2
0 (1 + 12αH2

0 ) − �)δb(t) +
+6b0(1 + 4αH2

0 )δ̇H(t) + 24H0b0(1 + 4αH2
0 )δH(t) = 0.

(15)

To find the solution of the system in the exponential form we
transform it into “normal modes” with redefinition of the second
derivative δ̇b = δy; then the system (15) could be replaced with⎛
⎝ δ̇y

δ̇H
δ̇b

⎞
⎠ = M

⎛
⎝ δy

δH
δb

⎞
⎠ (16)

with M being matrix made of corresponding coefficients. Then
the solutions of the (16) could be written in the exponential
form with the exponents being eigenvalues of M . Then, for
solution to be stable, all these exponents should simultaneously
have negative real parts. With use of (11), (13) and (14) these
exponents could be rewritten in terms of only θ for each choice
of α and γD .

Our analysis suggests that for all cases where solutions exist,
they are unstable: for Case 1 (α > 0, γD > 0) one of the expo-
nents always has positive real part (see Fig. 2a); same situation
is for Case 2 (α < 0, γD > 0) and Case 4 (α < 0, γD < 0),
presented in Fig. 2b. For Case 3 (α > 0, γD < 0) there are no
solutions, as we obtained earlier.

Overall, we can see that in (3 + 2)-dimensional model with
curved 2-dimensional extra-dimensional subspace, there are no
stable solutions with stabilizing extra dimensions, regardless of
the curvature of extra-dimensional part.

4 (3+3)-dimensional case with curvature

The system of dynamical equations (4) for (3+3)-dimensional
case reads

6
(γD + ḃ(t)2)

b(t)2 + 4
ä(t)

a(t)
+ 6

b̈(t)

b(t)
+ 12

ȧ(t)ḃ(t)

a(t)b(t)
+ 2

ȧ(t)2

a(t)

+α

(
48

ä(t)(γD + ḃ(t)2)

a(t)b(t)2 +
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(a) (c)

(f)(d) (e)

(b)

Fig. 1 Graphs illustrating the behavior of derived functions ξ (13) and
ζ (14) for different cases in (3+2)-dimensional model: α > 0, γD > 0
case: ζ(θ) in a and ξ(θ) in b; α < 0, γD > 0 case: ζ(θ) in c and ξ(θ)

in d; ζ(θ) for α > 0, γD < 0 case presented in e while ζ(θ) for α < 0,
γD < 0 case presented in f (see the text for more details)

(a)
(b)

Fig. 2 Graphs illustrating stability of the solutions for different cases in (3 + 2)-dimensional model: α > 0, γD > 0 case in a; α < 0, γD > 0 and
α < 0, γD < 0 cases in b. Different colors correspond to different (three) branches of the eigenvalues (see the text for more details)
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+ 48
ä(t)ȧ(t)ḃ(t)

a(t)2b(t)
+ 24

b̈(t)ȧ(t)2

a(t)2b(t)

+24
ȧ(t)2(γD + ḃ(t)2)

a(t)2b(t)2 + 24
b̈(t)(γD + ḃ(t)2)

b(t)3

+ 96
b̈(t)ȧ(t)ḃ(t)

a(t)b(t)2 + 48
ȧ(t)ḃ(t)(γD + ḃ(t)2)

a(t)b(t)3

+48
ȧ(t)2ḃ(t)2

a(t)2b(t)2

)
= �,

2
(γD + ḃ(t)2)

b(t)2 + 6
ä(t)

a(t)
+ 4

b̈(t)

b(t)
+ 12

ȧ(t)ḃ(t)

a(t)b(t)

+6
ȧ(t)2

a(t)
+ α

(
24

ä(t)ȧ(t)2

a(t)3

+ 24
ä(t)(γD + ḃ(t)2)

a(t)b(t)2 + 96
ä(t)ȧ(t)ḃ(t)

a(t)2b(t)

+48
b̈(t)ȧ(t)2

a(t)2b(t)
+ 24

ȧ(t)2(γD + ḃ(t)2)

a(t)2b(t)2

+ 48
ȧ(t)3ḃ(t)

a(t)3b(t)
+ 48

b̈(t)ȧ(t)ḃ(t)

a(t)b(t)2

+48
ȧ(t)2ḃ(t)2

a(t)2b(t)2

)
= �, (17)

complimented with a constraint equation

6
(γD + ḃ(t)2)

b(t)2 + 18
ȧ(t)ḃ(t)

a(t)b(t)
+ 6

ȧ(t)2

a(t)

+α

(
72

ȧ(t)2(γD + ḃ(t)2)

a(t)2b(t)2

+ 72
ȧ(t)3ḃ(t)

a(t)3b(t)
+ 72

ȧ(t)ḃ(t)(γD + ḃ(t)2)

a(t)b(t)3

+144
ȧ(t)2ḃ(t)2

a(t)2b(t)2

)
= �. (18)

The overall procedure is quite similar to the previously
described (3 + 2)-dimensional case. The original system (17)–
(18) could be brought to the following form under “stable com-
pactification” requirement (a(t) = exp(H0t), b(t) = b0 ≡
const):

