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Abstract The present article investigates the existence of
Noether and Noether gauge symmetries of flat Friedman–
Robertson–Walker universe model with perfect fluid matter
ingredients in a generalized scalar field formulation namely
f (R,Y, φ) gravity, where R is the Ricci scalar and Y denotes
the curvature invariant term defined by Y = Rαβ Rαβ , while
φ represents scalar field. For this purpose, we assume differ-
ent general cases of generic f (R,Y, φ) function and explore
its possible forms along with field potential V (φ) by tak-
ing constant and variable coupling function of scalar field
ω(φ). In each case, we find non-trivial symmetry generator
and its related first integrals of motion (conserved quantities).
It is seen that due to complexity of the resulting system of
Lagrange dynamical equations, it is difficult to find exact cos-
mological solutions except for few simple cases. It is found
that in each case, the existence of Noether symmetries leads
to power law form of scalar field potential and different new
types of generic function. For the acquired exact solutions, we
discuss the cosmology generated by these solutions graphi-
cally and discuss their physical significance which favors the
accelerated expanding eras of cosmic evolution.

1 Introduction

On the basis of significant outcomes of several astrophysical
experiments, numerous researchers deduced that the current
phase of our cosmos is accelerated expanding since last few
decades and this phenomenon is termed as cosmic accelera-
tion. The cosmic microwave background radiation (CMBR),
Supernova type Ia (SNIa), X-ray brightness from galaxy
erect, large scale constructions surveys, weak lensing and the
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baryon acoustic oscillation surveys etc. are some interesting
examples of such astronomical experiments whose observa-
tional data sets illustrate this phenomena of cosmic expansion
[1–7]. The possible motive of this phenomena has been con-
sidered as a hidden strange nature of energy which is also
seen as a dominating component in the cosmos matter struc-
ture and is refereed as dark ingredient or dark energy (DE)
[8,9]. In order to figure out the cryptic nature of this dark
leading ingredient, different approaches have been adopted
in literature which further resulted into a list of possible can-
didates, for instance, see [10–26]. By classifying this list of
candidates into two major categories on the basis of tech-
nique adopted, a possible comparison have also been pre-
sented in literature and some candidates have been ruled out
due to some downsides. It is argued that the extension of
Einstein’s gravitational framework for accommodating DE
by the inclusion of extra degrees of freedom is more accept-
able on cosmological landscape as compared to modified
matter proposals where only the energy-momentum source
is modified by adding dark ingredients as extra terms. Some
well-known examples of the later approach are cosmological
constant, scalar field models like k-essence, quintom, canon-
ical kinetic scalar field term, quintessence, and Chaplygin
gas EoS and its different versions. The modified gravitational
theories involve many interesting and noteworthy examples
like f (R) theory, Gauss-Bonnet gravity, scalar-tensor theo-
ries especially Brans-Dicke gravity theory, teleparallel theory
and its modifications like f (T ), f (T , TG) and f (T , B) the-
ories, f (G) gravity, f (R, T ) gravitational framework (where
the symbols T , B, G stand for the torsion scalar, boundary
term and Gauss-Bonnet term, respectively while T represents
the energy-momentum tensor trace), braneworld scenarios,
Kalb-Ramond background etc.. It is argued that the modified
gravitational theories yield a successful way to explore vari-
ous cosmic aspects and have passed all the astrophysical and
other necessary solar system tests.
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In the context of differential equations and their exact solu-
tions, one of the most intriguing and simple techniques con-
sidered by the researchers is the use of Noether and Noether
gauge symmetries. The existence of these symmetries can
minimize the possible complications in a differential equa-
tion and hence yields a systematic and easy way of inte-
gration to compute its solution. On physical grounds, one
of the other beauties of these symmetries is the existence
of conserved quantities via well-known Noether’s theorem
which can lead to some new and promising solutions. The
well-famed Noteher theorem is stated as any differentiable
symmetry of the action for a physical system corresponds
to some conservation law [27–31]. In the field of cosmol-
ogy and theoretical physics, existence of Noether symme-
tries plays a vital rule in computing specific and significant
forms of some unknown generic functions present in the
Lagrangian densities of GR and modified gravity theories.
On these lines, a lot of work has already been done in lit-
erature and researches have obtained numerous interesting
cosmological solutions using different gravitational frame-
works. In this respect, Hussain et al. [32] used the concept of
approximate symmetries of geodesic equations and investi-
gated energy re-scaling for Reissner-Nordström spacetime.
Sharif and Waheed [33–35] calculated the energy contents
of some black holes as well as plane colliding gravitational
waves using approximate symmetries. In f (R) gravity, sev-
eral researchers [36–43] have discussed exact FRW solutions
by exploring corresponding Noether symmetries as well as
conserved quantities. In scalar-tensor theories, Motavali and
Golshani [44] used Noether symmetries to compute the form
of coupling function and the scalar field potential by taking
FRW universe model. In literature [45–47], authors inves-
tigated the existence of exact solutions using Noether sym-
metries for Bianchi I, III, Kantowski-Sachs as well as FRW
models in scalar field and Palatini f (R) theories. In gener-
alized Saez-Ballester scalar-tensor theory, Jamil et al. [48]
explored the existence of Noether gauge symmetries along
with the associated conserved quantities for Bianchi I model
by taking different field potentials into account. Motavali et
al. [49] computed Noether symmetries and conserved quan-
tities for FRW cosmic model in a gravitational framework
involving inverse curvature invariant term. Further, Sharif
and Waheed [50] extended their work by calculating Noether
and Noether gauge symmetries for FRW and Bianchi type I
geometries by taking same Lagrangian density into account.
They have also explored the existence of scaling or dilata-
tional symmetries in a general scalar-tensor theory and found
some cosmological interesting exact Bianchi type I solutions.

Recently, Bajardi et al. [51] have investigated the exis-
tence of Noether symmetries in non-local gravity cosmolo-
gies, especially the frameworks involving curvature and
Gauss-Bonnet scalar invariants. They determined the spe-
cific generic functional present in the Lagrangian and found

the exact cosmological solutions. In another paper [52],
Kucukakca and Akbarieh have explored the Einstein-aether
cosmological model based on the interaction of scalar field
and the aether field using spatially flat FRW metric along
with standard matter. Sharif and Iqra [53] have explored some
cosmologically interesting exact solutions using Noether and
Noether gauge symmetries in f (R, T ) theory along with per-
fect fluid matter. The same authors [54] studied the existence
of traversable wormhole solutions in the presence of dust
and non-dust matter distributions using f (R, T ) theory and
discussed their physical features. In teleparallel theory and
its different extensions, numerous researchers have found
the exact solutions by utilizing the technique of Noether
and Noether gauge symmetries using FRW and anisotropic
spacetimes [55–59]. In another study [60], Sadjadi explored
the explicit form of the generic function in f (T ) framework
by utilizing generalized Noether theorem as well as general-
ized vector fields as variational symmetries where cold dark
matter contents have been taken into account. Capozziello et
al. [61] explored the functional form of generic function by
requiring the existence of Noether symmetries as well as con-
served quantities in the gravitational framework of F(R, T )

theory (where R is Ricci scalar and T is torsion) and they
also found the corresponding exact solutions.

In the context of f (G, T ) gravity, where G represents
the Gauss-Bonnet term and T is the energy-momentum ten-
sor trace, Shamir and Ahmad [62,63] have applied Noether
symmetries approach to explore some exact cosmologically
viable solutions using both isotropic and anisotropic geome-
tries. Bahamonde and Capozziello [64,65] have adopted the
Noether symmetry approach to study the related dynami-
cal systems and to find cosmological solutions using FRW
and static spherically symmetric metrics. In another study,
Fazlollahi [66] have discussed the behavior of effective EoS
parameter for the obtained cosmology by exploring existence
of Noether gauge symmetries in f (R) theory. They have also
shown significance of the obtained cosmic scale factor by
taking observational data into account. In f (R,G) theory,
Bahamonde et al. [67] worked for finding Noether symme-
tries as well as conserved quantities using static spherically
symmetric spacetime and they have also found some interest-
ing exact solutions. Likewise, Shamir and Kanwal [68] stud-
ied Noether symmetries analysis for Bianchi type I universe
in f (R,G) gravity and they also reconstructed some impor-
tant cosmological solutions. In another paper [69], Sharif
et al. investigated the existence of stable static wormhole
structures in Gauss-Bonnet theory by taking isotropic mat-
ter as well as different models of f (G) (like quadratic and
exponential) into account. In the gravitational framework of
f (R, φ, χ) theory, Bahamonde et al. [70] and Shamir [71]
found a class of new exact spherically symmetric solutions
using Noether’s symmetry approach. Capozziello et al. [72]
have adopted Noether point symmetries for classification and
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integration of dynamical systems coming from Horndeski
cosmologies and they have also found exact solutions in dif-
ferent subcases of Horndeski theory. This literature motivated
us to further explore symmetries as well as exact solutions in
a generalized scalar-tensor theory namely f (R,Y, φ) gravity
and discuss their cosmological significance.

