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Abstract We have studied the effect of strong magnetic
field on the viscous properties of hot QCD matter at finite
chemical potential by calculating the shear viscosity (η) and
the bulk viscosity (ζ ). The viscosities have been calculated
using the relativistic Boltzmann transport equation within the
relaxation time approximation. The interactions among par-
tons are incorporated through their quasiparticle masses at
finite temperature, strong magnetic field and finite chemical
potential. From this study, one can understand the influence
of strong magnetic field and the influence of chemical poten-
tial on the sound attenuation through the Prandtl number (Pl),
on the nature of the flow by the Reynolds number (Rl), and
on the relative behavior between the shear viscosity and the
bulk viscosity through the ratio ζ/η. We have observed that,
both shear and bulk viscosities get increased in the presence
of a strong magnetic field and the additional presence of
chemical potential further enhances their magnitudes. With
the increase of temperature, η increases for the medium in
the presence of a strong magnetic field as well as for the
isotropic medium in the absence of magnetic field, whereas
ζ is found to decrease with the temperature, contrary to its
increase in the absence of magnetic field. We have observed
that, the Prandtl number gets increased in the presence of
strong magnetic field and finite chemical potential as com-
pared to that in the isotropic medium, but it always remains
larger than unity, thus instead of the thermal diffusion, the
momentum diffusion largely affects the sound attenuation in
the medium and this is more vigorous in the presence of both
strong magnetic field and finite chemical potential. How-
ever, the Reynolds number becomes lowered than unity in
an ambience of strong magnetic field and even gets further
decreased in an additional presence of chemical potential,
thus it implies the dominance of kinematic viscosity over the
characteristic length scale of the system. Finally, the ratio
ζ/η is amplified to the value larger than unity, contrary to its
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value in the absence of magnetic field and chemical potential
where it is less than unity, thus it is inferred that the bulk vis-
cosity prevails over the shear viscosity for the hot and dense
QCD matter in the presence of a strong magnetic field.

1 Introduction

The properties of the deconfined state of matter, i.e. the quark-
gluon plasma (QGP) produced in the initial stages of ultrarel-
ativistic heavy-ion collisions (URHICs) at Relativistic Heavy
Ion Collider (RHIC) [1,2] and Large Hadron Collider (LHC)
[3,4], depend upon the initial conditions, such as the high
temperatures and/or the strong magnetic fields and/or the
finite chemical potentials. The condition of strong magnetic
field arises in case of the noncentral collisions, where it has
been observed that the strength of such magnetic field varies
from eB = m2

π (� 1018 Gauss) at RHIC to 15m2
π at LHC [5]

and the condition of large chemical potential is expected to be
evidenced in the Compressed Baryonic Matter (CBM) exper-
iment at Facility for Antiproton and Ion Research (FAIR) [6].
The estimation for the lifetime of the strong magnetic field
shows that it only exists for a small fraction of the lifetime
of QGP, however, the electrical conductivity of QGP may
significantly increase its lifetime [7,8]. According to some
observations, the quark chemical potential may reach approx-
imately 100 MeV near the critical temperature (around 160
MeV) of phase transition [9–11] and in the presence of a
strong magnetic field, it rises up to 200 MeV [12]. Thus, var-
ious properties of the hot medium of quarks and gluons are
prone to be affected by the existence of strong magnetic field
and finite chemical potential. Different observations have
already been made in discerning the effect of strong mag-
netic field on the properties of hot QCD matter, such as the
thermodynamic and magnetic properties [13–16], the chiral
magnetic effect [17,18], the axial magnetic effect [19,20],
the dilepton production from QGP [21,22] etc.
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In an ambience of external magnetic field, the dispersion
relation of f th flavor of quark with absolute charge |q f | and

massm f is written as ω f,n =
√
p2
L + 2n|q f B| + m2

f , where

pL is the longitudinal component of momentum (with respect
to the direction of magnetic field) and the momentum along
the transverse direction (pT ) is quantized in terms of the Lan-
dau levels (n). The presence of strong magnetic field makes
the charged particles or the quarks to reside only in the low-
est Landau level (LLL) and their motion to be along one
spatial dimension, i.e. along the direction of magnetic field,
because the charged particles can not jump to the higher Lan-
dau levels due to very high energy gap ∼ O(

√|q f B|). Thus,
in the strong magnetic field (SMF) limit (|q f B| � T 2 and
|q f B| � m2

f ), pL is much greater than pT , for which an
anisotropy is created in the momentum space. Unlike the
quarks, the gluons are not directly affected by the magnetic
field because they are electrically uncharged particles, how-
ever, they can be indirectly affected by the magnetic field
through their thermal masses. According to some observation
[23], the effect of magnetic field on the longitudinal electrical
conductivity is predominant in the presence of finite chemi-
cal potential. So, the properties of transport coefficients might
be robustly influenced by the emergence of strong magnetic
field and finite chemical potential. In this process, we have
recently studied the charge and thermal transport properties
by calculating the electrical conductivity (σel) and the thermal
conductivity (κ) in the presence of both strong magnetic field
and chemical potential and also observed their applications
to understand the effects of strong magnetic field and chemi-
cal potential on the local equilibrium by the Knudsen number
(�) and on the Lorenz number (L) in the Wiedemann–Franz
law [24]. Our aim in this work is to investigate the viscous
properties of the hot QCD matter by calculating the shear vis-
cosity (η) and the bulk viscosity (ζ ) in the abovementioned
environment of strong magnetic field and finite but small
quark chemical potential. Then we intend to observe some
applications in the similar environment, such as the sound
attenuation through the Prandtl number (Pl), the nature of the
flow by the Reynolds number (Rl), and the relative behavior
between the shear viscosity and the bulk viscosity through
the ratio ζ/η.

A system which is slightly out of equilibrium can pos-
sess finite shear and bulk viscosities. In the hydrodynamic
description of QGP, two of the important quantities are the
shear viscosity and the bulk viscosity, out of which shear
viscosity conducts the momentum transfer in the presence of
inhomogeneity of fluid velocity, whereas the bulk viscosity
delineates the change of local pressure due to either expan-
sion or contraction of fluid. In the study of phase transition
from hadronic matter to quark and gluon matter, the val-
ues of the viscosities are helpful in determining the location
of phase transition, where the shear viscosity is a minimum

and the bulk viscosity is a maximum [25]. In hydrodynamic
simulations, different observables, such as the elliptic flow
coefficient and the hadron transverse momentum spectrum
are largely influenced by the shear and bulk viscosities [26–
29]. Their values and properties also provide the information
on how far the system appears from an ideal hydrodynamics.
In this regard, a variety of calculations on shear and bulk vis-
cosities have been done for a medium consisting of quarks
and gluons at high temperatures by implementing the per-
turbation theory [30–33], the kinetic theory [34–36] etc. The
presence of magnetic field breaks the rotational symmetry,
therefore the viscous stress tensor is described by five shear
viscous coefficients and two bulk viscous coefficients [37–
42]. However, in the strong magnetic field limit, only the lon-
gitudinal components (along the direction of magnetic field)
of shear and bulk viscosities exist and these are contributed by
the lowest Landau level (LLL) quarks/antiquarks [37,38,41],
so, the viscosities become highly anisotropic. The relativis-
tic anisotropic viscosities were first introduced in references
[43,44] and a kinetic formalism of these transport coeffi-
cients was given in references [45,46]. In the presence of the
magnetic field, the shear and bulk viscosities have been previ-
ously determined using various approaches and techniques,
viz. the correlator technique using Kubo formula [41,47], the
perturbative QCD approach in weak magnetic field [48], the
Chapman–Enskog method with effective fugacity approach
[49] and the holographic setup [50–53]. In this work, we are
going to calculate these viscosities by using the kinetic the-
ory approach in the relaxation time approximation, where
we have considered the interactions among particles through
their effective masses in the quasiparticle model at strong
magnetic field and finite chemical potential. The study of the
effects of strong magnetic field and chemical potential on the
transport coefficients is important, as in the ultrarelativistic
heavy ion collisions, the rapid evolution of the matter is gov-
erned by the dissipative effects via the shear viscosity and the
bulk viscosity and is expected to be modified by the strong
magnetic field and chemical potential.

We intend to further study the impacts of strong mag-
netic field and finite chemical potential on the Prandtl num-
ber (Pl = ηCp

ρκ
, where Cp denotes the specific heat at constant

pressure, ρ is the mass density and κ represents the thermal
conductivity), on the Reynolds number (Rl = Lvρ

η
, where L

and v denote the characteristic length and velocity of the flow,
respectively), and on the ratio of bulk viscosity to shear vis-
cosity (ζ/η). The Prandtl number signifies the relative impor-
tance of the momentum diffusion and the thermal diffusion
on the sound attenuation in a medium. Using kinetic theory,
the Prandtl number has been calculated for a strongly cou-
pled liquid helium [54], where its value is found to be around
2.5, and for a nonrelativistic conformal holographic fluid, Pl
is estimated to be 1.0 [54,55]. The Prandtl number is 2

3 for a
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dilute atomic Fermi gas at high temperatures [56]. The mag-
nitude of the Reynolds number gives the knowledge about the
type of flow, i.e. the flow is laminar when Rl ≤ 1 and it is tur-
bulent when Rl � 1. The Reynolds number of the quark mat-
ter is calculated to be about 10 using the Kubo formula and
NJL model [57], according to the (3+1)-dimensional fluid
dynamical model, the value of the Rl for QGP lies in the
range 3-10 [58] and the holographic setup reports the upper
value of Rl as approximately 20 [59]. In neither of the above-
mentioned approaches Rl is much larger than 1, so the QGP
medium can be considered as a viscous medium with laminar
flow. The properties of the ratio ζ/η has also been studied
previously for different systems using different approaches.
For example, ζ/η is studied for an interacting scalar field
in Ref. [60], for a hot QCD medium at perturbative limit in
Ref. [32], for a strongly coupled gauge theory plasma in Ref.
[61], for a hot QCD medium using holographic model in ref-
erences [62,63], for a quasigluon plasma in Ref. [64], for
hadron gas in references [65–67] and for a hot QCD medium
using the Chapman–Enskog method in Ref. [68]. In these
systems, the ratio ζ/η has different values due to different
system dynamics at different coupling regimes.