6γD

b2
0

+ 6H2
0 + 72γDαH2

0

b2
0

= �,

2γD

b2
0

+ 12H2
0 + 24αH4

0 + 48γDαH2
0

b2
0

= �; (19)

where we kept γD arbitrary. Choosing new variables x = 1/b2
0

and y = H2
0 , expressing one of new variables from first of (19)

and substituting it into the second of (19), we can arrive to a
pair of cubic equations:

432α2y3 + 180αy2 + (15 − 6ξ)y = �,

864α2z3 + 72α(2ξ + 5)z2 + 30z = �(2ξ + 3); (20)

where we absorbed γD into x : z = γDx and used standard
notation ξ = α�. From the definitions used, we should have

solutions within x > 0, y > 0, and the analysis in these coor-
dinates becomes quite cumbersome (though not impossible).
To simplify things we are going to use different approach –
same as for (3+2)-dimensional case. Namely, we use the same
redefinitions (11); substituting them into (19), the system takes
a form

72γDθ + 6θζ − ξζ + 6γD = 0;
24θ2ζ + 48γDθ + 12θζ − ζ ξ + 2γD = 0. (21)

And this system has 1-parametric family of solutions:

ξ = 3θ(144θ2 + 60θ + 5)

6θ + 1
, ζ = 2

3

γD(6θ + 1)

θ(4θ + 1)
. (22)

So that given α and γD we can build all possible solutions
for all possible θ . Let us analyze possible solutions and areas
of their definitions. To start with, let us notice that from (11)
it is clear that for α > 0 we should have ζ > 0 and θ > 0
(as both b2

0 and H2
0 cannot be negative) while for α < 0 we

should have ζ < 0 and θ < 0. Let us consider all four possible
combinations of signs for α and γD separately.

Case 1 α > 0, γD > 0. In that case θ > 0 and substituting
it into ζ we can see that ζ > 0 for all θ > 0 (see Fig. 3a).
Substituting θ > 0 into ξ we can see that ξ > 0 (see Fig. 3b).
So that for α > 0 and ξ > 0 there always exist solution with
γD > 0.

Case 2 α < 0, γD > 0. In this case, since α < 0,
we should consider only θ < 0 and the solution should
have ζ < 0, which is satisfied in two regions (see Fig. 3c):
θ < −1/4 and −1/6 < θ < 0. Comparing with Fig. 3d
and performing some basic math, we can learn that within
the first range (θ < −1/4) we have ξ > 0 at θ < θ1, and
ξ is negative at θ ∈ (θ1, −1/4), with ξ(−1/4) = −3/2.
Within the second range (−1/6 < θ < 0), ξ > 0 for
θ ∈ (−1/6, θ2) and is negative for θ ∈ (θ2, 0). Within the
second range we can spot minimum value for ξ which happen-

ing at θmin = 3
√

109 + 6
√

330/72 + 1/(72
3
√

109 + 6
√

330) −
11/72 ≈ −0.0669; ξ(θmin) ≈ −0.5467. All quoted specific
values for θ are roots or singularities coming from (22); θ1
and θ2 (θ1 < θ2) are roots of (144θ2 + 60θ + 5) = 0:
θ1, 2 = (−5 ± √

5)/24 ≈ {−0.302, −0.115}.
To conclude, for α < 0 we can have γD > 0 solutions for

both ξ < 0 and ξ > 0.
Case 3 α > 0, γD < 0. In this case we should have θ > 0

and after plotting ζ(θ) in Fig. 3e, we see that ζ < 0 everywhere
which means that there are no solutions of this kind.

Case 4 α < 0, γD < 0. In this case we have θ < 0, after
plotting ζ(θ) in Fig. 3f we see that it is “opposite” to α < 0,
γD > 0 case, again we should have ζ < 0 and the area of
existence is complimentary to α < 0, γD > 0 case – now it is
θ ∈ (−1/4, −1/6). Since ξ(θ) does not depend on γD , we can
use Fig. 3d again to find that ξ < −3/2 in this case. So that
γD < 0 solution could exist only for α < 0 and they could be
found within θ ∈ (−1/4, −1/6) range.

Now let us analyze linear stability of the obtained solutions.
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(a) (b) (c)

(e) (f)(d)

Fig. 3 Graphs illustrating the behavior of derived functions (22) for different cases in (3 + 3)-dimensional model: α > 0, γD > 0 case: ζ(θ) in
a and ξ(θ) in b; α < 0, γD > 0 case: ζ(θ) in c and ξ(θ) in d; ζ(θ) for α > 0, γD < 0 case presented in e while ζ(θ) for α < 0, γD < 0 case
presented in f (see the text for more details)