In the present article, our primary objective is to inves-
tigate the existence of first Noether symmetries and then
full set of Noether gauge symmetries for flat FRW universe
geometry in f (R,Y, φ) gravitational framework. The com-
ing sections of the article will appear in this sequence. Next
section will provide a detailed introduction to Noether gauge
symmetries and its related concepts. In the same section,
we shall introduce the principle structure of general scalar-
tensor theory and some basic ingredients assumed for this
work. The simple Noether symmetries for FRW model will
be explored and presented in Sect. 3. Section 4 shall list full
set of Noether gauge symmetries along with corresponding
conserved quantities. In respective sections, we shall also dis-
cuss some exact solutions mathematically and illustrate their
significance graphically. The last segment will summarize
the whole article.

2 Basic formulation of f (R,Y, φ) modified gravity and
noether symmetry analysis

In this section, we shall present the basic mathematical struc-
ture of f (R,Y, φ) modified gravity and a brief introduction
to Noether symmetries analysis. Particularly, we shall dis-
cuss this process for flat FRW spacetime in the presence of
perfect fluid matter contents.

The action of f (R, Rαβ Rαβ, φ) gravity [73–76] involving
the scalar field coupling function and the scalar field potential
is given by the following equation:

Sm =
∫

d4x
√−g

[
1

κ2 ( f (R,Y, φ)

+ω(φ) φ;α φ;α + V (φ)
) ]

+ Lm, (1)

where f is a generic function depending on the quantities
Ricci scalar R, the curvature invariant Y ≡ Rαβ Rαβ (where
Rαβ is the Ricci tensor) and the scalar field φ. Further, the
functions Lm, V (φ) and ω(φ) are referred as the matter
Lagrangian density of ordinary matter, scalar field potential
and coupling function of scalar field φ, respectively. Also,
here the symbol g stands for the determinant of metric tensor
gμν and κ2 is the gravitational coupling constant.

Varying the action (1) with respect to metric, we have the
following set of field equations:

fR Rμν − 1

2

(
f + ω(φ) φ;α φ;α) gμν − fR;μν + gμν � fR

+2 fY R
α
μ Rαν − 2 [ fY Rα

(μ];ν)α + �[ fY Rμν]
+[ fY Rαβ ];αβgμν + ω(φ) φ;μ φ;ν = κ2 Tμν , (2)

2 ω(φ)�φ + ωφ(φ) φ;α φ;α − fφ + Vφ(φ) = 0 , (3)

where � = gμν∇μ∇ν and κ2 ≡ 8πG.
Symmetry is a point transformation (a transformation

which maps one point (x, y) into another (x∗, y∗)) under
which the form of DE remains invariant. These transforma-
tions form a group known as point transformation group.
Symmetries are interesting and mathematically significant
because of their direct connection with the conservation
laws through the Noether theorem. A nth-order Lagrangian
involving one independent variable and m independent vari-
ables given by the form L(t, qi , q̇i , q̈i , . . . , q

(n)
i ); i =

1, 2, 3, . . .m, can admit a Noether gauge symmetry generator
[77]

X = τ∂t + ηi∂qi

if there exists a function G called gauge function such that

Ġ = τ̇ L + τ∂t L

+
n∑
j=0

m∑
i=0

⎛
⎝η

( j)
i −

j∑
k=1

(
j

k

)
q( j+1−k)
i τ (k)

⎞
⎠ ∂q( j)

i L . (4)

The first integral of motion, in this case, takes the following
form:

I = G −
[
τ L +

m∑
k=1

n−1∑
i=0

×
n−1−i∑
j=0

(−1) j (ηk − q̇kτ)(i)
d j

dt j

(
∂L

∂q(i+ j+1)

)⎤
⎦ . (5)

In the present work, let us consider the flat FRW geometry
given by the line element:

ds2 = dt2 − a2(t)
(
dx2 + dy2 + dz2

)
, (6)

where a(t) represents the cosmological scale factor. For this
model, the Ricci scalar and the curvature invariant term will
take the form given by

R = −6

(
ȧ2

a2 + ä

a

)
, Y = 6

(
ȧ4

a4 + 2ȧ2ä

a3 + 3ä2

a2

)
. (7)

It is worthwhile to mention here that for FRW model, the field
equations (2) have already been calculated in literature and
are provided in Appendix. Here we consider that ordinary
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matter part of the Lagrangian density is defined in terms of
perfect fluid energy-momentum tensor and is given by

Tμν = (ρm + pm)uμuν − pmgμν,

where ρm and pm represent the density and pressure of ordi-
nary matter, respectively. For the construction of point-like
Lagrangian, we introduce these two scalar curvature quan-
tities as constraints with the corresponding Lagrange multi-
pliers λ1 and λ2 as follows

S = 1

8πG

∫
a3
[
f (R,Y, φ) + ω(φ)φ̇2 + V (φ)

+λ1

(
R + 6

(
ȧ2

a2 + ä

a

))

+λ2

(
Y − 6

(
ȧ4

a4 + 2ȧ2ä

a3 +3ä2

a2

))]
d4x + Lm . (8)

The possible integration of the double and higher-order
derivative terms lead to some boundary and first-order
terms. After neglecting the boundary terms, the point-like
Lagrangian will take the form:

L = 1

8πG

[
a3 f (R,Y, φ) + a3R fR + a3Y fY + a3ω(φ)φ̇2

+a3V (φ) − 12aȧ2 fR

−6a2ȧ Ṙ fRR − 6a2ȧẎ fRY − 6a2ȧφ̇ fRφ

+6aȧ2 fR − 6ȧ4

a
fY + 4ȧ3 Ṙ fRY

+4ȧ3Ẏ fYY + 4ȧ3φ̇ fYφ − 18aä2 fY
]

+ ρ0εa
−3ε . (9)

It is worthwhile to mention here that in the above point-
like Lagrangian, second-order term cannot be shifted to
first-order via partial integration process and hence is
remained present in the point-like Lagrangian. In the con-
struction of point-like Lagrangian, we have assumed Lm =
pm = ρ0εa−3(1+ε), where ε represents the EoS param-
eter of ordinary matter and lies within 0 < ε ≤ 1.
Here clearly, the Lagrangian is dependent on the terms
t, a, R,Y, φ, ȧ, Ṙ, φ̇, Ẏ and ä. For this configuration, we
need to use second-order prolongation of the symmetry gen-
erator [77] (this is because of the term ä) which is given
by

X [2] = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂R
+ γ

∂

∂Y
+ δ

∂

∂φ

+α1 ∂

∂ ȧ
+ β1 ∂

∂ Ṙ
+ γ 1 ∂

∂Ẏ
+ δ1 ∂

∂φ̇
+ α2 ∂

∂ ä

+β2 ∂

∂ R̈
+ γ 2 ∂

∂Ÿ
+ δ2 ∂

∂φ̈
(10)

and the respective condition for Noether gauge symmetry
existence takes the form:

X [2]L + (Dtτ)L = DtG. (11)

In the second prolongation of generator X , the components
α, β, γ and δ stand for without derivative terms while
the subscripts 1 and 2, respectively, indicate their first and
second-order time rates and are given by

α1 = Dtα − ȧτ, β1 = Dtβ − ṘDtτ,

γ 1 = Dtγ − Ẏ Dtτ, δ1 = Dtδ − φ̇Dtτ,

α2 = Dttα − 2äτ̇ − ȧτ̈ ,

where the total time derivative operator is defined as

Dt = ∂t + ȧ∂a + Ṙ∂R + Ẏ ∂Y + φ̇∂φ. (12)

Clearly, our constructed Lagrangian is only dependent on
ä term so the other components of second-order time rates
like β2, γ 2 and δ2 in Eq. (10) are ignored for the present
discussion. Using the total time rate given by Eq. (12) twice
on the function α, we can write the value for α2 as follows

α2 = αt t + 2ȧαta + 2Ṙαt R + 2ẎαtY

+2φ̇αtφ + äα,a + ȧ2α,aa + 2ȧ ṘαaR + 2ȧẎαaY

+2ȧφ̇αaφ + R̈αR + Ṙ2αRR + 2Ṙφ̇αRφ

+2ṘẎαRY + ŸαY + Ẏ 2αYY + 2Ẏ φ̇αYφφ̈α,φ + φ̇2αφφ

−2ä(τt + ȧτa + ṘτR + Ẏ τY + φ̇τφ) − ȧ[τt t + 2ȧτta

+2Ṙτt R + 2Ẏ τtY + 2φ̇τtφ + äτ,a

+ȧ2τ,aa + 2ȧ ṘτaR

+2ȧẎ τaY + 2ȧφ̇τaφ + R̈τR + Ṙ2τRR

+2Ṙφ̇τRφ + 2ṘẎ τRY + Ÿ τY

+Ẏ 2τYY + 2Ẏ φ̇τYφ + φ̈τ,φ + φ̇2τφφ].
(13)

In the present case, the first integrals of motion can be
obtained by the equation

I = G −
⎡
⎣τ L +

4∑
k=1

1∑
i=0

1−i∑
j=0

(−1) j (ηk − q̇kτ)(i)
d j

dt j

(
∂L

∂q(i+ j+1)

)⎤
⎦ ,

(14)

which further leads to

G = f − τ L − (α − ȧτ)
∂L

∂ ȧ
− (δ − φ̇τ )

∂L

∂φ̇

−(β − Ṙτ)
∂L

∂ Ṙ
− (γ − Ẏ τ)

∂L

∂Ẏ
− (α − ȧτ),t

∂L

∂ ä

+(α − ȧτ)
∂L

∂ ä
.