The present work is organized as follows. In Sect. 2, we
have first studied the viscous properties by calculating the
shear and bulk viscosities for a hot QCD medium at finite
chemical potential in the absence of magnetic field and then
proceeded to calculate the same in the presence of a strong
magnetic field. Then, we have studied some applications of
the shear and bulk viscous properties, viz., the Prandtl num-
ber, the Reynolds number and the relative behavior between
the shear viscosity and the bulk viscosity in Sect. 3. In Sect. 4,
we have studied the quasiparticle model in the presence of
both strong magnetic field and chemical potential. Section 5
contains the discussions on our results regarding shear and
bulk viscosities, Prandtl number, Reynolds number and ratio
of bulk viscosity to shear viscosity in quasiparticle descrip-
tion. Finally, we have concluded in Sect. 6.

2 Shear and bulk viscous properties

In this section, we are going to study the shear and bulk vis-
cous properties of the QCD medium. It is possible to deter-
mine the shear and bulk viscosities using various approaches,
viz. the relativistic Boltzmann transport equation in the relax-
ation time approximation [34,69,70], the lattice simulation
[71,72], the correlator technique using Green–Kubo formula
[73–76], the molecular dynamics simulation [77] etc. In our
work, we use the relativistic Boltzmann transport equation
to calculate the shear and bulk viscosities within the relax-
ation time approximation for a dense QCD medium in the
absence of magnetic field and for a dense QCD medium in

the presence of a strong magnetic field in Sects. 2.1 and 2.2,
respectively.

2.1 Hot and dense QCD medium in the absence of
magnetic field

When the medium deviates slightly from the equilibrium, the
energy–momentum tensor also becomes shifted as


Tμν = Tμν − Tμν

(0) , (1)

where Tμν

(0) is the energy–momentum tensor in local equilib-
rium and Tμν denotes the total energy–momentum tensor in
a nonequilibrium medium. Tμν is defined as

Tμν =
∫

d3p

(2π)3 p
μ pν

×
⎡
⎣∑

f

g f

(
f f + f̄ f

)

ω f
+ gg

fg
ωg

⎤
⎦ . (2)

Similarly, 
Tμν is written as


Tμν =
∫

d3p

(2π)3 p
μ pν

×
⎡
⎣∑

f

g f

(
δ f f + δ f̄ f

)

ω f
+ gg

δ fg
ωg

⎤
⎦ , (3)

where ‘ f ’ is used for flavor index and it takes flavors u, d
and s. In Eq. (3), g f and δ f f (δ f̄ f ) are the degeneracy factor
and the infinitesimal change in the distribution function for
the quark (antiquark) of f th flavor, respectively. Similarly,
gg and δ fg are the degeneracy factor and the infinitesimal
change in the distribution function for the gluon, respectively.
For a nonequilibrium system, the shear and bulk viscosities
are finite, which are defined as the coefficients of the trace-
less and trace parts of the nonequilibrium contribution of the
energy–momentum tensor, respectively. Thus the shear and
bulk viscosities explain the momentum transports across and
along the layer, respectively.

The infinitesimal change in quark (antiquark) distribution
function due to the action of an external force is defined as
δ f f = f f − f iso

f (δ f̄ f = f̄ f − f̄ iso
f ), where f iso

f ( f̄ iso
f ) rep-

resents the equilibrium distribution function in the isotropic
medium for quark (antiquark) of f th flavor. The forms of
f iso
f and f̄ iso

f are given by

f iso
f = 1

eβ(uα pα−μ f ) + 1
, (4)

f̄ iso
f = 1

eβ(uα pα+μ f ) + 1
, (5)

respectively, where pα ≡ (ω f ,p) with ω f =
√
p2 + m2

f , uα

is the four-velocity of fluid, T = β−1 and μ f is the chemical
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potential of f th flavor. Similarly, the infinitesimal change in
gluon distribution function is defined as δ fg = fg − f iso

g ,
where f iso

g is the equilibrium distribution function for gluon
in the isotropic medium,

f iso
g = 1

eβuα pα − 1
, (6)

with pα ≡ (ωg,p). The infinitesimal changes in the distribu-
tion functions for quarks, antiquarks and gluons can be deter-
mined from their respective relativistic Boltzmann transport
equations in the relaxation-time approximation:

pμ∂μ f f (x, p) = − pνuν

τ f
δ f f (x, p), (7)

pμ∂μ f̄ f (x, p) = − pνuν

τ f̄
δ f̄ f (x, p), (8)

pμ∂μ fg(x, p) = − pνuν

τg
δ fg(x, p), (9)

where the forms of the relaxation times for quarks (anti-
quarks), τ f (τ f̄ ) and gluons, τg are given [78] by

τ f ( f̄ ) = 1

5.1Tα2
s log (1/αs)

[
1 + 0.12(2N f + 1)

] , (10)

τg = 1

22.5Tα2
s log (1/αs)

[
1 + 0.06N f

] , (11)

respectively. Substituting the values of δ f f , δ f̄ f and δ fg in
Eq. (3), we get


Tμν = −
∫

d3p

(2π)3

pμ pν

pνuν

×
⎡
⎣∑

f

g f

(
τ f pμ∂μ f f + τ f̄ p

μ∂μ f̄ f
)

ω f

+gg
τg pμ∂μ fg

ωg

⎤
⎦ . (12)

The derivative ∂μ is written as ∂μ = uμD + ∇μ, where
D = uμ∂μ. In the local rest frame, the flow velocity and the
temperature are treated as the functions of spatial and tem-
poral coordinates, thus, it is possible to expand the distribu-
tion functions in terms of the gradients of flow velocity and
temperature. The partial derivatives of the isotropic quark,
antiquark and gluon distribution functions are determined as

∂μ f iso
f = f iso

f (1 − f iso
f )

T

[
uα p

αuμ

DT

T

+uα p
α ∇μT

T
− uμ p

αDuα − pα∇μuα

+T ∂μ

(μ f

T

) ]
, (13)

∂μ f̄ iso
f = f̄ iso

f (1 − f̄ iso
f )

T

[
uα p

αuμ

DT

T

+uα p
α ∇μT

T
− uμ p

αDuα − pα∇μuα

−T ∂μ

(μ f

T

) ]
, (14)

∂μ f iso
g = f iso

g (1 + f iso
g )

T

[
uα p

αuμ

DT

T

+uα p
α ∇μT

T
− uμ p

αDuα − pα∇μuα

]
, (15)

respectively. Substituting the values of ∂μ f iso
f , ∂μ f̄ iso

f and

∂μ f iso
g in Eq. (12) and then using DT

T = − ( ∂P
∂ε

)∇αuα and

Duα = ∇α P
ε+P from the energy–momentum conservation, we

have


Tμν =
∑
f

g f

∫
d3p

(2π)3

pμ pν

ω f T

×
[
τ f f iso

f (1 − f iso
f )

{
ω f

(
∂P

∂ε

)
∇αu

α

+pα

( ∇αP

ε + P
− ∇αT

T

)
− T pα

ω f
∂α

(μ f

T

)

+ pα pβ

ω f
∇αuβ

}
+ τ f̄ f̄ iso

f (1 − f̄ iso
f )

×
{
ω f

(
∂P

∂ε

)
∇αu

α + pα

( ∇αP

ε + P
− ∇αT

T

)

+T pα

ω f
∂α

(μ f

T

)
+ pα pβ

ω f
∇αuβ

}]

+gg

∫
d3p

(2π)3

pμ pν

ωgT
τg f iso

g (1 + f iso
g )

×
[
ωg

(
∂P

∂ε

)
∇αu

α + pα

( ∇αP

ε + P
− ∇αT

T

)

+ pα pβ

ωg
∇αuβ

]
. (16)

From the energy–momentum tensor, the pressure and the
energy density are respectively obtained as P = −
μνTμν/3
and ε = uμTμνuν , where 
μν = gμν −uμuν represents the
projection tensor. In order to define the shear and bulk vis-
cosities, one requires the nonzero velocity gradient. We note
that, uμ denotes the velocity of the baryon number flow in the
Eckart frame, whereas it denotes the velocity of the energy
flow in the Landau–Lifshitz frame. Thus, an arbitrariness is
created while defining the velocity uμ, which can be cir-
cumvented by imposing the “condition of fit” in the local
rest frame, i.e. 
T 00 = 0 [79]. So, only the space–space
component of 
Tμν is finite and proportional to the veloc-
ity gradient. From Eq. (16), the space–space component of