4.1 Linear stability of the solutions

Similarly to the previous case, to study the linear stability,
we perturb the system (17) around the solution with stabilized
extra dimensions. Since the curvature of the internal subspace
is zeroth, we can rewrite the system (17) in terms of Hubble
parameter H(t) = ȧ(t)/a(t) (effectively this diminish number
of degrees of freedom by one which is crucial for our task), then
we perturb the system around solution H(t) = H0 + δH(t),
b(t) = b0 + δb(t) with H0 and b0 governed by (19) and per-
vious section describe a way how to find them. The resulting
system of perturbed equations takes a form

(24αH2
0 b

2
0 + 24αγD + 6b2

0)δ̈b(t)

+(48αH3
0 b

2
0 + 48αH0γD + 12H0b

2
0)δ̇b(t)

+(72αH2
0 γD + 18H2

0 b
2
0 − 3�b2

0 + 6γD)δb(t)

+(48αb0γD + 4b3
0)δ̇H(t)

+(144αH0b0γD + 12H0b
3
0)δH(t) = 0,

(48αH2
0 b0 + 4b0)δ̈b(t) + (144αH3

0 b0 + 12H0b0)δ̇b(t)

+(48αH4
0 b0 + 24H2

0 b0 − 2�b0)δb(t)

+(24αH2
0 b

2
0 + 24αγD + 6b2

0)δ̇H(t)

+(96αH3
0 b

2
0 + 96αH0γD + 24H0b

2
0)δH(t) = 0. (23)

We again use normal modes, and with use of (11) and (22)
the exponents from the eigenvalues could be rewritten in terms
of only θ for each choice of α and γD . So that we examine the
exponents for all cases and present our analysis in Fig. 4.

Case 1 α > 0, γD > 0. Two out of three exponents are
real and negative while the third is real and positive for all θ ,
making this solution unstable (see Fig. 4a). We also remind the
reader that for Case 3 there are no solutions.

Cases 2 and 4 α < 0 for γD > 0 and γD < 0 respectively
– have the same structure of stability areas so we report them
together. First branch is stable for θ ∈ (−∞, θ1) ∪ (−1/4, θ4),
second branch has negative real part of the exponent everywhere
in θ < 0 and the third within θ ∈ (−∞, θ2) ∪ (θ5, 0). Here θ1
and θ2 are the same as defined above while θ3 < θ4 are roots of
(55296θ4 +44352θ3 +12768θ2 −1480θ +55) = 0 – radicand
from the expression and θ5 = −1/12. Since we call solution
as stable if all three exponents are negative, the overall stability
range is the overlap of all three branches; the resulting range is
θ ∈ (−∞, θ1)∪ (−1/4, θ2)∪ (θ5, θ4). Comparing these ranges
with those of existence, we can see that Case 4 solutions are
stable on the entire area of definition (θ ∈ (−1/4, −1/6)). On
the other hand, Case 2 solutions overlap with stability range for
θ ∈ (−∞, θ1)∪(−1/6, θ2)∪(θ5, θ4). The situation is illustrated
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(a) (c)(b)

Fig. 4 Graphs illustrating stability of the solutions for different cases in (3+3)-dimensional model: α > 0, γD > 0 case in a panel; α < 0, γD > 0
and α < 0, γD < 0 cases in b (“large-scale”) and c (“fine structure”). Different colors correspond to different (three) branches of the eigenvalues
(see the text for more details)

in Figs. 4b, c, where on (b) panel we presented “large-scale”
picture while on (c) panel we focus on the range near zero,
where there is “fine-structure” of the solutions.

Let us make a note on ξ , as it defines �: for Case 2 both
ranges θ ∈ (−∞, θ1) and θ ∈ (−1/6, θ2) give ξ ∈ (0, +∞)

which, combined with α < 0, gives us � < 0 – so that these
Case 2 solutions exist for α < 0, � < 0. The last range θ ∈
(θ5, θ4) gives ξ ∈ (−0.5448, −0.5) – tiny but negative range,
resulting in � > 0.

For Case 4 we have θ ∈ (−1/4, −1/6) which results in
ξ ∈ (−∞, −3/2), so that � > 0.

5 (3+4)-dimensional solution

For (3+4)-dimensional case the resulting system for stabilized
extra dimensions would be 4th order polynomial, making it
even harder to solve explicitly then (3 + 3)-dimensional case.
So that we use same technic as for (3 + 3) dimensions, namely,
we use (11) for the resulting system and obtain (after neglecting
denominator):

144γDθζ + 6θζ 2 − ξζ 2 + 24γ 2
D + 12γDζ = 0,

24θ2ζ + 144γDθ + 12θζ − ξζ + 6γD = 0.
(24)

We solve the second of (24) with respect to ξ and substitute
it into the first of (24); since we use normalization γD = ±1,
obviously γ 2

D = 1, so the resulting equation takes a form

24ζ 2θ2 + 6ζ 2θ − 6ζγD − 24 = 0, (25)

which has a solution

ζ± = 3γD ± 3|8θ + 1|
6θ(4θ + 1)

. (26)

Now we can substitute it into previously found expression
for ξ from the second of (24):

ξ± = 12θ

|8θ + 1| ± γD

( ± 96γDθ2 + 2θ |8θ + 1| ± 30γDθ

+|8θ + 1| ± 2γD
)
. (27)

Equations (26) and (27), together with definitions (11), com-
pletely determine two branches of 1-parametric solution with
stabilized extra dimensions in (3 + 4)-dimensional model. Let
us analyze when these solutions exist. As in (3+3)-dimensional
case, we consider all possible combinations of α and γD sepa-
rately.