Usually, the Euler-Lagrange equations are defined for first-
order derivative term of generalized coordinates. In general,
for a system involving nth-order derivative of generalized
coordinates, i.e., L(t, q, q(n)

k ); k = 1, 2, 3 . . . ,m, the Euler-
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Lagrange equations can be written as:

n∑
j=0

(−1) j
d j

dt j

(
∂L

∂q( j)
k

)
= 0; k = 1, 2, ...,m.

In our case, it takes the form

2∑
j=0

(−1) j
d j

dt j

(
∂L

∂q( j)
k

)
= 0; k = 1, 2, 3, 4,

which can be simplified as follows

∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
+ d2

dt2

(
∂L

∂ q̈k

)
= 0.

By using the configuration space (t, a, R,Y, φ) and the point-
like Lagrangian, the set of four Euler-Lagrange equations
turn out to be

3a2 f + 3a2R fR + 3a2Y fY + 3a2ωφ̇2 + 3a2V + 6 fRȧ
2

−18ȧ4

a2 fY − 54 fY ä
2 − 3ε2ρ0a

−(1+3ε)

+12a fRä + 12a ḟRȧ

+6a2 ḟ RR Ṙ + 6a2 fRR R̈ + 6a2 fRY Ÿ

+6a2 ḟ RY Ẏ + 6a2 fRφφ̈ + 6a2 ḟ Rφφ̇ + 72

a
fY ȧ

2ä

+24

a
ḟY ȧ

3 − 24 fRY ȧä Ṙ

−12 fRY ȧ
2 R̈ − 12 ḟ RY ȧ

2 Ṙ − 12 fYY ȧ
2Ÿ

−12 ḟY Y ȧ
2Ẏ − 24 fYY ȧẎ ä

−12 fYφ ȧ
2φ̈ − 12 ḟYφ ȧ

2φ̈ − 12 ḟYφ ȧ
2φ̇

−24 fYφ ȧäφ̇ − 72 fY ȧ
...
a

−72 ḟY ȧä − 36a fY
....
a − 72ȧä ḟY − 36aä f̈Y = 0, (15)

2a3 fR + a3R fRR + a3Y fY R + 6a fRRȧ
2 − 6a2 fRRRȧ Ṙ

−6a2 fRRY ȧẎ − 6a2 fRRφ ȧφ̇

−6

a
fY Rȧ

4 + 4 fRRY ȧ
3 Ṙ

+4 fYY Rȧ
3Ẏ + 4 fY Rφ ȧ

3φ̇ − 18a fY Rä
2

+6a2 fRRä + 6a2 ḟ RRȧ

−12 fRY ȧ
2ä − 4 ḟ RY ȧ

3 = 0, (16)

2a3 fY + a3R fRY + a3Y fYY + 6a fRY ȧ
2 − 6a2 fRRY ȧ Ṙ

−6a2 fRYY ȧẎ − 6a2 fRφY ȧφ̇ − 6

a
fYY ȧ

4 + 4 fRYY ȧ
3 Ṙ

+4 fYYY ȧ
3Ẏ + 4 fYYφ ȧ

3φ̇

−18a fYY ä
2 + 6a2 fRY ä + 6a2 ḟ RY ȧ

−4 ḟY Y ȧ
3 − 12 fYY ȧ

2ä = 0, (17)

a3 fφ + a3R fRφ + a3Y fYφ + a3ωφφ̇2

+a3Vφ − 6a2 fRRφ ȧ Ṙ − 6a2 fRYφ ȧẎ

−6a2 fRφφ ȧφ̇ − 6

a
fYφ ȧ

4

+4 fRYφ ȧ
3 Ṙ + 4 fYYφ ȧ

3Ẏ + 4 fYφφ ȧ
3φ̇

−18a fYφ ä
2 − 2a3ω̇φ̇ − 2a3ωφ̈

−6a2ωȧφ̇ + 12a fRφ ȧ
2 + 6a2 fRφ ä

+6a2 ḟ Rφ ȧ − 12 fYφ ȧ
2ä − 4 ḟYφ ȧ

3 = 0. (18)

Also, the Hamiltonian, yielding the total energy of the sys-
tem, for a Lagrangian based on the first-order derivatives
of generalized coordinates is defined by the relation H =∑m

i=1 pi q̇i − L . For a more general system involving nth-
order derivative of generalized coordinates, the conjugate
momenta are defined by [78]

p1
k = ∂L

∂ q̇k
− d

dt

(
∂L

∂ q̈k

)
+ · · · + (−1)n

tn−1

dtn−1

(
∂L

∂q(n)
k

)
,

p2
k = ∂L

∂ q̈k
+ · · · + (−1)n−2 dn−2

dtn−2

(
∂L

∂q(n)
k

)
,

...

pnk = ∂L

∂q(n)
k

.

Consequently, the Hamiltonian takes the form

H = p1
1q̇1 + p2

1 q̈1 + p1
2q̇2 + p1

3 q̇3 + p1
4q̇4 − L ,

and alternatively, in our present configuration space, it can
be written as

H = p1
aȧ + p2

aä + p1
R Ṙ + p1

Y Ẏ + p1
φφ̇ − L .

Using this formalism along with the point-like Lagrangian,
the Hamiltonian, in the present case, turns out to be

H = 1

8πG

[
−6a2 fRRȧ Ṙ − 6a2 fRY ȧẎ − 6a2 fRφ ȧφ̇

−18

a
fY ȧ

4 + 12 fRY ȧ
3 Ṙ + 12 fYY ȧ

3Ẏ

+12 fYφ ȧ
3φ̇ − 6a fRȧ

2

−18a fY ä
2 + 36 fY ȧ

2ä + 36a fY ȧ
...
a

+36a ḟY ȧäa
3ωφ̇2 − a3 f − a3R fR − a3Y fY − a3V

]

−ρ0εa
−3ε .

We will firstly develop the set of determining equations
for simple Noether symmetries case in which time is not
directly involved in point-like Lagrangian and hence we take
τ component of the symmetry generator as zero and the gauge
term G also disappears. Consequently, the existence condi-
tion (11) will take the form X [2]L = 0. After inserting the
values of X [2] and the point-like Lagrangian, we compare the
coefficients of different product derivative terms of a, R, Y
and φ on both sides of condition and consequently, we obtain
the following system of differential equations:
(

3a2 f + 3a2R fR + 3a2 fY Y + 3a2V − 3ε2ρ0a
−(3ε+1)

)
α
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+ (
2a3 fR + a3R fR R − 12a fRR + a3Y fY R

)
β

+(a3 fY + a3R fRY + a3Y fYY )γ

+(a3 fφ + a3R fRφ + a3Y fYφ + a3Vφ)δ = 0, (19)

−6 fRα + 6a fRRβ − 6a fRY γ − 6a fRφδ

−12a fRαa − 6a2 fRRβa − 6a2 fRY γa − 6a2 fRφδa = 0,

−12aα fRR − 6a2 fRRRβ − 6a2 fRRY γ − 6a2 fRRφδ

−12a fRαR − 6a2 fRRαa − 6a2 fRRβR (20)

−6a2 fRY γR − 6a2 fRφδR = 0,

−12a fRYα − 6a2β fRRY − 6a2 fRYY γ − 6a2 fRYφδ

−12a fRαY − 6a2αa fRY − 6a2 fRRβY (21)

−6a2γY fRY − 6a2 fRφδY = 0,

−12a fRφα − 6a2 fRRφβ − 6a2γ fRφY

−6a2 fRφφδ − 12a fRαφ − 6a2 fRφαa

−6a2βφ fRR − 6a2 fRY γφ (22)