Tμν is written as
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T i j =
∑
f

g f

∫
d3p

(2π)3

pi p j

ω f T

×
[
τ f f iso

f (1 − f iso
f )

{
− pk pl

2ω f
Wkl

+
(

ω f

(
∂P

∂ε

)
− p2

3ω f

)
∂lu

l

−T pk

ω f
∂k

(μ f

T

)
+ pk

(
∂k P

ε + P

−∂kT

T

)}
+ τ f̄ f̄ iso

f (1 − f̄ iso
f )

{
− pk pl

2ω f
Wkl

+
(

ω f

(
∂P

∂ε

)
− p2

3ω f

)
∂lu

l

+T pk

ω f
∂k

(μ f

T

)
+ pk

(
∂k P

ε + P
− ∂kT

T

)}]

+gg

∫
d3p

(2π)3

pi p j

ωgT
τg f iso

g (1 + f iso
g )

×
[
− pk pl

2ωg
Wkl +

(
ωg

(
∂P

∂ε

)
− p2

3ωg

)
∂lu

l

+pk
(

∂k P

ε + P
− ∂kT

T

)]
, (17)

where we have used the following expressions,

∂kul = −1

2
Wkl − 1

3
δkl∂ j u

j , (18)

Wkl = ∂kul + ∂luk − 2

3
δkl∂ j u

j . (19)

The shear and bulk viscosities are defined as the coeffi-
cients of the traceless and trace parts of the nonequilibrium
part of energy–momentum tensor, respectively. For small
deviation of the system from its equilibrium, the space–space
component of the nonequilibrium part of energy–momentum
tensor in a first order theory is written [37,78,80] as


T i j = −ηWi j − ζ δi j∂lu
l . (20)

After comparing Eqs. (17) and (20), we get the shear viscosity
and the bulk viscosity for an isotropic dense QCD medium
in the absence of magnetic field as

ηiso = β

30π2

∑
f

g f

∫
dp

p6

ω2
f

[
τ f f iso

f (1 − f iso
f )

+τ f̄ f̄ iso
f (1 − f̄ iso

f )
]

+ β

30π2 gg

∫
dp

p6

ω2
g

τg f iso
g (1 + f iso

g ), (21)

ζ iso = 1

3

∑
f

g f

∫
d3p

(2π)3

p2

ω f

[
f iso
f (1 − f iso

f )A f

+ f̄ iso
f (1 − f̄ iso

f ) Ā f

]

+1

3
gg

∫
d3p

(2π)3

p2

ωg
f iso
g (1 + f iso

g )Ag . (22)

The factors A f , Ā f and Ag in Eq. (22) are respectively given
by

A f = τ f

3T

[
p2

ω f
− 3

(
∂P

∂ε

)
ω f

]
, (23)

Ā f = τ f̄

3T

[
p2

ω f
− 3

(
∂P

∂ε

)
ω f

]
, (24)

Ag = τg

3T

[
p2

ωg
− 3

(
∂P

∂ε

)
ωg

]
. (25)

In the local rest frame, to satisfy the Landau–Lifshitz con-
dition (
T 00 = 0), the factors A f , Ā f and Ag need to
be replaced as A f → A′

f = A f − b f ω f , Ā f → Ā′
f =

Ā f − b̄ f ω f and Ag → A′
g = Ag − bgωg . From Eq. (16),

the Landau–Lifshitz conditions for terms A f , Ā f and Ag are
written as

∑
f

g f

∫
d3p

(2π)3 ω f f
iso
f (1 − f iso

f )
(
A f − b f ω f

) = 0 ,

(26)
∑
f

g f

∫
d3p

(2π)3 ω f f̄
iso
f (1 − f̄ iso

f )
(
Ā f − b̄ f ω f

) = 0 ,

(27)

gg

∫
d3p

(2π)3 ωg f
iso
g (1 + f iso

g )
(
Ag − bgωg

) = 0, (28)

respectively. The quantities b f , b̄ f and bg are determined by
solving Eqs. (26), (27) and (28). Substituting A f → A′

f ,

Ā f → Ā′
f and Ag → A′

g in Eq. (22) and then simplify-
ing, we obtain the bulk viscosity for an isotropic dense QCD
medium in the absence of magnetic field as

ζ iso = β

18π2

∑
f

g f

∫
dp p2

[
p2

ω f
− 3

(
∂P

∂ε

)
ω f

]2

×
[
τ f f iso

f (1 − f iso
f ) + τ f̄ f̄ iso

f (1 − f̄ iso
f )
]

+ β

18π2 gg

∫
dp p2

[
p2

ωg
− 3

(
∂P

∂ε

)
ωg

]2

×τg f iso
g (1 + f iso

g ) . (29)

2.2 Hot and dense QCD medium in the presence of a strong
magnetic field

In an ambience of magnetic field, the quark momentum gets
decomposed into the transverse (pT ) and longitudinal (pL )
components with respect to the direction of magnetic field
(say, z or 3-direction), where the transverse motion is quan-
tized in terms of the Landau levels. Thus, the energy of the
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quark of f th flavor takes the following form,

ω f,n(pL) =
√
p2
L + 2n

∣∣q f B
∣∣+ m2

f . (30)

Here, n = 0, 1, 2, . . . denote different Landau levels. In the
strong magnetic field (SMF) limit, the energy scale asso-
ciated with the magnetic field is much greater than the
energy scale associated with the temperature (|q f B| � T 2).
In this limit, quarks occupy only the lowest Landau level
(n = 0) and cannot move to the higher Landau levels,
because the energy gap between the Landau levels is very
large ∼ O(

√|q f B|). Thus, pT 
 pL and this creates an
anisotropy in the momentum space. The distribution func-
tions for quark and antiquark are modified as

f Bf = 1

eβ(uα p̃α−μ f ) + 1
, (31)

f̄ Bf = 1

eβ(uα p̃α+μ f ) + 1
, (32)

respectively. Here p̃α ≡ (ω f , p3), where ω f in the SMF
limit (n = 0) is given by

ω f =
√
p2

3 + m2
f . (33)

However, the gluons being electrically uncharged particles
are not influenced by the magnetic field. So, the gluon dis-
tribution function does not get modified even in the presence
of a strong magnetic field.

The total energy–momentum tensor (T̃μν = T̃μν

(0) +

T̃μν) for the nonequilibrium system in a strong magnetic
field is written as

T̃μν =
∑
f

g f |q f B|
4π2

∫
dp3

p̃μ p̃ν

ω f

(
f f + f̄ f

)
. (34)

In the above equation, the modified (integration) phase fac-

tor due to the strong magnetic field
(∫ d3p

(2π)3 = |q f B|
2π

∫ dp3
2π

)

[81,82] has been used. Similarly, the dissipative part of the
energy–momentum tensor is given by


T̃μν =
∑
f

g f |q f B|
4π2

∫
dp3

p̃μ p̃ν

ω f

(
δ f f + δ f̄ f

)
, (35)

where p̃μ = (p0, 0, 0, p3) in SMF limit. The infinitesimal
disturbances, δ f f and δ f̄ f can be obtained by solving the
relativistic Boltzmann transport equations for quark and anti-
quark distribution functions in the relaxation time approxi-
mation in a strong magnetic field,

p̃μ∂μ f f (x, p) = − p̃νuν

τ B
f

δ f f , (36)

p̃μ∂μ f̄ f (x, p) = − p̃νuν

τ B
f̄

δ f̄ f . (37)

Here, the relaxation time, τ B
f ( f̄ )

in the strong magnetic field

limit is given [83] by

τ B
f ( f̄ )

= ω f
(
eβω f − 1

)

αsC2m2
f

(
eβω f + 1

) 1∫
dp′

3
1

ω′
f

(
e
βω′

f +1

) , (38)

whereC2 is the Casimir factor. Substituting the values of δ f f
and δ f̄ f in Eq. (35), we get


T̃μν = −
∑
f

g f |q f B|
4π2

∫
dp3

p̃μ p̃ν

p̃νuνω f

×
(
τ B
f p̃

μ∂μ f f + τ B
f̄
p̃μ∂μ f̄ f

)
. (39)

The partial derivatives of the quark and antiquark distribu-
tion functions in the presence of a strong magnetic field are
respectively calculated as

∂μ f Bf = f Bf (1 − f Bf )

T

[
uα p̃

αuμ

DT

T
+ uα p̃

α ∇μT

T

−uμ p̃
αDuα − p̃α∇μuα + T ∂μ

(μ f

T

)]
, (40)

∂μ f̄ Bf = f̄ Bf (1 − f̄ Bf )

T

[
uα p̃

αuμ

DT

T
+ uα p̃

α ∇μT

T

−uμ p̃
αDuα − p̃α∇μuα − T ∂μ

(μ f

T

)]
. (41)

After substituting the expressions of ∂μ f Bf and ∂μ f̄ Bf in
Eq. (39) and then simplifying, we get


T̃μν =
∑
f

g f |q f B|
4π2

∫
dp3

p̃μ p̃ν

ω f T

[
τ f f iso

f (1 − f iso
f )

×
{

ω f

(
∂P

∂ε

)
∇αu

α + p̃α

( ∇α P

ε + P
− ∇αT

T

)

− T p̃α

ω f
∂α

(μ f

T

)
+ p̃α p̃β

ω f
∇αuβ

}
+ τ f̄ f̄ iso

f (1 − f̄ iso
f )