Case 1 α > 0, γD > 0. In that case θ > 0 and substituting
it into ζ± we can see that ζ+ > 0 everywhere in θ > 0 (colored
in red in Fig. 5a) while ζ− < 0 (colored in blue in Fig. 5a). So
we can conclude that only ζ+ is viable and plot corresponding
ξ+ in Fig. 5b; from it one can see that ξ+ > 0 which means
� > 0 (since α > 0).

Case 2 α < 0, γD > 0. In that case θ < 0 and substituting
it into ζ± we can see that ζ− < 0 everywhere in θ < 0 (colored
in blue in Fig. 5c) while ζ+ < 0 only for θ > −1/4 (colored
in red in Fig. 5c). For “–” branch we plot ξ− in Fig. 5d and one
can see that it is always positive (and so that � < 0) while for
“+” branch ξ+ is plotted in Fig. 5e and we can see that ξ could
be both positive and negative there. Minimal possible value is
ξ+(−1/4) = −3/2; ξ+(θ) hits zero at θ1 = −(5 + √

5)/40 ≈
−0.1809 and θ2 = −3/28 ≈ −0.1071 (and at θ = 0); it has
maximum at θ = −1/8 with ξ+(−1/8) = 3/8 and finally
it has local minimum at θmin = −3/56 ≈ −0.05357 with
ξ+(θmin) = −27/56 ≈ −0.48214. So that this case has a
variety of parameters where solutions could possibly exist.

Case 3 α > 0, γD < 0. In that case θ > 0 and substituting it
into ζ± we can see that ζ+ > 0 everywhere in θ > 0 (colored in
red in Fig. 5f) while ζ− < 0 (colored in blue in Fig. 5f). So we
can conclude that only ζ+ is viable and plot corresponding ξ+
in Fig. 5g; from it one can see that ξ+ < 0 which means � < 0
(since α > 0). One cannot miss familiarity between Cases 1 and

123



136 Page 10 of 16 Eur. Phys. J. C (2021) 81 :136

(a) (b) (c)

(f)(d)

(h)

(e)

(g)
(i)

Fig. 5 Graphs illustrating the behavior of derived functions (22) for
different cases in (3 + 4)-dimensional model: α > 0, γD > 0 case:
ζ±(θ) in a (ζ+ in red and ζ− in blue) and ξ+(θ) in b; α < 0, γD > 0
case: ζ±(θ) in c (ζ+ in red and ζ− in blue), ξ−(θ) in d and ξ+(θ) in e;

α > 0, γD < 0 case: ζ±(θ) in f panel (ζ+ in red and ζ− in blue) and
ξ+(θ) in g; α < 0, γD < 0 case: ζ±(θ) in h (ζ+ in red and ζ− in blue)
and ξ−(θ) in i; (see the text for more details)

3 – “mirror-like” behavior of ζ± branches (compare Fig. 5a, f)
but since they have different sign for γD , the resulting ξ also
have different sign (compare Fig. 5b, g).

Case 4 α < 0, γD < 0. In that case θ < 0 and substituting
it into ζ± we can see that ζ+ > 0 everywhere in θ < 0 (colored
in red in Fig. 5h) while ζ− < 0 only for θ < −1/4 (colored in
blue in Fig. 5h). So that the only viable branch is ζ− and only

for θ < −1/4. The resulting ξ−(θ) graph is presented in Fig. 5i
– one can clearly see that ξ < −3/2 and so � > −3/(2α).
Again, one cannot miss familiarity between Cases 2 and 4 –
their ζ± curves are “mirror-symmetric” with respect to ζ = 0
(compare Fig. 5c, h) but unlike Cases 1 and 3 described above,
Cases 2 and 4 have more complicated structure which results
in quite different branch/range combination for each of them.
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Also, since now we have only one branch, for ξ we also have
only single choice.

Overall, one can see much more abundant potential dynam-
ics then for (3 + 3)-dimensional case; let us find out if these
solutions are stable or not.

5.1 Linear stability of (3+4)-dimensional solutions

The general scheme for finding stable solutions is exactly the
same as in (3 + 3)-dimensional case – we perturb the system
of dynamical equations around the solution, separate perturba-
tions, find normal modes and investigate when they all simul-
taneously have negative real parts. Skipping technical details,
we report the results for all cases separately; the results are
presented in Fig. 6.

Case 1 In this case one of the modes is always real and
positive while two others are always real and negative – overall it
means that the solutions are unstable for this case. The situation
resemble same Case 1 from (3+3)-dimensional case so Fig. 4a
would serve as a good illustration.