−6a2 fRφδφ + 2a3ωδa = 0, (23)
6

a2 fYα − 6

a
fY Rβ − 6

a
fYY γ − 6

a
fYφδ − 24

a
fYαa

+4βa fRY + 4 fYY γa + 4 fYφδa = 0, (24)

−18 fYα − 18a fY Rβ − 18aγ fYY − 18a fYφδ = 0, (25)

4 fRRYβ + 4γ fRYY + 4 fRYφδ − 24

a
fYαR

+12 fRYαa + 4βR fRY + 4 fYY γR + 4 fYφδR = 0, (26)

4 fRYYβ + 4γ fYYY + 4 fYYφδ − 24

a
fYαY

+12 fYYαa + 4βY fRY + 4 fYY γY + 4 fYφδY = 0, (27)

4 fRYφβ + 4γ fYYφ + 4 fYφφδ

−24

a
fYαφ + 12 fYφαa + 4βφ fRY

+4 fYY γφ + 4 fYφδφ = 0, (28)

a3ωφδ − 6a2αφ fRφ + 2a3ωδφ + 3a2ωα = 0, (29)

−6a2 fRRαR = 0, −6a2 fRRαφ

−6a2 fRφαR + 2a3ωδR = 0, −6a2 fRYαY = 0, (30)

−6a2 fRRαY − 6a2 fRYαRa = 0, −6a2 fRYαφ

−6a2 fRφαY + 2a3ωδY = 0, 12αR fRY = 0, (31)

12αφ fRY + 12αR fYφ = 0, 12αY fRY

+12αR fYY = 0, −72a fYαYφ = 0, (32)

−72a fYαYαRφ = 0,

−36a fYαYY = 0, 12αφ fYY + 12αY fYφ = 0, (33)

12αY fYY = 0, 12αφ fYφ = 0,

−36a fYαφφ = 0, −36a fYαaa = 0, (34)

−72a fYαaR = 0, −72a fYαaY = 0

−72a fYαaR = 0, −36a fYαRR = 0, −72a fYαRY = 0.

(35)

In the forth coming subsections, we shall find the solution
of this system of determining equations by taking different
cases of generic function along with the constant and power
law form of ω(φ) into account.

2.1 Model independent of Y : f (R, φ) Model

Here we shall investigate the existence of Noether symme-
tries when the generic function is independent of curvature
invariant Y . The system of determining equations allows one
to pick some form of coupling parameter. We shall explore
the solutions by assuming two cases of scalar field coupling
function ω(φ). Firstly, let us consider the case when the cou-
pling function is a constant, i.e., ω(φ) = m, then the set
of determining equations (19)–(35) yield the following solu-
tions

α = −2

3
aC3C1, δ = C3(C1φ + C2), γ = 0, β

= −C3C1ε
2ρ0(C7 + C8a−3(1+ε))

C8C4C6(C1φ + C2)2 . (36)

Also, the function f (R, φ) and the potential V (φ) take the
form:

f (R, φ) = (C4R + C5)(C1φ + C2)
2C6,

V (φ) = −C7

C8
ε2ρ0 + (C1φ + C2)

2. (37)

Consequently, the corresponding set of symmetries can be
written as

X1 = −2

3
a

∂

∂a
+ φ

∂

∂φ
,

X2 = −ε2ρ0φ
−2 ∂

∂R
,

X3 = −ε2ρ0φ
−2a−3(1+ε) ∂

∂R
,

and the first integrals of motion are

I1 = −2

3

(
−24aȧ f,R − 6a2 Ṙ fRR − 6a2φ̇ fRφ

+12aȧ f,R
)− (2a3mφ̇ − 6a2ȧ fRφ)φ,

I2 = ε2ρ0φ
−2(−6a2ȧ fRR),

I3 = ε2ρ0a
−3(1+ε)φ−2(−6a2ȧ fRR).

Here we have assumed C2 = 0 and re-labeled other arbitrary
constants for simplicity purposes. It can be easily checked
that in case of vacuum (ρ0 = 0) or dust ε = 0, the symmetry
generators X2 and X3 vanish and hence only X1 is left which
is a scaling symmetry. Also, quadratic scalar field potential
is obtained. On substitution of derivatives of f (R, φ), these
integrals can be simplified as

I1 = 8aC∗
1φ2ȧ + 8a2C∗

1 φ̇φ

−2a3mφ̇φ + 12a2ȧC∗
1φ2,

I2 = I2 = 0; C∗
1 = C4C

2
1C6

For finding the values of scale factor and scalar field which
are the only unknown quantities left, we can use either the
Euler-Lagrange equations or the above defined integrals of
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motion. In the first case, the solution using Lagrange equa-
tions can be written as

a(t) = c10e

√
1+c5t√

6c4 + c11e
−√

1+c5 t√
6c4 , (38)

and

φ(t) = −ρ0ε√
6c1

[
c8

∫
e

−1
6c4

∫ 18c4 ȧ
2(1+ε)+a2(1+c5)+6c4aä

aȧ dt
dt

−c7ε

∫
e

−1
6c4

∫ 18c4 ȧ
2(1+ε)+a2(1+c5)+6c4aä

aȧ dt
dt + c9

]

along with m = c2 = 0. The integration of exponential
power is computed as:

−√
6
√
c4

√
1 + c5

⎡
⎢⎢⎢⎢⎢⎢⎣
t (5 + 3ε) −

√
6
√
c4(1 + 3ε) tanh−1

⎛
⎝ c10e

√
2/3(1+c5 )√

c4

c11

⎞
⎠

√
1 + c5

−
√

3/2
√
c4(5 + 3ε) log[c2

11 − c2
10e

2
√

2/3(1+c5 )√
c4 ]√

1 + c5

⎤
⎥⎥⎥⎥⎥⎥⎦

.

By taking some simple values of arbitrary constants C ′
i s and

ρ0 = 1, the scalar field can be computed as

φ(t) = 1√
6

[
2 −

(√
3

(√
2e

t√
6

(
315 + 4200e

√
2
3 t + 22512e

2
√

2
3 t

+39200e
4
√

2
3 t + 227712e

5
√

2
3 t + 268800e

7
√

2
3 t

+ 80640e
8
√

2
3 t + 56928e

√
6t + 360192e2

√
6t

)

+315

(
−1 + 2e

√
2
3 t
)(

1 + 2e

√
2
3 t
)8

ArcTan

[√
2e

t√
6

]⎞
⎠
⎞
⎠

÷
⎛
⎝315

(
−1 + 2e

√
2
3 t
)(

1 + 2e

√
2
3 t
)8
⎞
⎠
⎤
⎦ . (39)

The deceleration parameter, effective EoS parameter, jerk
and snap parameters are also defined in Appendix. In this
case, the deceleration parameter becomes

q = −

(
C11 + C10e

√
2/3

√
1+C5 t√
C4

)2

(
C11 − C10e

√
2/3

√
1+C5 t√
C4

)2

which, clearly, is a negative quantity for any arbitrary
choice of free constants. The graphical behavior of evalu-
ated f (R, φ), V (φ), scale factor and scalar field is provided
in Figs. 1 and 2. It is seen that these functions show pos-
itive and increasing behavior versus cosmic time. Further,

different cosmic measures like ordinary matter density, cos-
mic volume, deceleration parameter, effective EoS parame-
ter, and snap as well as jerk parameters are illustrated graph-
ically in Figs. 3, 4 and 5. It is easy to check that all these
cosmic measures favor the accelerated expanding nature of
cosmos.

Since I1 is the only non-zero first integral of motion which
involves both a(t) and φ(t), therefore in order to find exact
solutions, one need to assume some power law ansatz for
either scale factor or scalar field and find the other quantity.
Here we consider the power law form of φ = φ0aα , where
α �= 0; α ∈ R. The resulting form of first integral can be
written as

2C∗
1a

2α+1φ2
0 (4(1 + α) − a(6 − mα)) ȧ = I1

whose solution can be written as

a(t) =
(
I1(t + C1)

4C∗
1φ2

0

) 1
2(α+1)

(40)

and hence the scalar field is given by

φ = φ0

(
I1(t + C1)

4C∗
1φ2

0

) α
2(α+1)

.