×
{
ω f

(
∂P

∂ε

)
∇αu

α + p̃α

( ∇α P

ε + P
− ∇αT

T

)

+ T p̃α

ω f
∂α

(μ f

T

)
+ p̃α p̃β

ω f
∇αuβ

}]
. (42)

The space–space or longitudinal component of 
T̃μν is writ-
ten as


T̃ i j =
∑
f

g f |q f B|
4π2

∫
dp3

p̃i p̃ j

ω f T

[
τ f f iso

f (1 − f iso
f )

×
{

− p̃k p̃l

2ω f
Wkl +

(
ω f

(
∂P

∂ε

)
− p2

3

3ω f

)
∂lu

l

−T p̃k

ω f
∂k

(μ f

T

)
+ p̃k

(
∂k P

ε + P
− ∂kT

T

)}
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+τ f̄ f̄ iso
f (1 − f̄ iso

f )

{
− p̃k p̃l

2ω f
Wkl

+
(

ω f

(
∂P

∂ε

)
− p2

3

3ω f

)
∂lu

l + T p̃k

ω f
∂k

(μ f

T

)

+ p̃k
(

∂k P

ε + P
− ∂kT

T

)}]
. (43)

In the strong magnetic field regime, the pressure and the
energy density can be calculated from the energy–momentum
tensor as P = −


‖
μν T̃μν and ε = uμT̃μνuν , respectively,

where the longitudinal projection tensor: 
‖
μν = g‖

μν −uμuν

with the metric tensor, g‖
μν = diag(1, 0, 0,−1).

In contrast to two ordinary (isotropic) viscous coefficients
(η and ζ in Eq. (20)) in the absence of magnetic field, seven
viscous coefficients are used to describe the viscous behavior
in the presence of a magnetic field. Out of these seven viscous
coefficients, five shear viscous coefficients are η, η1, η2, η3

and η4, one bulk or volume viscous coefficient is ζ and a
cross-effect between the ordinary and volume viscosities is
ζ1. So, at finite magnetic field (B is along a direction, b = B

B ),
the viscous tensor can be written as the linear combination
of seven independent tensors [37],

πi j = 2η

(
Vi j − 1

3
δi j∇ · V

)
+ ζ δi j∇ · V

+ η1
(
2Vi j − δi j∇ · V

+ δi j Vklbkbl − 2Vikbkb j − 2Vjkbkbi

+bib j∇ · V + bib j Vklbkbl
)

+ 2η2
(
Vikbkb j + Vjkbkbi − 2bib j Vklbkbl

)

+ η3
(
Vikb jk + Vjkbik − Vklbikb j bl − Vklb jkbi bl

)

+ 2η4
(
Vklbikb j bl + Vklb jkbi bl

)

+ ζ1
(
δi j Vklbkbl + bib j∇ · V) , (44)

where bi j = εi jkbk and Vi j = 1
2

(
∂Vi
∂x j

+ ∂Vj
∂xi

)
. In the above

equation, the coefficients of η, η1, η2, η3 and η4 are trace-
less, whereas the coefficients of ζ and ζ1 are having finite
trace. The terms containing η and ζ in Eq. (44) resemble the
terms at B = 0, thus η and ζ are recognized as the ordi-
nary viscosity coefficients. In case of a plasma, the cross
effect between ordinary viscosity and volume viscosity (ζ1)
in Eq. (44) vanishes and in the strong magnetic field limit,
η1, η2, η3 and η4 coefficients also vanish, thus converting
Eq. (44) to a much simpler form, which can be realized
through the replacement of the η-term in the above equation
by η0

(
3bib j − δi j

) (
bkblVkl − 1

3∇ · V ). Thus in Cartesian
coordinates, the components of the tensor (44) in a magnetic
field (along z-direction) are expressed as

πxx = −η0

(
Vzz − 1

3
∇ · V

)
+ η1

(
Vxx − Vyy

)

+2η3Vxy + ζ0∇ · V, (45)

πyy = −η0

(
Vzz − 1

3
∇ · V

)
+ η1

(
Vyy − Vxx

)

−2η3Vxy + ζ0∇ · V, (46)

πzz = 2η0

(
Vzz − 1

3
∇ · V

)
+ ζ0∇ · V, (47)

πxy = 2η1Vxy − η3
(
Vxx − Vyy

)
, (48)

πxz = 2η2Vxz + 2η4Vyz, (49)

πyz = 2η2Vyz − 2η4Vxz . (50)

The presence of strong magnetic field constrains the motion
to one spatial dimension (along the direction of magnetic
field), which results in the vanishing of the transverse com-
ponents of the velocity gradient - Vxx , Vyy, Vxy etc. Thus, the
nondiagonal terms of the tensor - πxy , πxz and πyz become
zero. So the nonvanishing longitudinal components of the
viscous tensor are written as

πxx = −η0

(
Vzz − 1

3
∇ · V

)
+ ζ0∇ · V, (51)

πyy = −η0

(
Vzz − 1

3
∇ · V

)
+ ζ0∇ · V, (52)

πzz = 2η0

(
Vzz − 1

3
∇ · V

)
+ ζ0∇ · V, (53)

where η0 and ζ0 represent the longitudinal shear and bulk
viscosities (with respect to the direction of magnetic field),
respectively. The above equations are related to each other
and can be grouped in terms of the shear and bulk viscous
parts as

πzz = −2πxx = −2πyy = 2η0

(
Vzz − 1

3
∇ · V|z

)
, (54)

πzz = πxx = πyy = ζ0∇ · V|z, (55)

respectively. Generalizing the viscous tensor into the rela-
tivistic energy–momentum tensor, T̃μν [37,84] in a strong
magnetic field, the dissipative part of the relativistic energy–
momentum tensor is defined (η0 ≡ ηB and ζ0 ≡ ζ B have
been relabelled as artifacts of the strong magnetic field limit)
as


T̃μν = −ηB
(

∂uμ

∂ x̃ν

+ ∂uν

∂ x̃μ

− uνuλ

∂uμ

∂ x̃λ

− uμuλ

∂uν

∂ x̃λ

−2

3



μν
‖

∂uλ

∂ x̃λ

)
− ζ B


μν
‖

∂uλ

∂ x̃λ
, (56)

where x̃μ = (x0, 0, 0, x3), and ηB and ζ B represent the
shear viscosity and the bulk viscosity, respectively in a strong
magnetic field. In the local rest frame, the spatial component
of velocity is zero, but its spatial derivative remains finite. So,
the spatial component of the dissipative part of the relativistic
energy–momentum tensor (Eq. (56)) in the presence of a
strong magnetic field is written [37,84] as
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T̃ i j = − ηB
(

∂ui

∂ x̃ j
+ ∂u j

∂ x̃i
− 2

3
δi j

∂ul

∂ x̃ l

)
− ζ Bδi j

∂ul

∂ x̃ l

= − ηB
(

∂ i u j + ∂ j ui − 2

3
δi j∂lu

l
)

− ζ Bδi j∂lu
l

= − ηBWi j − ζ Bδi j∂lu
l . (57)

Comparing Eqs. (43) and (57), the charged particle (quarks
and antiquarks) contribution to the shear viscosity is obtained
for a dense QCD medium in the presence of a strong magnetic
field as

ηB
q = β

8π2

∑
f

g f |q f B|
∫

dp3
p4

3

ω2
f

×
[
τ B
f f Bf

(
1 − f Bf

)
+ τ B

f̄
f̄ Bf

(
1 − f̄ Bf

)]
. (58)

As has been mentioned earlier that gluons are not affected
by the presence of magnetic field, so the gluon part of the
shear viscosity remains unchanged. Thus, one can add the
isotropic gluon part to the anisotropic charged particle part
to obtain the total shear viscosity,

ηB = β

8π2

∑
f

g f |q f B|
∫

dp3
p4

3

ω2
f

[
τ B
f f Bf

(
1 − f Bf

)

+τ B
f̄

f̄ Bf

(
1 − f̄ Bf

)]
+ β

30π2 gg

×
∫

dp
p6

ω2
g

τg f iso
g

(
1 + f iso

g

)
. (59)

Similarly, the bulk viscosity due to the charged particle
(quarks and antiquarks) contribution is obtained by compar-
ing Eqs. (43) and (57),

ζ B
q =

∑
f

g f |q f B|
4π2

∫
dp3

p2
3

ω f

[
f Bf

(
1 − f Bf

)
A f

+ f̄ Bf

(
1 − f̄ Bf

)
Ā f

]
, (60)

where A f and Ā f are respectively written as

A f = τ B
f

3T

[
p2

3

ω f
− 3

(
∂P

∂ε

)
ω f

]
, (61)

Ā f =
τ B
f̄

3T

[
p2

3

ω f
− 3

(
∂P

∂ε

)
ω f

]
. (62)

Implementing the Landau–Lifshitz condition for the calcu-
lation of the bulk viscosity and then simplifying, we get

ζ B
q = β

12π2

∑
f

g f |q f B|
∫

dp3

[
p2

3

ω f
− 3

(
∂P

∂ε

)
ω f

]2

×
[
τ B
f f Bf

(
1 − f Bf

)
+ τ B

f̄
f̄ Bf

(
1 − f̄ Bf

)]
. (63)

The total bulk viscosity is obtained by adding the isotropic
gluon part to the anisotropic charged particle part as

ζ B = β

12π2

∑
f

g f |q f B|
∫

dp3

[
p2

3

ω f
− 3

(
∂P

∂ε

)
ω f

]2

×
[
τ B
f f Bf

(
1 − f Bf

)
+ τ B

f̄
f̄ Bf

(
1 − f̄ Bf

)]

+ β

18π2 gg

∫
dp p2

[
p2

ωg
− 3

(
∂P

∂ε

)
ωg

]2

×τg f iso
g

(
1 + f iso

g

)
. (64)

3 Applications

This section contains some applications of shear and bulk vis-
cosities. We will study the effects of strong magnetic field and
finite chemical potential on the interplays between momen-
tum diffusion and thermal diffusion through the Prandtl
number, between momentum diffusion and characteristic
length scale of the system through the Reynolds number,
and between shear viscosity and bulk viscosity through the
ratio ζ/η in Sects. 3.1, 3.2 and 3.3, respectively.