Case 2 As previously described, here we have possible
solutions on both ζ± branches. For ζ− branch one of the
modes always has positive real part which makes this branch

unstable. Situation is illustrated in Fig. 6b, c, with (b) panel
presents “large-scale“ picture and (c) panel – “fine-tuning” at
small values of θ where the structure is complicated. On the
contrary, ζ+ has all three modes with negative real parts at
θ ∈ (−∞, −1/4) ∪ (−1/5, −1/8) ∪ (−1/16, −3/56) (see
Fig. 6d). If we unite it with the region of existence described
earlier, we will have to drop the first range, resulting in θ ∈
(−1/5, −1/8) ∪ (−1/16, −3/56) for range for existence and
stability of Case 2 solution.

Case 3 Here we have ζ+ and all three modes are real and
negative everywhere on θ > 0, making entire range of definition
for solutions within this class stable (see Fig. 6a).

Case 4 Similarly to the previous case, all three modes have
negative real parts everywhere in the domain of definition (now,
for θ < −1/4) making them stable (see Fig. 6d). It is interesting
to note that ζ+ for Case 2 and ζ− for Case 4 have exactly the
same exponents in the stability analysis – it seems that sign
swaps for α and γD exactly cancel each other.

To conclude, solutions with γD > 0 exist and stable only
for α < 0 (Case 2), for θ ∈ (−1/5, −1/8) ∪ (−1/16, −3/56),
which corresponds to ξ ∈ (−27/56, −15/32)∪(−0.3, 3/8) (so
that for both positive and negative �). Solutions with γD < 0
exist and stable for both α > 0, � > 0 (Case 3) and α < 0,
� > 0 (ξ < −3/2) (Case 4).

6 General (3+ D)-dimensional case

The procedure for the general case is exactly the same as for
previously described (3 + 3)- and (3 + 4)-dimensional cases.
So with use of (11), the resulting system for stabilized extra
dimensions reads

D(D − 1)(D − 2)(D − 3)γ 2
D + DζγD(12θ + 1)(D − 1)

+ζ 2(6θ − ξ) = 0;
D(D − 1)(D − 2)(D − 3)(D − 4)γ 2

D

+ζγD(D − 1)(D − 2)(24θ + 1)

+ζ 2(24θ2 + 12θ − ξ) = 0. (28)

One can immediately see that due to the multiplier (D − 4)

in the second equation, we cannot obtain D = 4 case as a
subcase of general one. Following the procedure, we express
ξ from one of the equations and substitute it into another one.
The resulting equation is quadratic with respect to ζ but, unlike
previous (3 + 3)- and (3 + 4)-dimensional cases its solutions
need radicals to be written explicitly, nevertheless, they still
could be written in a closed form:

ξ = 12θ(1 + 2θ)ζ 2 + γD(D − 1)(D − 2)(24θ + 1)ζ + γ 2
D(D − 1)(D − 2)(D − 3)(D − 4)

ζ 2 ,

ζ± = −γD(D − 1)(6Dθ − 24θ − 1 ± √D)

6θ(4θ + 1)
, where

D = (D − 1)
(
(D − 1)γ 2

D(6Dθ − 24θ − 1)2 + 24θ(D − 2)(D − 3)(4θ + 1)
)

. (29)

Similarly the the previous cases, we consider separately four
cases with different signs for α and γD . But unlike previous
cases, now everything depends not only on our parameter θ , but
also on D – number of extra dimensions. In the previous cases it
was easy to plot the resulting curves and find roots/divergences,
now it is a bit more complicated.

Case 1 (α > 0, γD > 0) and Case 3 (α > 0, γD < 0) are
quite similar: in both we haveα > 0 so that we can consider only
θ > 0 and for solution to exist we should have ζ > 0. There,
we can see from (29) that D2 > (D + 1)2(6Dθ − 24θ − 1)2

which makes ζ+ > 0 and ζ− < 0 for both signs of γD . So that
for cases 1 and 3 we have a solution for the entire θ > 0 for ζ+.
When transforming to ξ , it corresponds to ξ > 0 for Case 1 and
ξ < −D(D − 1)/(4(D − 2)(D − 3)) for Case 3; one can see
that the latter is different from (3 + 4)-dimensional case while
the formed is the same.

Similar analysis could be used to Case 2 (α < 0, γD > 0)
and Case 4 (α < 0, γD < 0). Now we have α < 0 so that we
consider only θ < 0 and should have ζ < 0 for the solution to
exist. Again, comparing discriminant and the free term, we can
conclude that Case 4 solutions exist for ζ− and θ < −1/4 while
Case 2 solutions exist for all θ < 0 on ζ− and 0 > θ > −1/4
on ζ+. One can see that existence regions for these two cases
are exactly the same as for (3 + 4)-dimensional case.
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(b)

(c) (d)

(a)

Fig. 6 Graphs illustrating stability of the solutions for different cases
in (3 + 4)-dimensional model: α > 0, γD < 0 case in a; α < 0,
γD > 0 with ζ− branch in b (“large-scale”) and c (“fine structure”)
panels; α < 0, γD > 0 with ζ+ branch as well as α < 0, γD < 0 with