For these solutions, we have imposed some constraints like
α �= − 3

2 and α = 6
m . Clearly, the obtained scale factor is

in power law form. In this case, the deceleration parameter
turns out to be q = 1+2α which, consequently, imposes the
constraint α < − 1

2 , for having accelerated expanding nature
of cosmos. It is interesting to mention here that early matter
and radiation dominated epochs can be discussed by fixing
α = − 1

4 and α = 0, respectively. The graphical behavior of
obtained scale factor and effective Eos parameter is provided
in Fig. 6. From their graphical illustration, it can be easily
checked that these cosmic quantities also refer to accelerated
cosmic expansion. Furthermore, the jerk and snap parameters
also turn out to be constants given by r = (1 + 2α)(3 + 4α)

and s = 0.3333+1.6667α+1.3333α2

1/4+α
. It can be easily checked that

for α = −1, the point (r, s) = (1, 0) can be recovered and
hence the constructed model has a correspondence to �CDM
model (q = −1) for this specific value of α.

In the second case, when the coupling function is defined
in terms of power law form, i.e., ω(φ) = mφs , where s and
m are any real constants. The resulting solutions are given
by

α = C1a, γ = 0, β = (C4 + C5a−3(1+ε))d2φ
−s

(−3C1φ + C2C3(s + 2)φ− s
2 )2

,

δ = C2

(
− 3φ

C2(s + 2)
+ C3φ

− s
2

)
. (41)
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Fig. 1 The left and right graphs indicate the behavior of f (R, φ) function and scalar field potential for ω(φ) = m

Fig. 2 The left and right graphs indicate the behavior of expansion factor and scalar field versus time for Noether symmetry case (where ω(φ) = m)

Fig. 3 The graphs indicate the behavior of ordinary matter density and cosmic volume for Noether symmetry case with ω(φ) = m
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Fig. 4 The left and right graphs indicate the behavior of deceleration parameter and effective EoS parameter, respectively, versus time for Noether
symmetry case for ω(φ) = m

Fig. 5 The graph indicates the behavior of jerk and snap parameters
for ω(φ) = m

Further, the functions f (R, φ) and V (φ) take the form

f (R, φ) = 3C9C1ε2ρ0
2d1

φs R

(
C3C2(s + 2)2φ

− s
2 − 3C1φ

)
,

V (φ) =
−3ε2ρ0C1C4φ

(
C2

2C
2
3 (4 + 4s + s2) − 18C1C2C3φ

s
2 +1 + 9C2

1φs+2
)

C5C
2
3C

2
2 (s + 2)2

(
C3C2(s + 2)φ

− s
2 − 3C1φ

) .

(42)

Here all C ′
i s are constants of integration. Here the solution is

valid only if one picks m = s. For defining the correspond-
ing set of symmetries along with first integrals of motion,
let us assume that d2 = 0 which further leads to β = 0.
Consequently, we get

X1 = a
∂

∂a
− 3φ

2(s + 2)

∂

∂φ
, X2 = − 3φ

2(s + 2)

∂

∂φ

+φ−s/2 ∂

∂φ
,

a t

Fig. 6 The left and right graphs provide the behavior of scale factor and effective EoS parameter for ω(φ) = m, respectively
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Fig. 7 The left graph provides the behavior f (R, φ), the right plot shows the behavior of scalar field potential while the down curve corresponds
to the behavior of scale factor where ω(φ) = mφs

I1 = 12a2ȧ fR + 6a3 Ṙ fRR + 6a3φ̇ fRφ

+ 3φ

2(s + 2)
(2a3ωφ̇ − 6a2ȧ fRφ),

I2 = φ−s/2(6a2ȧ fRφ − 2a3ωφ̇)

+ 3φ

2(s + 2)
(2a3ωφ̇ − 6a2ȧ fRφ).

Here both symmetry generators X1 and X2 represent scal-
ing symmetries. Clearly, on substituting the derivatives of
f (R, φ) in the above defined conserved quantities, it can be
written as

I1 − I2 = 12a2ȧ
(
C∗C3C2(s + 2)2φs/2 − 3C1C

∗φs+1
)

+6a3φ̇
(
C∗C3C2(s + 2)2 s

2
φs/2−1 − 3C1C

∗(s + 1)φs
)

−6a2ȧφs/2
(
C∗C3C2(s + 2)2 s

2
φs/2−1 − 3C∗C1(s + 1)φs

)

−2a3sφs φ̇; C∗ = 3C9C1ε2ρ0

2d1
.

By picking the same power law choice of scalar field, this
equation can be shifted to a differential equation for scale
factor and is given by

−2a2−α
(

48 − 3(41 + 16α)a2α + (18 + 29α)a4α
)

ȧ = I1 − I2

whose solution can be found as

a(t) = I nverseFunction

[
48#13−α

3 − α

+ (18 + 29α)#13(1+α)

3(1 + α)

−3(41 + 16α)#13+α

3 + α
&

] [
− t

2
+ C

′
]

;

where C
′

indicates the integration constant. The graphical
behavior of generic function, scalar field potential and the
evaluated scale factor is provided in Fig. 7. It is easy to check
that the scale factor indicates positive as well as increasing
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behavior versus time and hence corresponds to accelerated
expanding cosmos.

2.2 Model independent of φ: f (R,Y ) model

In this section, we shall explore the components of generator
and the unknown functions by taking the assumption that the
generic function is independent of scalar field, i.e., f (R,Y )

along with non-zero scalar field potential and coupling func-
tion. Here we again consider two cases for coupling function
as taken in the last section. For constant coupling function,
the solutions to the system of determining equations (19)–
(35) are

α = 0, δ = C1C2

a
, β = C3C4C5

9aC10

×
(
(C10R + C11)(C5Y + C6)

2(C7φ + C8)
)

,

γ = C3C4

9a
(C7φ + C8)

×
(
C5Y

{
C2

5Y
2

3
+ C5C6Y + C2

6

}
+ C2

6

3

)
.

Also, the scalar field potential and generic function turn out
to be as

V (φ) = −1

3

mC11

C7C10

(
C7φ

2

2
+ C8φ

)
+ C14,

f (R,Y ) = 9

2

mC1C2(C10R + C11)

(C5Y + C6)2C3C4C5C7C10
.

In this case, the set of symmetries can be written as

X1 = 1

a

∂

∂φ
, X2 = RY 2φ

a

∂

∂R
+ φY 3

3a

∂

∂Y
,

X3 = RY 2

a

∂

∂R
+ Y 3

3a

∂

∂Y
,

X4 = Rφ

a

∂

∂R
+ φY

a

∂

∂Y
, X5 = R

a

∂

∂R
+ Y

a

∂

∂Y
,

X6 = RYφ

a

∂

∂R
+ φY 2

2a

∂

∂Y
,

X7 = RY

a

∂

∂R
+ Y 2

2a

∂

∂Y
, X8 = Y 2φ

a

∂

∂R
,

X9 = 1

a

∂

∂R
, X10 = φ

a

∂

∂R
,

X11 = φY

a

∂

∂R
, X12 = Y

a

∂

∂R
,

X13 = φ

a

∂

∂Y
, X14 = 1

a

∂

∂Y
.

The corresponding set of first integrals of motion can be writ-
ten as

I1 = −2a2ω(φ)φ̇, I2 = − RY 2φ

a

(
6a2ȧ fRR + 4ȧ3 fRY

)

+φY 3

3a

(
6a2ȧ fRY − 4ȧ3 fYY

)
,

I3 = − RY 2

a

(
6a2ȧ fRR + 4ȧ3 fRY

)

+Y 3

3a

(
6a2ȧ fRY − 4ȧ3 fYY

)
,

I4 = − Rφ

a

(
6a2ȧ fRR + 4ȧ3 fRY

)

+φY

a

(
6a2ȧ fRY − 4ȧ3 fYY

)
,

I5 = − R

a

(
6a2ȧ fRR + 4ȧ3 fRY

)

+Y

a

(
6a2ȧ fRY − 4ȧ3 fYY

)
,

I6 = − RYφ

a

(
6a2ȧ fRR + 4ȧ3 fRY

)

+φY 2

2a

(
6a2ȧ fRY − 4ȧ3 fYY

)
,

I7 = − RY

a

(
6a2ȧ fRR + 4ȧ3 fRY

)

+Y 2

2a

(
6a2ȧ fRY − 4ȧ3 fYY

)
,

I8 = −
(

6a2ȧ fRR + 4ȧ3 fRY
) Y 2φ

a
,

I9 = −
(

6a2ȧ fRR + 4ȧ3 fRY
) 1

a
,

I10 = −
(

6a2ȧ fRR + 4ȧ3 fRY
) φ

a
,

I11 = −
(

6a2ȧ fRR + 4ȧ3 fRY
) Yφ

a
,

I12 = −
(

6a2ȧ fRR + 4ȧ3 fRY
) Y

a
,

I13 = −
(

6a2ȧ fRY − 4ȧ3 fYY
) φ

a
,

I14 = −
(

6a2ȧ fRY − 4ȧ3 fYY
) 1

a
.