3.1 Prandtl number

The relative importance between the momentum diffusion
and the thermal diffusion in a medium can be explained
through the Prandtl number (Pl),

Pl = η/ρ

κ/Cp
, (65)

where ρ, κ and Cp represent the mass density, the ther-
mal conductivity and the specific heat at constant pressure,
respectively. The Prandtl number is helpful in understand-
ing the effects of thermal conductivity and shear viscosity
on the sound attenuation in a medium. For various systems
different Prandtl numbers have been reported, such as, for
strongly coupled liquid helium, Pl is approximately 2.5 [54],
for a nonrelativistic conformal holographic fluid, Pl is 1.0
[54,55] and for a dilute atomic Fermi gas at high tempera-
ture, Pl is 2

3 [56]. Through the Prandtl number one can get
the knowledge about the sound attenuation in a medium that
mainly describes the energy loss due to the sound propaga-
tion in that medium. Small Pl means that the sound attenua-
tion is mainly dominated by the thermal diffusion while for
large Pl, the sound attenuation is prominently governed by
the momentum diffusion. The value 1 of the Prandtl num-
ber signifies equal contributions of both the diffusions on the
sound attenuation. In this work, we want to observe how the
presence of strong magnetic field and finite chemical poten-
tial affects the Prandtl number for a hot QCD matter.
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In order to calculate the Prandtl number for the hot QCD
matter in the presence of both strong magnetic field and
chemical potential, we require the expressions of shear vis-
cosity, thermal conductivity, mass density and specific heat at
constant pressure. We have recently calculated the thermal
conductivity in the similar environment [24], so, we have
taken the results on κ from our work (appendix A). Then we
have determined the mass density from the product of the
number densities of quarks, antiquarks and gluons with their
respective quasiparticle masses as

ρ =
∑
f

m f
(
n f + n̄ f

)+ mgng . (66)

Thus, the expressions of ρ for an isotropic dense QCD
medium and for a dense QCD medium in the presence of
a strong magnetic field are written as

ρiso = 1

2π2

∑
f

m f g f

∫
dp p2

[
f iso
f + f̄ iso

f

]

+ 1

2π2 mggg

∫
dp p2 f iso

g , (67)

ρB = 1

4π2

∑
f

m f g f |q f B|
∫

dp3

[
f Bf + f̄ Bf

]

+ 1

2π2 mggg

∫
dp p2 f iso

g , (68)

respectively. Next, we have calculated Cp from the energy
density and the pressure using the following thermodynamic
relation,

Cp = ∂(ε + P)

∂T
, (69)

where ε and P are determined for the dense QCD medium
in the absence and presence of strong magnetic field in
appendix B using the kinetic theory. So, the expressions of
Cp for an isotropic dense QCD medium and for a dense
QCD medium in the presence of a strong magnetic field are
obtained as

C iso
p = β2

6π2

∑
f

g f

∫
dp p2

(
p2

ω f
+ 3ω f

)

×
[(

ω f − μ f
)
f iso
f

(
1 − f iso

f

)
+ (ω f + μ f

)
f̄ iso
f

(
1 − f̄ iso

f

)]

+ β2

6π2 gg

∫
dp p2

(
p2 + 3ω2

g

)
f iso
g

(
1 + f iso

g

)
, (70)

CB
p = β2

4π2

∑
f

g f |q f B|
∫

dp3

(
p2

3
ω f

+ ω f

)

×
[(

ω f − μ f
)
f Bf

(
1 − f Bf

)
+ (ω f + μ f

)
f̄ Bf

(
1 − f̄ Bf

)]

+ β2

6π2 gg

∫
dp p2

(
p2 + 3ω2

g

)
f iso
g

(
1 + f iso

g

)
, (71)

respectively. Substituting the values of η, κ , ρ and Cp in
Eq. (65), Pl is calculated. Our observation on the Prandtl
number for a hot QCD matter in the presence of both strong

magnetic field and finite chemical potential with the quasi-
particle model has been described in Sect. 5.2.

3.2 Reynolds number

The Reynolds number (Rl) is an important quantity, that helps
in assessing the magnitude of the kinematic viscosity (η/ρ)
of a liquid and is defined by

Rl = Lv

η/ρ
, (72)

where L and v denote the characteristic length and the veloc-
ity of the flow of liquid, respectively. As the Reynolds num-
ber is the ratio of the product of characteristic length and
velocity (Lv) to the kinematic viscosity of a system, its mag-
nitude gives the information about the fluidity of that system.
In hydrodynamics, Rl describes the motion of the fluid and
indicates when the laminar flow gets converted into the turbu-
lent flow. This conversion to the turbulent flow happens when
Rl � 1 (i.e. in the thousands) or when the kinematic viscos-
ity is very small as compared to the product of characteristic
length and velocity of the system. Different systems have
reported different Reynolds numbers, such as, Rl of quark
matter is estimated to be about 10 using the Kubo formula
and NJL model [57], the (3+1)-dimensional fluid dynami-
cal model has reported the value of Rl in the range 3-10 for
QGP [58] and the holographic model has estimated the upper
bound of Rl as approximately 20 [59]. The small value of Rl
describes the QGP as a viscous system and the nature of its
flow remains laminar. Thus, Rl gives the information about
the magnitude of the viscosity and the fluid dynamic charac-
teristics of a system. In our work, we intend to analyse the
effects of strong magnetic field and finite chemical potential
on the Reynolds number for a hot QCD matter. In the calcu-
lation, we have set v � 1 and L = 4 fm. Our observation on
the Reynolds number for a hot QCD matter in the presence
of both strong magnetic field and finite chemical potential
with the quasiparticle model has been described in Sect. 5.3.

3.3 Relative behavior between shear viscosity and bulk
viscosity

The competition between the shear viscous effect and the
bulk viscous effect in a system can be understood by study-
ing the ratio ζ/η in that system. Previously some observa-
tions have found different behaviors of ζ/η with temperature
depending upon the system dynamics at different coupling
regimes. For an interacting scalar field, ζ/η was calculated to

be 15
( 1

3 − c2
s

)2
(c2

s is the square of the speed of sound) [60].
The study at perturbative limit also shows that ζ/η is nearly

equal to 15
( 1

3 − c2
s

)2
for a hot QCD medium [32], whereas

that for a strongly coupled gauge theory plasma is nearly
equal to 2

( 1
3 − c2

s

)
[61]. Thus, going from the perturbative
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regime to the nonperturbative regime, the ratio ζ/η undergoes
a gradual change. In the holographic model [62], for QGP in
the high temperature regime, ζ

η
< 1

2 and in the deconfinement
transition region, ζ/η approaches 0.6. Similar behavior of
ζ/η has also been observed in Ref. [63] using the holographic
model, where ζ remains lower than η for high temperatures
and gets risen near the deconfinement transition region. In
case of a quasigluon plasma [64], for T ≥ 1.5Tc (Tc is the
critical temperature of phase transition), the ratio ζ/η shows

the perturbative QCD-like behavior ( ζ
η

= 15
( 1

3 − c2
s

)2
),

whereas at T � Tc, the nonperturbative effect comes into
picture, so in particular, for T ≥ 1.02Tc, η is larger than ζ

and for T → 1.02Tc, the ratio ζ/η approaches 0.78. Accord-
ing to the observations in the hadron gas [65–67], the bulk
viscosity also remains much smaller than the shear viscosity.
In the Chapman–Enskog method [68], ζ/η for a hot QCD
medium was observed as a function of temperature using

two different scalings, where with scaling 15
( 1

3 − c2
s

)2
, the

ratio ζ/η increases with the temperature at high temperature
regime, whereas that with scaling 2

( 1
3 − c2

s

)
was found to

decrease with the temperature. Our observation on the ratio
ζ/η for a hot QCD matter in the presence of both strong mag-
netic field and finite chemical potential with the quasiparticle
model has been described in Sect. 5.4.