ζ− branch in d (“fine structure”). Different colors correspond to differ-
ent (three) branches of the eigenvalues (see the text for more details)

6.1 Linear stability of general (3 + D)-dimensional
solutions

In the previously described cases for given α and γD we could
build a solution for any θ from its region of existence. This
general case is different – θ is still our parameter but we addi-
tionally have number of extra dimensions D; also, solutions
for ζ± (29) no more have simple form – they have radicals
which further complicate the analysis. Still, we can formally
follow all the steps – perturb the equations of motion around
the solution, substitute (11), calculate eigenvalues of the matrix
for perturbation equations and the result will depend on θ with
D and with α and γD as parameters. As the resulting eigenval-

ues being a roots of cubic equation, their implicit analysis is
quite troublesome, nevertheless one can demonstrate that they
do not have extremum as a function of D for D > 4. With this
knowledge at hand we investigate several particular D cases
(we used D = 5, 7, 10, 12) and, seing no qualitative differ-
ence, decide that this is common behavior for general D. This
way we demonstrate that in Case 1 one of the modes is always
positive while two others always negative, making solutions
from this case unstable – the same situation as in previous cases;
Fig. 4a would serve as a good illustration for this case. On the
other hand, solutions for Case 3 are stable, as all three modes
are negative for θ > 0 and ζ+. This is the same as in (3 + 4)-
dimensional case, so that Fig. 6a is a good illustration. Case 4
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also proves to be stable for ζ− and θ < −1/4 so that Fig. 6d is
an example. Finally, Case 2 is the most complicated of all four
cases - well, just like in (3 + 3)- and (3 + 4)-dimensional cases
as well. For ζ− branch, one of the modes always has positive
real part, making it unstable – just like in (3 + 4)-dimensional
case (see Fig. 6b, c). For ζ+ branch the situation is as follows:
the range of definition is 0 > θ > −1/4; out of three modes,
one has negative real part for θ1 < θ < θ4, another mode has
negative real part for θ ∈ (−1/4, θ2) ∪ (θ3, 0) and final mode
always negative. Here −1/4 < θ1 < θ2 < θ3 < θ4 < 0 are
defined as follows: θ1 is very lengthy radicand coming from
denominator of expression for mode; θ3 = −1/(4D) is another
zero of the same denominator; θ2 and θ4 are roots of

48D3(5D − 6)(D + 1)(3D2 − 19D + 32)θ4

+24D2(31D4 − 185D3 + 266D2 − 272D − 480)θ3

+12D(21D4 − 103D3 + 108D2 − 268D − 384)θ2

+2(D − 2)(2D − 3)(9D2 − 32D + 48)θ

+(D − 1)(D + 2)(2D − 3) = 0. (30)

For a solution to be stable, all three modes should be neg-
ative; so the resulting range is intersection of all three; since
−1/4 < θ1 < θ2 < θ3 < θ4 < 0, the resulting range is
θ ∈ (θ1, θ2) ∪ (θ3, θ4) – see Fig. 6d as an example. Of course,
all of these θ ’s scales with D and in Fig. 7 we presented them
for some values of D – the ranges for θ are presented in (a)
panel; if we convert these ranges into ξ , the resulting areas are
presented in Fig. 7b. One can see from Fig. 7 that the area is
decreasing with growth of D, making smaller the measure of
the parameters when solutions in Case 2 could exist.

7 Summary

We realize that the manuscript so far was quite technical and
decided to summarize relevant results in a separate section.
Before turning to summarizing the results, there is one more
important note we want to make. Through this paper we report
existence and stability regions mainly using θ , and it is done
for the reason. Indeed, as we described earlier, θ is the only
“dynamical” parameter of the theory (“dynamical” here means
that this parameter vary from one exact solution to another with
α, γD and D remain unchanged). If we have a look on graphs
of ξ and ζ as a functions of θ we will see that the same value of
ξ and ζ often achieved at different values of θ : this corresponds
to the situation when there are multiple solutions for the same
α and ξ . For instance, for (3 + 3)-dimensional case there could
be up to three (and for general (3 + D) up to four) distinct
solutions (with different H0 and b0 each) for a given α and ξ .
And there will be distinct θ which corresponds to each of them.
So that if we are interested in finding all possible solutions, we
are interested in range of θ ; if we are interested in when at least
one solution exist, range of ξ would suffice.

With these notes taken, let us move to summarizing the
results.

7.1 Negative curvature of extra dimensions

In fact, this case was studied quite well in [4,5] and here it is just
one of two subcases of the general γD . Our analysis suggest that
the solutions exist in (3 + 2)- and (3 + 3)-dimensional cases
only for α < 0 while for (3 + 4)- and higher-dimensional
cases – for both signs of α. For (3 + 2)-dimensional case these
solutions are unstable (see Fig. 2b) while for higher dimensions
the situation becomes more complicated. The solutions with
α < 0 exist and stable within some ranges of θ : for (3 + 3)

it is θ ∈ (−1/4, −1/6) which corresponds to ξ < −3/2 (see
Fig. 4c); for (3 + 4) it is θ < −1/4 (and again ξ < −3/2);
exactly the same result we obtain for general (3 + D) case. Let
us note that despite limited range (in (3 + 3)-dimensional case
it is even limited from both above and below), it is the entire
range of where solution exist. So that we can conclude that for
α < 0 all existing solutions are stable.