It can be seen that on substitution of different derivatives of
generic function, these integrals can be written as

I1 = −2a2mφ̇, I2 = − RY 2φ

a

(
4ȧ3(

−2C10C∗C5

(C5Y + C6)3 )

)

+φY 3

3a

(
6a2ȧ(

−2C10C∗C5

(C5Y + C6)3 ) − 4ȧ3 6C10C∗C5
2

(C5Y + C6)4

)
,

I7 = I6 I2
I3

, I4 = I5 I3
I2

,

I9 = −4ȧ3

a
(
−2C10C∗C5

(C5Y + C6)3 ), I8 = I11 I12

I9
,

I10 = I11 I9
I12

;

C∗ = 9

2

mC1C2

C3C4C5C7C10
.
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Clearly, I9 and I13 integrals are purely in terms of scale factor
and its derivatives (curvature invariant Y ) and hence giving
rise to a non-linear differential equation which can be solved
numerically. This equation is given by

I8 = 8ȧ3

a

C∗C10C5

(C5Y + C6)3 .

Then, from I1, one can compute the behavior of scalar field
numerically by the relation φ̇ = I1

−2a2m
. We have solved

this relation for scale factor numerically and its behavior is
provided in Fig. 8. It is seen that it indicates positive and
increasing behavior and hence corresponds to an expanding
universe model. As the scalar field evolves inversely to scale
factor, thus it can be concluded that the corresponding scalar
field will exhibit decreasing behavior versus time. The graph-
ical behavior of generic function and scalar field potential is
also provided in Fig. 9.

For the power law form of coupling function, the solutions
take the form

α(a) = 0, δ(a, φ) = C1C2φ
− s

2

a
, β(a, R,Y, φ)

= (C3R + C4)(C5Y + C6)
2

aC2
3 (s + 2)(

C1C2mφ
s
2 +1 + 12d1(s + 2)

)
,

γ (a,Y, φ) = C7C8C9

a
(C5Y + C6)

2

(
φ

s
2 +1C1C2m

12d2(s + 2)
+ C10

)
.

The scalar field potential and the function f (R,Y ) are given
by

V (φ) = −2C4

3(s + 2)2C1C3C2(
mC1C2φ

s+2 + 24C3C5C7C8C9C10φ
s
2 +1(s + 2)

)

+C14,

f (R,Y ) = 4(C3R + C4)

(C5Y + C6)2 .

The corresponding set of symmetries is given by

X1 = φ−s/2

a

∂

∂φ
, X2 = mφs/2+1RY 2 ∂

∂R
,

X3 = (s + 2)RY 2 ∂

∂R
, X4 = mφs/2+1R

∂

∂R
,

X5 = (s + 2)R
∂

∂R
, X6 = mφs/2+1RY

∂

∂R
,

X7 = (s + 2)RY
∂

∂R
, X8 = Y 2mφs/2+1 ∂

∂R
,

X9 = (s + 2)Y 2 ∂

∂R
, X10 = mφs/2+1 ∂

∂R
,

X11 = (s + 2)
∂

∂R
, X12 = mφs/2+1Y

∂

∂R
,

X13 = (s + 2)Y
∂

∂R
, X14 = φs/2+1Y 2 ∂

∂Y
,

X15 = φs/2+1 ∂

∂Y
, X16 = φs/2+1Y

∂

∂Y
,

X17 = Y 2 ∂

∂Y
, X18 = ∂

∂Y
, X19 = Y

∂

∂Y
.

The corresponding first integrals are:

I1 = −2a2ω(φ)φ−s/2φ̇,

I2 = mφs/2+1RY 2
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I3 = (s + 2)RY 2
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I4 = mφs/2+1R
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I5 = (s + 2)R
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I6 = mφs/2+1RY
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I7 = (s + 2)RY
(

6a2ȧ fRR − 4ȧ3 fRY
)

I8 = mY 2φs/2+1
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I9 = (s + 2)Y 2
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I10 = mφs/2+1
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I11 = (s + 2)
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I12 = mφs/2+1Y
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I13 = (s + 2)Y
(

6a2ȧ fRR − 4ȧ3 fRY
)

,

I14 = φs/2+1Y 2
(

6a2ȧ fRY − 4ȧ3 fYY
)

,

I15 = φs/2+1
(

6a2ȧ fRY − 4ȧ3 fYY
)

,

I16 = φs/2+1Y
(

6a2ȧ fRY − 4ȧ3 fYY
)

,

I17 = Y 2
(

6a2ȧ fRY − 4ȧ3 fYY
)

,

I18 =
(

6a2ȧ fRY − 4ȧ3 fYY
)

,

I19 = Y
(

6a2ȧ fRY − 4ȧ3 fYY
)

.

Here, on substitution of generic function’s derivatives, these
integrals can be simplified. But similar to the previous case
of constant coupling function, the analytical solution is not
possible, only numerical solution can be obtained. The plots
of Fig. 9 indicate the behavior of computed generic function
and scalar field potential which provide positive and increas-
ing behavior versus cosmic time.
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Fig. 8 The left graph indicates the behavior of f (R, Y ) function, the right plot corresponds to scalar field potential behavior while the down curve
provides the behavior of scale factor versus time (numerical solution), where ω(φ) = m

Fig. 9 The left plot provides the graph of f (R, Y ) function while right curve refers to scalar field potential graph for ω(φ) = mφs
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2.3 Model independent of R: f (φ,Y ) model

In this section, we shall investigate the components of sym-
metry generator and the unknown functions by taking the
generic function independent of Ricci scalar, i.e., f (Y, φ).
For constant scalar field coupling, the solution of determin-
ing equations (19)–(35) is given by

α = β = 0, δ = mC1, γ = 2mC1φ + 2C3,

f (Y, φ) = C2Y + mC1φ
2 + 2C3φ,

V (φ) = −2C2

C1
(mC1φ

2 + 2C3φ)

−(mC1φ
2 + 2C3φ) + C4.

Here it is worthwhile to mention here that this solution exists
only for m = 1. In this case, the symmetries along with first
integrals of motion can be written as

X1 = 2mφ
∂

∂Y
+ m

∂

∂φ
, X2 = 2

∂

∂Y
,

I1 = −
(

2a3m2φ̇ + 4ȧ3m fYφ

)
− 8mφȧ3 fYY ,

I2 = −8ȧ3 fYY .

On replacing the values of derivatives, it can be checked that
only I1 is non-zero and is given by I1 = −2a3m2φ̇. It can
be solved for scale factor if one pick the power law form of
scalar field φ = φ0aα and consequently, we obtain

a(t) = 3

√(
3

φ0α
t + C

′
1

)
,

φ(t) = φ0

(
3

φ0α
t + C

′
)α/3

. (43)

Here C
′
1 is a constant of integration. The graphical behav-

ior of constructed generic function and scalar field potential
is provided in Fig. 10 which exhibit smooth, positive and
increasing behavior. Clearly, the scale factor is in power law
form and its graph is provided in left panel of Fig. 11. In this
case, the deceleration parameter is find to be q = 2 represent-
ing Zel’dovich universe model (stiff matter). The evolution
of effective EoS parameter is shown in right panel of Fig.
11 which clearly approaches the �CDM epoch. It is signifi-
cant to mention that though the background solution exhibits
the stiff matter but the contributions from higher curvature
invariant and scalar field results in �CDM epoch.

For the second case when the coupling function is taken
in terms of power law form, then the resulting solutions take
the form

α = β = 0, δ = C6φ
− s

2 ,

γ = eC2ms φ2
2 +C3

φ
4 +C5 ,

f (Y, φ) = C1Y + eC2ms φ2
2 +C3

φ
4 +C5 ,

V (φ) =
∫ ⎛
⎜⎝− eC2ms φ2

2 +C3
φ
4 +C5

4C6
(8C1φ

s
2 + 4msφC6 + C3C6)

⎞
⎟⎠ dφ.

(44)

The corresponding symmetries and first integrals are:

X1 = φ−s/2 ∂

∂φ
, X2 = ∂

∂Y
,

X3 = msφ2

2

∂

∂Y
, X4 = φ

4

∂

∂Y
,

I1 = −φ−s/2
(

2a3ω(φ)φ̇ + 4ȧ3 fYφ

)
,

I2 = −
(

4ȧ3 fYY
)

, I3 = −msφ2

2

(
4ȧ3 fYY

)
,

I4 = −φ

4

(
4ȧ3 fYY

)
.

Here the symmetry generators X1 and X2 are scaling sym-
metries. In this case, only I1 is non-zero integral which can
be solved for scale factor by assuming the same power law
from of scalar field. The corresponding solutions are given
by

a(t) =
(

sα + 6

2αφ
s/2+1
0

t + C
′
2

) 2
sα+6

,

φ(t) = φ0

(
sα + 6

2αφ
s/2+1
0

t + C
′
2

) 2α
sα+6

.