4 Quasiparticle model for hot and dense QCD medium
in the presence of a strong magnetic field

The interaction of a particle with other particles in a thermal
medium results in the emergence of its quasiparticle mass.
For a hot and dense QCD medium, this thermally gener-
ated mass or quasiparticle mass depends on temperature and
chemical potential, and in the additional presence of strong
magnetic field, this mass depends on temperature, chemical
potential as well as magnetic field. So, in the quasiparticle
model (QPM), the QGP consists of massive noninteracting
quasiparticles. The quasiparticle mass can be derived using
different models, viz., the Nambu–Jona–Lasinio (NJL) and
Polyakov NJL based quasiparticle models [85–87], quasi-
particle model with Gribov–Zwanziger quantization [88,89],
thermodynamically consistent quasiparticle model [90] etc.
In a thermal medium at finite but small chemical potential
(μ f ) and zero magnetic field, the thermal mass (squared) of
quark of f th flavor is given [91,92] by

m2
f T = g′2T 2

6

(
1 + μ2

f

π2T 2

)
, (73)

where g′ represents the running coupling at finite temperature
and finite chemical potential. In the semiclassical transport
theory, the thermal mass (squared) of gluon is defined [93,94]
as

m2
gT = −g′2Nc

∫
d3k

(2π)3

∂ f iso
g

∂k
− g′2N f

2

×
∫

d3k

(2π)3

(
∂ f iso

f

∂k
+ ∂ f̄ iso

f

∂k

)

= g′2Nc

2π2T

∫
dk

k3

ωg
f iso
g

(
1 + f iso

g

)

+g′2N f

4π2T

∫
dk

k3

ω f

[
f iso
f

(
1 − f iso

f

)

+ f̄ iso
f

(
1 − f̄ iso

f

)]
, (74)

which can be calculated in the hard thermal loop approxima-
tion and thus, the simplified form of m2

gT for small chemical
potential is written [92,95,96] as

m2
gT = g′2T 2

6

⎛
⎝Nc + N f

2
+ 3

2π2T 2

∑
f

μ2
f

⎞
⎠ . (75)

However, in a strong magnetic field, Eq. (74) gets modified
into

m2
gT,B = −g′2Nc

∫
d3k

(2π)3

∂ f iso
g

∂k

− g2

8π2

∑
f

|q f B|
∫

dkz

(
∂ f Bf
∂kz

+ ∂ f̄ Bf
∂kz

)
. (76)

After solving the above equation, we get the thermal gluon
mass (squared) in the presence of both strong magnetic field
and finite chemical potential as

m2
gT,B = g′2T 2Nc

6
+ g2

8π2T

∑
f

|q f B|

×
∫

dkz
kz
ω f

[
f Bf

(
1 − f Bf

)
+ f̄ Bf

(
1 − f̄ Bf

)]
.

(77)

Similarly, the strong magnetic field also modifies the thermal
quark mass (Eq. (73)), which can be calculated by taking
p0 = 0, pz → 0 limit of the effective quark propagator.
For this purpose, one needs to first determine the effective
quark propagator from the self-consistent Schwinger–Dyson
equation in an ambience of strong magnetic field,

S−1(p‖) = γ μ p‖μ − �(p‖) . (78)

The quark self-energy in a strong magnetic field is written as

�(p) = −4

3
g2i
∫

d4k

(2π)4

[
γμS(k)γ μD(p − k)

]
, (79)
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where g denotes the running coupling in the strong mag-
netic field regime [97–100]. In this regime, the quark propa-
gator S(k) in vacuum is given [101,102] by

S(k) = ie
− k2⊥|q f B|

(
γ 0k0 − γ 3kz + m f

)

k2‖ − m2
f

(
1 − γ 0γ 3γ 5

)
,

(80)

where the metric tensors and the four-vectors are defined as

gμν
⊥ = diag(0,−1,−1, 0), gμν

‖ = diag(1, 0, 0,−1),

k⊥μ ≡ (0, kx , ky, 0), k‖μ ≡ (k0, 0, 0, kz).

The propagator of electrically neutral gluon in vacuum
remains unaffected by the magnetic field and carries the fol-
lowing form as in the absence of magnetic field,

Dμν(p − k) = igμν

(p − k)2 . (81)

Substituting quark (80) and gluon (81) propagators in
Eq. (79), we have calculated the quark self-energy in the
imaginary time formalism at strong magnetic field and finite
chemical potential, and its approximated form for T > μ f

is written [24] as

�(p‖) ≈ g2|q f B|
3π2

[
πT

2m f
− ln(2) +

7μ2
f ζ(3)

8π2T 2 −
31μ4

f ζ(5)

32π4T 4

]

×
[

γ 0 p0

p2‖
+ γ 3 pz

p2‖
+ γ 0γ 5 pz

p2‖
+ γ 3γ 5 p0

p2‖

]
, (82)

where ζ(s) is the Riemann zeta function with s = 3, 5 here.
The covariant structure of the quark self-energy for a thermal
medium in the presence of a magnetic field is written [16,100]
as

�(p‖) = Aγ μuμ + Bγ μbμ + Cγ 5γ μuμ + Dγ 5γ μbμ,

(83)

where uμ (1,0,0,0) and bμ (0,0,0,-1) are the directions of heat
bath and magnetic field, respectively, and the form factors A,
B, C and D are determined in the strong magnetic field limit
as

A = g2|q f B|
3π2

[
πT

2m f
− ln(2) + 7μ2

f ζ(3)

8π2T 2

−31μ4
f ζ(5)

32π4T 4

]
p0

p2‖
, (84)

B = g2|q f B|
3π2

[
πT

2m f
− ln(2) + 7μ2

f ζ(3)

8π2T 2

−31μ4
f ζ(5)

32π4T 4

]
pz
p2‖

, (85)

C = −g2|q f B|
3π2

[
πT

2m f
− ln(2) + 7μ2

f ζ(3)

8π2T 2

−31μ4
f ζ(5)

32π4T 4

]
pz
p2‖

, (86)

D = −g2|q f B|
3π2

[
πT

2m f
− ln(2) + 7μ2

f ζ(3)

8π2T 2

−31μ4
f ζ(5)

32π4T 4

]
p0

p2‖
. (87)

WithC = −B and D = −A, Eq. (83) can be written in terms
of the chiral projection operators as

�(p‖) = PR
[
(A − B)γ μuμ + (B − A)γ μbμ

]
PL

+PL
[
(A + B)γ μuμ + (B + A)γ μbμ

]
PR . (88)

Finally, from the Schwinger–Dyson equation (78), the effec-
tive mass (squared) of quark in the presence of strong mag-
netic field, finite temperature and finite chemical potential is
obtained (in appendix C) by taking the p0 = 0, pz → 0 limit
[24] as

m2
f T,B = g2|q f B|

3π2

[
πT

2m f
− ln(2) +

7μ2
f ζ(3)

8π2T 2 −
31μ4

f ζ(5)

32π4T 4

]
,

(89)

which depends on temperature, chemical potential and mag-
netic field.

Our calculations are done in the strong magnetic field
limit, where the energy scale related to the magnetic field
dominates over the energy scales related to the temperature
and chemical potential. So the magnetic field is set at 15 m2

π ,
the temperature is taken in the range 0.16 GeV - 0.4 GeV
to satisfy the condition eB � T 2, and the chemical poten-
tial is fixed at 0.06 GeV to satisfy the conditions eB � μ2

and T 2 � μ2. We also note that, all flavors are assigned the
same chemical potential (μ f = μ). In Sect. 5, we will discuss
the results in the quasiparticle model, where the temperature
and chemical potential-dependent quark (73) and gluon (75)
masses are used for the dense QCD medium in the absence of
magnetic field, and the temperature, chemical potential and
magnetic field-dependent quark (89) and gluon (77) masses
are used for the dense QCD medium in the presence of a
strong magnetic field.

In kinetic theory, the distribution function plays an impor-
tant role in understanding the properties of various trans-
port coefficients. So, before discussing the results on vis-
cous properties of the hot QCD matter in the presence of
both strong magnetic field and finite chemical potential, the
knowledge on the distribution functions of particles in the
similar environment needs to be acquired. For this purpose,
we have explored the distribution function for u quark at
μ = 0.06 GeV in unit of its value at μ = 0 within the quasi-
particle model as a function of momentum in low temperature
(Fig. 1) and high temperature (Fig. 2) scenarios. In all scenar-
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Fig. 1 Variations of the ratio of quark distribution function at μ = 0.06 GeV to its value at μ = 0 with momentum at low temperature in the a
absence and b presence of strong magnetic field
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Fig. 2 Variations of the ratio of quark distribution function at μ = 0.06 GeV to its value at μ = 0 with momentum at high temperature in the a
absence and b presence of strong magnetic field

ios, ratio f μ=0.06 GeV/ f μ=0 is slightly greater than 1, there-
fore, the distribution function at finite chemical potential is
larger than its counterpart at zero chemical potential. We have
also noticed that, in the absence as well as in the presence of
strong magnetic field, although the ratio is greater than 1, but
it gets decreased at high temperature (Fig. 2a, b) as compared
to the low temperature case (Fig. 1a, b). Thus, with the rise
of temperature, the distribution function becomes increased.
However, the chemical potential has marginal effect on the
distribution function at higher temperatures.