Now let us turn to α > 0 solutions – they exist only starting
from (3 + 4) and in higher-dimensional cases. Our analysis
proves that (3 + 4)- and general (3 + D)-dimensional cases
have exactly the same description: it is ζ+ branch which exists
(see Fig. 5f) and is stable (see Fig. 6a) everywhere within range
of definition. So that not only for α < 0, but for α > 0 all
existing solutions are stable as well. So that we can conclude
that all existing solutions with negative curvature and D > 2
are always stable.

7.2 Positive curvature of extra dimensions

Let us consider separately cases α > 0 and α < 0, as we
did in the negative curvature section. The solutions for α > 0
always exist (starting from (3+2) and in any higher dimensions)
but are always unstable – it is what we called Case 1 and one
of the nodes always has positive real part in all D cases. On
the contrary, starting from (3 + 3)-dimensional case, α < 0
solutions have some range of stability: it is θ ∈ (−∞, θ1) ∪
(−1/6, θ2)∪(θ5, θ4), and all θ ’s are defined in section dedicated
to (3 + 3)-dimensional model; let us note that the entire ξ > 0
is covered within this range of θ . For (3 + 4)-dimensional case
the situation is as follows: there are two branches, ζ±, of them
ζ− defined everywhere at θ < 0 (see Fig. 5c) but is stable
nowhere (see Fig. 6b, c) while ζ+ is defined at 0 > θ > −1/4
and is stable within θ ∈ (−1/5, −1/8) ∪ (−1/16, −3/56),
which corresponds to ξ ∈ (−27/56, −15/32) ∪ (−0.3, 3/8).
Let us note the difference between this and (3+3)-dimensional
cases – in the latter stability range is ξ > 0 – it is unbounded but
single-signed. Finally general (3+D)-dimensional case follow
(3 + 4)-dimensional: for α < 0 we have unstable ζ− branch
and stability of ζ+ branch within two intervals; dependence of
these intervals on D is depicted in Fig. 7a while corresponding
range for ξ – in Fig. 7b.

7.3 Concluding remarks

We summarize all existing and stability ranges in Table 1. Please
note that we united results for different branches (when apply),
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(a) (b)

Fig. 7 Behavior of allowed regions for Case 2 solutions with varying D: regions for θ in a and for ξ in b (see the text for more details)

as we are interested in conditions when solutions exist and
are stable, leaving technical details to the main paper. From
Table 1 we can clearly see the difference between the cases
with positive and negative curvature: solutions with negative
curvature are always stable while solutions with positive curva-
ture are stable only within some range of ξ and the size of this
range (“measure of stable trajectories”) strongly decreases with
growth of D, as indicated in Fig. 7b. The only exceptions are
(3 + 3)-dimensional case, for which solutions are stable for all
(α < 0, � < 0) and (3+4)-dimensional case, where solutions
are stable for α < 0, ξ ∈ (−27/56, −15/32) ∪ (−0.3, 3/8).

This can explain why we have not detected this sort of behav-
ior back in [4,5] – we studied the behavior numerically, and
were interested in large-D asymptotic – in this case the behavior
of models with negative curvature strongly favors detectability
(the always stable – regardless of the parameters) while to find
stable solution with positive curvature we need to fine-tune ξ ,
and with growth of D the size of range for ξ decreases, mak-
ing it practically impossible to obtain “correct” value from this
range via random pick.

Finally, let us attend one more interesting feature of the
obtained solutions. Beforehand, studying the case with neg-
ative curvature in [4,5] we noticed that maximally-symmetric
solutions do not coexist with compactified ones. In the case
of positive curvature they do. This statement is important so
we want to elaborate a bit. If we add criterium for maximally-
symmetric solution (6) to stability regions on Fig. 7b, we obtain
situation illustrated in Fig. 8. In there we took Fig. 7b and added
exact existence separatrix for maximally-symmetric solution
(6) as red dashed line. Since existence criteria for maximally-
symmetric solutions is ξ � ξiso, then one can see that both
regions satisfy it. Unfortunately, the expressions for three out
of four ξ(D) curves are quite cumbersome, so we are left
with only one curve – ξ3(D) (which is the upper boundary of
the bottom (smaller) strip). It corresponds to θ3 = −1/(4D)

(see appropriate section) and being substituted to ξ in Eq.
(29) (alongside with ζ+ from the same equation) gives us
ξ3 = −(D2 + 2D − 9)/(4D(D − 2)). If we compare it with
ξiso from (6) we can see that

ξ3 − ξiso = 3(D − 1)

4D(D + 1)(D − 2)
> 0, (31)

so that ξ3 > ξiso always and we can claim that for D > 2
there always exist stable compactified solutions with positive
curvature which coexist with maximally-symmetric solutions
– this situation is different from the case with negative curva-
ture of extra dimensions. Figure 8 suggests that the statement
is even stronger – that all stable compactified solutions with
positive curvature coexist with maximally-symmetric solutions.
To check this we can numerically calculate both ξ4 (lower
boundary of the bottom strip) for large values of D and com-
pare it with ξiso to verify that ξiso < ξ4. For instance, for
D = 100 we have ξ4(D = 100) = −0.2599803 while
ξiso(D = 100) = −0.2600495, which support our statement
in its stronger form; higher values for D support it as well.