The graphical behavior of obtained generic function,
scalar field potential, scale factor and corresponding EoS
parameter for power law scalar field coupling is provided
in Figs. 12 and 13. It is easy to verify that for accelerated
expanding cosmic model, deceleration parameter imposes
the constraint on free parameters as q = − 1

2 (6 + sα)(−1 +
2

6+sα ) < 0 which further leads to the condition s < − 4
α

or α < − 4
s . The scalar field potential and obtained generic

function exhibit positive smooth behavior. It can also be seen
that scale factor, being a power law function, provides posi-
tive and increasing behavior with time. Using the constraint
s < − 4

α
, we plot effective EoS parameter and show its

behavior in right plot of Fig. 13. It clearly exhibits �CDM
model. Thus it can be concluded that the cosmology gener-
ated in both cases favor the cosmic expansion. Further we
calculate the expressions of jerk and snap parameters which
are also constant values given by r = 1

2 (4 + sα)(5 + sα)

and s = 6+3sα+0.3333s2α2

3+sα . It can be easily verified that for

α = − 6
s , the point (r, s) = (1, 0) can be recovered and hence

our constructed model can corresponds to �CDM model for
this specific choice of α. It is worthy to mention here that
for describing early cosmic epochs, one needs to impose the
condition α > − 4

s .
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Fig. 10 The left and right graphs indicate the behavior of f (Y, φ) function and scalar field potential for ω(φ) = m

Fig. 11 The left and right graphs provide the behavior of scale factor and effective EoS parameter for ω(φ) = m

Fig. 12 The left graph indicate the behavior f (Y, φ) function while right plot shows the behavior of scalar field potential for ω(φ) = mφs
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Fig. 13 The left curve corresponds to plot of scale factor while right curve refers to effective EoS parameter versus time for ω(φ) = mφs

2.4 General f (R, φ,Y ) model

Here we shall study the existence of Noether symmetries for
the generic function depending on all three variables namely
R, Y and φ. For the first case, we consider the constant
coupling function, the resulting set of solutions is given by

α = 0, δ(a) = C1C2

a
, γ (a, R, φ)

= β(a, R, φ) = −2(C9R + C10)(mφ − 3C3C5C6)C2C1

aC9(mφ2 − 6C5(C6φ + C7)C3)
.

(45)

Also, the scalar field potential and the function f take the
following form

V (φ) =
(2C3C10 − C9C11)

(
3C3C5C6φ − mφ2

2

)

3C3C9
+ C12,

f (R,Y, φ) = (C3R + C4)

(
C7 + C6φ − mφ2

6C3C5

)
C5.

F (46)

In this case, we assume arbitrary integration constants C6 =
C7 = 0 for simplicity purposes, which yields

α = 0, δ(a) = C1C2

a
, γ (a, R, φ) = β(a, R, φ)

= −2(C9R + C10)mφC2C1

aC9mφ2 ,

V (φ) =
(2C3C10 − C9C4)

(
−mφ2

2

)

3C3C9
+ C12,

f (R,Y, φ) = (C3R + C4)

(
− mφ2

6C3C5

)
C5.

Consequently, we get the symmetries and first integrals of
motion as follows

X1 = −2R

aφ

(
∂

∂R
+ ∂

∂Y

)

+1

a

∂

∂φ
,

X2 = − 2

aφ

(
∂

∂R
+ ∂

∂Y

)
,

I1 = −1

a

(
2a3ωφ̇ − 6a2ȧ fRφ + 4ȧ3 fYφ

)

+2R

aφ

(
−6a2ȧ fRR + 4ȧ3 fRY

)

+2R

aφ
(4ȧ3 fYY ),

I2 = 2

aφ
(−6a2ȧ fRR + 4ȧ3 fRY )

+ 2

aφ
(4ȧ3 fYY ).

Here the solutions turn out to be independent of Y . On
substituting the derivatives, it is seen that I2 = 0, while

I1 = −2am φ̇ − 2aȧmφ which further leads to φ(t) = C
′
3

a(t) .
This indicates that the scalar field behaves oppositely to
scale factor, i.e., for an expanding universe, the scalar field
decreases versus time.

For the second case when the coupling function is given
by the power law, the system of determining equations yields

α = 0, δ(a, φ) = C1C2φ
− s

2

a
,

β(a, R,Y, φ)

= (C9R + C10)(C5Y + C6)
2(C7 + C8φ

s
2 +1)C3C4C5

9aC9
,
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γ (a, φ,Y ) = C3C4

a

[
(C7 + C8φ

s
2 +1)

(
C5Y

9

(
C2

5

3
+ C5C6Y + C2

6

))
+ C2

6

27

]
.

Consequently, the scalar field potential and the generic func-
tion are given by

V (φ) = −2mC10

3C9C8

(
2C7φ

s
2 +1 + C8φ

s+2

(s + 2)2

)
+ C15,

f (R,Y, φ) = 9(C9R + C10)mφ
s
2 +1C1C2

(s + 2)(C5Y + C6)2C3C4C5C8C9
.

In this case, the set of symmetries can be written as

X1 = φ−s

2

∂

∂φ
, X2 = RY 2

a

∂

∂R
+ Y

3a

∂

∂Y
,

X3 = R

a

∂

∂R
+ Y

a

∂

∂Y
,

X4 = RY

a

∂

∂R
+ Y 2

2a

∂

∂Y
,

X5 = Y 2

a

∂

∂R
+ Y

3a
φs/2+1,

X6 = φs/2+1

a

∂

∂R
+ Yφs/2+1

a

∂

∂Y
,

X7 = Yφs/2+1

a

∂

∂R
, X8 = Y 2

a
,

X9 = 1

a

∂

∂R
, X10 = Y

a

∂

∂R
,

X11 = φs/2+1Y 2

a

∂

∂R
, X12 = φs/2+1

a

∂

∂R
,

X13 = Yφs/2+1

a

∂

∂R
,

X14 = Y 2φs/2+1

a

∂

∂Y
.

Also, the first integrals of motion take the form:

I1 = −φ−s

2

(
2a3ωφ̇ − 6a2ȧ fRφ + 4ȧ3 fYφ

)
,

I2 = − RY 2

a

(
4ȧ3 fRY − 6a2ȧ fRR

)

− Y

3a

(
4ȧ3 fYY − 6a2ȧ fRY

)
,

I3 = − R

a

(
4ȧ3 fRY − 6a2ȧ fRR

)

−Y

a

(
4ȧ3 fYY − 6a2ȧ fRY

)
,

I4 = − RY

a

(
4ȧ3 fRY − 6a2ȧ fRR

)

−Y 2

2a

(
4ȧ3 fYY − 6a2ȧ fRY

)
,

I5 = −Y 2

a

(
4ȧ3 fRY − 6a2ȧ fRR

)

− Y

3a
φs/2+1

(
4ȧ3 fYY − 6a2ȧ fRY

)
,

I6 = −φs/2+1

a

(
4ȧ3 fRY − 6a2ȧ fRR

)

−Yφs/2+1

a

(
4ȧ3 fYY − 6a2ȧ fRY

)
,

I7 = −Yφs/2+1

a

(
4ȧ3 fRY − 6a2ȧ fRR

)
,

I8 = −Y 2

a

(
4ȧ3 fRY − 6a2ȧ fRR

)
,

I9 = −1

a

(
4ȧ3 fRY − 6a2ȧ fRR

)
,

I10 = −Y

a

(
4ȧ3 fRY − 6a2ȧ fRR

)
,

I11 = −Y 2φs/2+1

a

(
4ȧ3 fRY − 6a2ȧ fRR

)
,

I12 = −φs/2+1

a

(
4ȧ3 fRY − 6a2ȧ fRR

)
,

I13 = −Yφs/2+1

a

(
4ȧ3 fRY − 6a2ȧ fRR

)
,

I14 = −Y 2φs/2+1

a

(
4ȧ3 fYY − 6a2ȧ fRY

)
.

Here the first integrals can be simplified by substituting the
values of derivatives but the resulting equations are quite
complicated which can not be solved analytically.

3 Noether gauge symmetries for Friedman universe
model

In this section, we shall investigate the existence of Noether
gauge symmetries for Friedman universe model with per-
fect fluid matter contents. For this purpose, we consider
the full symmetry generator (10) along with the point-like
Lagrangian (9) in Eq.(11), we get the following system of
determining equations for Noether gauge symmetries. These
equations are obtained after collecting the coefficients of dif-
ferent derivative product terms of a, R, Y and φ and then
setting them equal to zero.