5 Results and discussions

This section is devoted to the discussions on the results
regarding shear and bulk viscosities, Prandtl number, Reynolds
number and relative behavior between shear viscosity and
bulk viscosity through the ratio of bulk viscosity to shear
viscosity.
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Fig. 3 Variations of the shear viscosity with temperature in the a absence and b presence of strong magnetic field
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Fig. 4 Variations of the bulk viscosity with temperature in the a absence and b presence of strong magnetic field

5.1 Shear and bulk viscosities

From Figs. 3 and 4, it is seen that both shear viscosity and
bulk viscosity become increased in the presence of a strong
magnetic field as compared to their isotropic counterparts
in the absence of magnetic field. There are two main rea-
sons behind the larger magnitudes of η and ζ : the distri-
bution function and the dispersion relation. The emergence
of strong magnetic field reduces the dynamics of charged
particles from three spatial dimensions to one spatial dimen-

sion and squeezes the phase space. Therefore, the distribution
function gets stretched along the direction longitudinal to the
magnetic field and the dispersion relation becomes modified.
Further, the phase space integral is bifurcated into longitu-
dinal and transverse parts with respect to the direction of
magnetic field, where a factor |q f B| is obtained from the
transverse part. In addition, in the quasiparticle model, the
effects of magnetic field, temperature and chemical poten-
tial are incorporated in the distribution functions through the
effective masses of particles. Moreover, the partial deriva-
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Fig. 5 Variations of the Prandtl number with temperature in the a absence and b presence of strong magnetic field
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Fig. 6 Variations of the Reynolds number with temperature in the a absence and b presence of strong magnetic field

tive of pressure with respect to energy density in the bulk
viscosity expression contains the magnetic field dependence,
unlike that in the absence of magnetic field. As a result, η and
ζ calculated in an ambience of strong magnetic field depend
explicitly on magnetic field, chemical potential and tempera-
ture, whereas in the absence of magnetic field, they depend on
temperature and chemical potential. Therefore, in the strong
magnetic field limit (|q f B| � T 2), where the energy scale

related to the magnetic field prevails over the energy scales
related to the temperature and the chemical potential, η and
ζ are more sensitive to the magnetic field and as a result, the
shear and bulk viscosities get enhanced.

However, with the increase of temperature, shear viscosity
increases nearly linearly (Fig. 3b) as compared to the slightly
nonlinear increase in the medium with no magnetic field
(Fig. 3a), whereas bulk viscosity decreases (Fig. 4b), con-
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Fig. 7 Variations of ζ/η with temperature in the a absence and b presence of strong magnetic field

trary to its increase in the absence of magnetic field (Fig. 4a).
This behavior of ζ can be understood from the fact that, in
the strong magnetic field limit, temperature acts as the weak
energy scale, thus it may leave a reverse effect on ζ , whereas
in the absence of magnetic field, temperature acts as the dom-
inant energy scale, so its influence on ζ is more conspicuous
in comparison to that in the strong magnetic field regime.

The presence of finite chemical potential also increases the
values of shear and bulk viscosities for the medium with no
magnetic field as well as for the medium under the influence
of a strong magnetic field. The effect of chemical potential
on η and ζ is more evident at strong magnetic field (Figs. 3b,
4b) than at zero magnetic field (Figs. 3a, 4a). Thus, both
strong magnetic field and finite chemical potential facilitate
the transports of momentum across and along the layer. From
Figs. 3 and 4, we have also found that, the deviations of
shear and bulk viscosities at finite chemical potential from
the counterparts at zero chemical potential are more percepti-
ble at low temperature than those at high temperature, which
can be comprehended from the observations on the distribu-
tion functions at low and high temperatures (Figs. 1 and 2,
respectively).

5.2 Prandtl number

Figure 5 depicts the variations of the Prandtl number (Pl) with
the temperature in the absence and in the presence of strong
magnetic field and chemical potential. We have observed that,
Pl gets enhanced in the presence of a strong magnetic field
and this value even gets larger in an additional presence of

chemical potential. In all cases (Fig. 5a, b) Pl remains larger
than unity, so, the momentum diffusion prevails over the ther-
mal diffusion. Thus, the energy loss in a system due to the
sound propagation is mainly governed by the momentum dif-
fusion. The dominance of momentum diffusion over thermal
diffusion is found to be more pronounced in the presence of
both strong magnetic field and chemical potential.

5.3 Reynolds number

From Fig. 6 we have observed that, the Reynolds number
(Rl) increases with the increase of temperature irrespective
of whether the strong magnetic field is absent or present in
the medium, however, the presence of strong magnetic field
does change the magnitude of the Reynolds number. It is
noticed that the magnitude of Rl gets decreased in an ambi-
ence of strong magnetic field (Fig. 6b) as compared to that in
the absence of magnetic field (Fig. 6a) and the existence of
finite chemical potential further reduces its magnitude. The
Reynolds number is even less than 1 at low temperatures up
to T � 0.26 GeV (Fig. 6b), contrary to the zero magnetic
field case where Rl remains larger than 1 over the entire range
of temperature (Fig. 6a). Thus, for a dense QCD medium at
strong magnetic field, the kinematic viscosity dominates over
the characteristic length scale of the system and the flow is
laminar, from which it is inferred that the presence of strong
magnetic field and finite chemical potential makes the QCD
medium more viscous.
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5.4 Relative behavior between shear viscosity and bulk
viscosity

Figure 7 shows how the ratio of the bulk viscosity to the shear
viscosity (ζ/η) varies with the temperature in the absence
and in the presence of strong magnetic field and chemical
potential. For the isotropic medium, ζ/η is much less than 1
(Fig. 7a), whereas in the presence of a strong magnetic field
this ratio surges and becomes greater than 1 (Fig. 7b), so it
explains that for an isotropic medium, the shear viscosity is
larger than the bulk viscosity, whereas the opposite is true
for a medium under the influence of a strong magnetic field.
In all scenarios, the ratio ζ/η decreases with the increase of
temperature. At finite chemical potential, ζ/η gets slightly
increased in the strong magnetic field regime, contrary to the
small decrease in the isotropic medium without the presence
of magnetic field. So, the chemical potential helps in enhanc-
ing the dominance of shear viscosity over bulk viscosity at
zero magnetic field, whereas it helps in enhancing the dom-
inance of bulk viscosity over shear viscosity in an ambience
of strong magnetic field.

6 Conclusions

In this work, we have studied the viscous properties by calcu-
lating the shear and bulk viscosities of hot QCD matter in the
presence of strong magnetic field and finite chemical poten-
tial and then explored some applications, such as the Prandtl
number (Pl) to understand the interplay between momentum
transport and heat transport properties, the Reynolds number
(Rl) to know the relative behavior between viscous proper-
ties and characteristic length scale of the system, and the
ratio ζ/η to interpret the competition between shear viscos-
ity and bulk viscosity. We have determined the abovemen-
tioned quantities in the kinetic theory by solving the rela-
tivistic Boltzmann transport equation in the relaxation time
approximation, where the interactions among particles are
incorporated through their quasiparticle masses at finite tem-
perature, strong magnetic field and finite chemical potential.
Our observation has been carried out in the strong magnetic
field limit, where the range of temperature and the value of
chemical potential are kept much less than the strength of the
magnetic field.

Our studies on the shear and bulk viscosities shed light on
how the strong magnetic field and finite but small chemical
potential affect the viscous properties of hot QCD matter.
We have observed that the presence of strong magnetic field
lifts the values of η and ζ as compared to the corresponding
values in the isotropic medium at zero magnetic field, and
these values get further increased in an additional presence
of chemical potential. With the rising temperature, η is found
to increase, whereas ζ is found to decrease for the dense

QCD medium under the influence of a strong magnetic field.
The Prandtl number is observed to be greater than unity, so
the momentum diffusion is larger than the thermal diffusion.
However, when the medium is exposed to a strong magnetic
field, Pl gets enhanced and it becomes further pushed to a
higher value in the simultaneous presence of finite chemical
potential. Thus, it explains that the energy dissipation due
to the sound propagation in the medium is mostly regulated
by the momentum diffusion. We have found a reduction in
the Reynolds number in the abovementioned regime and it
even becomes less than unity for temperatures below 0.26
GeV. So, it is inferred that the kinematic viscosity is larger
than the characteristic length scale of the QCD medium, i.e.
the QCD medium is more viscous in the presence of strong
magnetic field and finite chemical potential than that in the
absence of magnetic field and chemical potential, and the
flow remains laminar. From our study on the ratio ζ/η, it
is observed that the shear viscosity prevails over the bulk
viscosity for a dense QCD medium with no magnetic field,
whereas the bulk viscosity dominates over the shear viscosity
in the presence of a strong magnetic field.