8 Conclusions

In this paper we have considered a compactification scenario
where stabilisation of extra dimensions occurs due to presence
the Gauss-Bonnet term and non-zero spatial curvature. The sign
of spatial curvature can be positive or negative, in the latter case
we need additional factorisation to get a compact inner space.
Scale factor of the extra dimension space as well as the effective
cosmological constant in three-dimensional “big” submanifold
are obtained from the system of two algebraic equations. Roots
of these equations depend upon coupling constants of the theory,
and some combinations of coupling constants can lead either
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Table 1 Conditions for existing and stability of compactified solutions in different number of extra dimensions D

Parameters (3 + 2) (3 + 3) (3 + 4) (3 + D)

α > 0, γD > 0 Exist ξ > 0 ξ > 0 ξ > 0 ξ > 0

Stable Never Never Never Never

α < 0, γD > 0 Exist ξ > −3/2 ξ > −3/2 ξ > −3/2 ξ > −3/2

Stable Never ξ ∈ (−0.5448; −0.5), ξ ∈ (−27/56; −15/32), See Fig. 7b

ξ > 0 ξ ∈ (−3/10; 3/8)

α > 0, γD < 0 Exist No No ξ < 0 ξ < − D(D − 1)

4(D − 2)(D − 3)

Stable No No Always Always

α < 0, γD < 0 Exist ξ ∈ (−3/2; −5/6) ξ < −3/2 ξ < −3/2 ξ < −3/2

Stable Never Always Always Always

Fig. 8 Allowed regions for ξ as a functions of the number of extra
dimensions (in blue; same as Fig. 7b) and separatrix for existence of
maximally-symmetric solutions (red dashed line) (see the text for more
details)

to absence of roots or to negative roots without an adequate
physical meaning.

The first goal of the present paper is to describe combina-
tions of coupling constants which allows a physically accept-
able compactification solutions. We show that a product of
constants ξ = α� characterises the existence conditions com-
pletely if supplemented by the information about signs of α and
the spatial curvature. From our results summarised in Table 1
we can see that the existence conditions for both signs of the
spatial curvature are not very restrictive. We note also that in the
case of negative spatial curvature the compactification solution
exist only in those range of ξ where the maximally symmetric
solution does not exist. This proves the “geometrical frustra-
tion” hypothesis for negatively curved inner spaces (see [4]
for details). We can note that for α > 0 the compactification
solution exists exactly for the range of ξ where maximally sym-
metric solution does not exist, while for negative α there is a

range of ξ where neither compactification nor maximally sym-
metric solution exist. However, compactification solutions with
positively curved inner spaces can co-exist with the maximally
symmetric solution.

The second goal of our paper is to study stability of compact-
ification solutions with respect to homogeneous perturbations
of the metric. The first results obtained are the same for both
signs of the spatial curvature – any compactification solution
with only D = 2 extra dimensions is unstable. This explains
why such solutions have never been found in actual numerical
integrations of equations of motion. The situation with bigger
number of extra dimensions is, however, quite different for neg-
atively and positively curved extra spaces. For the negative cur-
vature extra space, any solution with D > 2 extra dimensions
is stable. Note also, that for D > 3 both signs of the constant
α are possible for the solution to exist (and, than, to be stable).

For the positive curvature case, on the contrary, stability con-
ditions impose severe restrictions for possible set of the cou-
pling constant of the theory under study. First of all, there are
no stable compactification solutions with a positive α. Second,
for negative α a solution is stable only in rather narrow interval
of ξ , and the width of this interval decreases with increasing D
(see Fig. 7b).

Let us also note that for a flat internal space (γD = 0) the
solutions under consideration do exist for α < 0 and � =
−3/(2α) > 0 and are stable for D > 2 [61] and D = 2 [62].

We find that the range of ξ which allows stable compactifi-
cation solutions is located in zone where maximally symmetric
solution also exist. The actual fate of a particular trajectory may
depend upon the initial conditions, and this question needs fur-
ther investigations. In general, positive curvature case seems to
be more physically relevant since it leads to compactness of
the inner space directly, while addition factorisation is needed
for the negative curvature case. Our results indicate, however,
that this advantage is in some sense compensated by the fine-
tuning of coupling constants needed for the compactification
solution to be stable. Since this fine-tuning is rather serious for
the case of large number of dimensions in the inner space, fur-
ther Lovelock terms might change these conclusions, and this is
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the matter of a separate investigation which we plan to provide
in future.
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