There exist some phenomenological implications of shear
and bulk viscosities in heavy ion collisions. It is known that,
the shear and bulk viscosities are associated with the trans-
ports of momentum across and along the layer, respectively.
So, from their behaviors in strong magnetic fields, one can
understand the effects of such fields on the momentum trans-
port properties of the matter produced in the initial stages of
heavy ion collisions. In case of the transition from hadronic
phase to QGP phase, the values of shear and bulk viscosities
are important in estimating the location of phase transition,
where the shear viscosity attains a minimum value and the
bulk viscosity attains a maximum value [25]. However, the
emergence of strong magnetic field modifies the viscosities,
thus, it could ultimately affect the phase transition of matter
produced in the heavy ion collisions. In hydrodynamic sim-
ulations, the shear and bulk viscosities may also influence
different observables, such as the elliptic flow coefficient,
the hadron transverse momentum spectrum etc. [26–29]. So,
the study of viscosities in the strong magnetic field regime
can help in understanding how far the system appears from
an ideal hydrodynamics in the said regime. With the help of
the entropy density (s) of matter, the dimensionless ratios η/s
and ζ/s can be studied to get the information on how close
the matter created at heavy ion collisions is to being per-
fect fluid and on the chiral symmetry, respectively, thus, our
study on viscosities could be useful in interpreting the effect
of strong magnetic field on such characteristics of matter.
The observation on shear and bulk viscosities of the hot and
dense QCD matter in an ambience of strong magnetic field
also facilitates the understanding of the viscous properties in
other areas where strong magnetic fields could be found, such
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as the cores of the dense magnetars and the beginning of the
universe, apart from the ultrarelativistic heavy ion collisions.
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Appendices

A Thermal conductivity in the presence of strong
magnetic field and finite chemical potential

For an isotropic dense QCD medium in the absence of mag-
netic field, thermal conductivity is given by

κ iso = β2

6π2

∑
f

g f

∫
dp

p4

ω2
f

[
τ f (ω f − h f )

2 f iso
f (1 − f iso

f )

+τ f̄ (ω f − h̄ f )
2 f̄ iso

f (1 − f̄ iso
f )
]
. (A.90)

For a dense QCD medium in the presence of a strong mag-
netic field, thermal conductivity has the following form,

κB = β2

4π2

∑
f

g f |q f B|
∫

dp3
p2

3

ω2
f

×
[
τ B
f (ω f − hB

f )
2 f Bf (1 − f Bf )

+τ B
f̄
(ω f − h̄ B

f )
2 f̄ Bf (1 − f̄ Bf )

]
. (A.91)

B Energy density and pressure in the presence of strong
magnetic field and finite chemical potential

The energy density (ε) and the pressure (P) can be deter-
mined from the energy–momentum tensor (Tμν). For a
medium in the absence of magnetic field, ε and P are respec-

tively defined as

ε = uμT
μνuν, (B.92)

P = −1

3

(
gμν − uμuν

)
Tμν. (B.93)

In the presence of a strong magnetic field, the definitions of
ε and P become modified as

ε = uμT̃
μνuν, (B.94)

P = −
(
g‖
μν − uμuν

)
T̃μν. (B.95)

For a dense QCD medium in the absence of magnetic field,
energy density is calculated as

εiso = 1

2π2

∑
f

g f

∫
dp p2ω f

(
f iso
f + f̄ iso

f

)

+ 1

2π2 gg

∫
dp p2ωg f

iso
g , (B.96)

whereas, for a dense QCD medium in the presence of a strong
magnetic field, energy density becomes

εB = 1

4π2

∑
f

g f |q f B|
∫

dp3ω f

(
f Bf + f̄ Bf

)

+ 1

2π2 gg

∫
dp p2ωg f

iso
g . (B.97)

For a dense QCD medium in the absence of magnetic field,
pressure is determined as

P iso = 1

6π2

∑
f

g f

∫
dp

p4

ω f

(
f iso
f + f̄ iso

f

)

+ 1

6π2 gg

∫
dp

p4

ωg
f iso
g , (B.98)

whereas, in the presence of a strong magnetic field, pressure
for a dense QCD medium becomes

PB = 1

4π2

∑
f

g f |q f B|
∫

dp3
p2

3

ω f

(
f Bf + f̄ Bf

)

+ 1

6π2 gg

∫
dp

p4

ωg
f iso
g . (B.99)

C Thermal mass of quark in the presence of strong
magnetic field and finite chemical potential

With the help of Eqs. (80) and (81), we have calculated the
quark self-energy (79) in the imaginary time formalism at
strong magnetic field and finite chemical potential, where the
continuous energy integral (

∫ dp0
2π

) is replaced by the discrete
Matsubara frequency sum and the integration over the trans-
verse component of the momentum gives the factor |q f B|.
So the quark self-energy (79) takes the following form,
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�(p‖) = 2g2

3π2 |q f B|T
∑
n

×
∫

dkz

[(
1 + γ 0γ 3γ 5

) (
γ 0k0 − γ 3kz

)− 2m f
]

[
k2

0 − ω2
k

] [
(p0 − k0)2 − ω2

pk

]

= 2g2|q f B|
3π2

∫
dkz

[
(γ 0 + γ 3γ 5)W 1

−(γ 3 + γ 0γ 5)kzW
2
]
, (C.100)

where ω2
k = k2

z + m2
f , ω2

pk = (pz − kz)2 and the two fre-

quency sums W 1 and W 2 are written as

W 1 = T
∑
n

k0[
k2

0 − ω2
k

] [
(p0 − k0)2 − ω2

pk

] , (C.101)

W 2 = T
∑
n

1
[
k2

0 − ω2
k

] [
(p0 − k0)2 − ω2

pk

] . (C.102)

After calculating the above frequency sums and then sub-
stituting, the quark self-energy (C.100) can be simplified to
take the following form,

�(p‖) = g2|q f B|
3π2

∫
dkz
ωk

[
1

eβωk − 1

+1

2

{
1

eβ(ωk+μ f ) + 1
+ 1

eβ(ωk−μ f ) + 1

}]

×
[

γ 0 p0 + γ 3 pz
p2‖

+ γ 0γ 5 pz + γ 3γ 5 p0

p2‖

]
.

(C.103)

In the small chemical potential limit (T > μ f ), we have eval-
uated the integration over kz and obtained the approximated
result as

�(p‖) ≈ g2|q f B|
3π2

[
πT

2m f
− ln(2) +

7μ2
f ζ(3)

8π2T 2 −
31μ4

f ζ(5)

32π4T 4

]

×
[

γ 0 p0

p2‖
+ γ 3 pz

p2‖
+ γ 0γ 5 pz

p2‖
+ γ 3γ 5 p0

p2‖

]
, (C.104)

where ζ(s) is the Riemann zeta function with s = 3, 5 here.
For a thermal medium at finite magnetic field, the quark

self-energy is written in the general covariant form [16,100]
as

�(p‖) = Aγ μuμ + Bγ μbμ + Cγ 5γ μuμ + Dγ 5γ μbμ,

(C.105)

where A, B, C and D are the form factors, and uμ (1,0,0,0)
and bμ (0,0,0,-1) are the directions of heat bath and magnetic
field, respectively. The form factors are computed as

A = 1

4
Tr
[
�γ μuμ

]

= g2|q f B|
3π2

[
πT

2m f
− ln(2) + 7μ2

f ζ(3)

8π2T 2

−31μ4
f ζ(5)

32π4T 4

]
p0

p2‖
, (C.106)

B = −1

4
Tr
[
�γ μbμ

]

= g2|q f B|
3π2

[
πT

2m f
− ln(2) + 7μ2

f ζ(3)

8π2T 2

−31μ4
f ζ(5)

32π4T 4

]
pz
p2‖

, (C.107)

C = 1

4
Tr
[
γ 5�γ μuμ

]

= −g2|q f B|
3π2

[
πT

2m f
− ln(2) + 7μ2

f ζ(3)

8π2T 2

−31μ4
f ζ(5)

32π4T 4

]
pz
p2‖

, (C.108)

D = −1

4
Tr
[
γ 5�γ μbμ

]

= −g2|q f B|
3π2

[
πT

2m f
− ln(2) + 7μ2

f ζ(3)

8π2T 2

−31μ4
f ζ(5)

32π4T 4

]
p0

p2‖
. (C.109)

Here one can see that, C = −B and D = −A. The quark
self-energy (C.105) can also be expressed in terms of the
right-handed (PR = (1 + γ 5)/2) and left-handed (PL =
(1 − γ 5)/2) chiral projection operators as

�(p‖) = PR
[
(A + C)γ μuμ + (B + D)γ μbμ

]
PL

+PL
[
(A − C)γ μuμ + (B − D)γ μbμ

]
PR .

(C.110)

With the help of the substitutions C = −B and D = −A,
Eq. (C.110) turns out to be

�(p‖) = PR
[
(A − B)γ μuμ + (B − A)γ μbμ

]
PL

+PL
[
(A + B)γ μuμ + (B + A)γ μbμ

]
PR .

(C.111)

Substituting the quark self-energy (C.111) in Schwinger–
Dyson equation, we get

S−1(p‖) = γ μ p‖μ − �(p‖)
= PRγ μXμPL + PLγ μYμPR , (C.112)

where

123



Eur. Phys. J. C (2021) 81 :139 Page 19 of 20 139

γ μXμ = γ μ p‖μ − (A − B)γ μuμ − (B − A)γ μbμ ,

(C.113)

γ μYμ = γ μ p‖μ − (A + B)γ μuμ − (B + A)γ μbμ .

(C.114)

So, the effective quark propagator is obtained as

S(p‖) = 1

2

[
PR

γ μYμ

Y 2/2
PL + PL

γ μXμ

X2/2
PR

]
, (C.115)

where

X2

2
= X2

1 = 1

2
[p0 − (A − B)]2

−1

2

[
pz + (B − A)

]2
, (C.116)

Y 2

2
= Y 2

1 = 1

2
[p0 − (A + B)]2

−1

2

[
pz + (B + A)

]2
. (C.117)

Finally, the effective mass (squared) of quark in the presence
of strong magnetic field, finite temperature and finite chem-
ical potential is determined by taking the p0 = 0, pz → 0
limit of either X2

1 or Y 2
1 (both of them are equal in this limit)

[24],

m2
f T,B = g2|q f B|

3π2

[
πT

2m f
− ln(2) +

7μ2
f ζ(3)

8π2T 2 −
31μ4

f ζ(5)

32π4T 4

]
.

(C.118)
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