3a2τ f + 3a2τ R fR + 3a2τY fY + 3a2τV

−3ε2ρ0a
−(3ε+1)τ − 12a fRαt

−6a2 fRRβt − 6a2 fRY γt − 6a2 fRφδt + τa(a
3 f

+a3R fR + a3Y fY + a3V ) + ρ0εa
−3ετa = Ga, (47)

2a3τ fR + a3Rτ fRR + a3Y τ fY R − 6a2 fRRαt

+τR(a3 f + a3R fR + a3Y fY + a3V )

+ρ0εa
−3ετR = GR, (48)

2a3τ fY + a3Rτ fRY + a3Y τ fYY

−6a2 fRYαt + τY (a3 f + a3R fR + a3Y fY + a3V )

+ρ0εa
−3ετY = GY , (49)
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2a3τ fφ + a3Rτ fRφ + a3Y τ fYφ + a3Vφτ

−6a2 fRφαt + 2a3ωδt

+τφ(a3 f + a3R fR + a3Y fY + a3V ) (50)

+ρ0εa
−3ετφ = Gφ, (51)

3a2ω − 6a2τ fRφφ

+6a2 fRφτφ − a3ωτa = 0 (52)

a3 dω

dφ
− a3ωτφ = 0,

−6τ fR − 24

a
fYαt + 6aτa fR

+4 fRYβt + 4 fYY γt + 4 fYφδt = 0, (53)

−18aτ fRR + 12 fRYαt + 6a fRτR + 6a2 fRRτa = 0, (54)

−18aτ fRφ + 12αt fYφ + 6a fRτφ + 6a2 fRφτa = 0,(55)

−6aτ fRY + 12 fYYαt + 6a fRτY + 6a2 fRY τa = 0, (56)

3αa2 f + 3a2Rα fR + 3a2Y fYα + 3a2Vα

−3ε2ρ0αa
−(3ε+1) + a3 fRβ + a3 fRR Rβ + a3Y fRYβ

+(a3 fY + a3R fRY + a3Y fY + a3Y fYY )γ

+(a3 fφ + a3R fRφ + a3Y fYφ)δ

+a3Vφδ + τt (a
3 f + a3R fR + a3Y fY )

+ρ0εa
−3ετt = Gt , (57)

3a2ωα + a3δωφ − 6a2 fRφαφ

+2a3ωδφ − a3ωτt = 0, (58)

−6α fR − 12a fRαa − 6a fRRβ − 6a2 fRRβa

−6a fRY γ − 6a2 fRY γa − 6a fRφδ − 6a2 fRφδa

−18a fRτt = 0, (59)

−12aα fRR − 6a2 fRRαa − 6a2 fRRRβ − 6a2 fRRβR

−6a2 fRYY γ − 6a2 fRY γR − 6a2δ fRφφ − 6a2 fRφδR

−12aαR fR + 6a2 fRRτt = 0, (60)

−12aα fRY − 6a2αa fRY − 6a2 fRRYβ − 6a2 fRRβY

−6a2 fRYY γ − 6a2 fRY γY − 6a2 fRYφδ − 6a2 fRφδY

−12a fRαY + 6a2 fRY τt = 0, (61)

−12aα fRφ − 6a2 fRφαa − 12aαφ fR

−6a2 fRRφβ − 6a2 fRRβφ

−6a2 fRYφγ − 6a2 fRY γφ − 6a2 fRφφδ + 2a3ωδa

−6a2 fRφδφ + 6a2 fRφτt = 0, (62)
6

a2 α fY − 24

a
fYαa − 6

a
β fRY + 4 fRYβa

−6

a
fYY γ + 4 fYY γa − 6

a
fYφδ+4 fYφδa+ 18

a
fY τt =0,

(63)

−18 fYα − 18a fRYβ − 18a fYY γ − 18a fYφδ

−18a fY τt − 36a fYαa + 72a fY τt = 0, (64)

4 fRRYβ + 4 fRYβR + 4 fRYY γ + 4 fYY γR

+4δ fRYφ + 4 fYφδR + 12 fRYαa

−24

a
fYαR − 12 fRY τt = 0, (65)

4 fRYYβ + 4 fRYβY + 4 fYYY γ + 4 fYY γY + 4δ fYYφ

+4 fYφδY + 12 fYYαa

−24

a
fYαY − 12 fYY τt = 0, (66)

4 fRYφβ + 4 fRYβφ + 4 fYYφγ + 4 fYY γφ + 4δ fYφφ

+4 fYφδφ + 12 fYφαa − 24

a
fYαφ − 12 fYφτt = 0, (67)

−6a2 fRRαR = 0, 6a2( fRYαR + fRRαY ) = 0,

6a2 fRφαR + 6a2 fRRαφ − 2a3ωδR = 0, (68)

6a2 fRRτ = 0, 6a2 fRRτ + 72a fYαt R = 0,

−6a2τ fRRR + 6a2 fRRτR = 0, (69)

−12a2τ fRRφ + 6a2 fRRτφ + 6a2 fRφτR = 0,

−12aτ fRY = 0, −6a2τ fRY = 0, (70)

−12a2τ fRRY + 6a2 fRRτY + 6a2 fRY τR = 0,

−6a2τ fRY − 72a fYαt y = 0, (71)

−12a fRτ − 72a fYαat + 36a fY τt t = 0, 3a2ωτ = 0,

(72)

−12a2τ fRYφ + 6a2 fRY τφ + 6a2 fRφτY = 0,

−6a2τ fRYY + 6a2 fRY τY = 0, (73)

−6a2τ fRφ − 72a fYαtφ = 0, −6a2τ fRφ = 0,

−24

a
fY τ + 36a fY τaa = 0, (74)

6

a2 fY τ + 18

a
fY τa = 0,

−6

a
τ fY R + 18

a
fY τR − 12 fRY τa = 0, −6

a
τ fYφ

+18

a
fY τφ − 12 fYφτa = 0, (75)

−6

a
τ fYY + 18

a
fY τY − 12 fYY τa = 0

−18aτ fYY + 54a fY τY = 0,

−18aτ fYφ + 54a fY τφ = 0, (76)

−18aτ fY R + 54a fY τR = 0, −36aτ fY = 0,

−18τ fY − 18a fY τa = 0, 4τ fYφφ − 12 fYφτφ = 0,(77)

4 fYφτ = 0, fRY τ = 0, 12τ fYφ

+72a fY τaφ = 0, 12τ fRY + 72a fY τaφ = 0, (78)

4τ fRYY − 12 fRY τR = 0, 8τ fRYφ

−12 fRY τφ − 12 fYφτR = 0, 4 fYY τ = 0, (79)

8τ fRYY − 12 fRY τY − 12 fYY τR = 0, 8τ fYYφ

−12 fYY τφ − 12 fYφτφ = 0, (80)

12 fYY τ + 72a fY τaY = 0, 4τ fYYY

−12 fYY τYY = 0, fRYαR = 0, fYφαφ = 0,

fRYαY = 0, (81)
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fYYαR + fRYαY = 0, fYφαR + fRYαφ = 0,

fYφαY + fYYαφ = 0, fYYαY = 0, (82)

−6a2 fRφαY − 6a2 fRYαφ + 2a2ωδY = 0,

a3ωτR = 0, a3ωτY = 0, 36a fYαφ = 0, (83)

−36a fYαt t = 0, −36a fYαaa + 72a fY τta = 0. (84)

For solving this system of equations, we consider some spe-
cific cases as we discussed in the last section.

3.1 Model independent of curvature invariant: f (R, φ)

Here we shall explore the solutions of determining equations
(47)–(84) for full Noether gauge symmetry generator. In the
present case, its solution can be written as

α(a) = 0, γ = 0, β(t, a, R, φ)

= (b9R + b7)b10

2a(b7φ + b8)

(
e
(
t+b4
b3

)2 + 1

)√
− b2

e
(
t+b4
b3

)2
,

δ(t, a) = −
b1

(
e
(
t+b4
b3

)2 + 1

)√
− b2

e
(
t+b4
b3

)2

4ab7
,

f (R, φ) = (b5R + b6)(b7φ + b8),

V (φ) = −3b7b5φ

b3
− b7b6φ + 2b5b7b9φ + b10,

G(t, a) = 3

4

[
−b2

(
e
(
t+b4
b3

)2 + 1

)
a2b1

]

b3e
(
t+b4
b3

)2√− b2

e
(
t+b4
b3

)2

. (85)

Here the coupling parameter ω is also turned out to be zero.
The corresponding set of symmetries along with the first inte-
grals of motion can be written as

X1 = 2R

aφ

∂

∂R
, X2 = 2

aφ

∂

∂R
,

X3 = t2R

aφ

∂

∂R
, X4 = t2

aφ

∂

∂R
,

X5 = t R

aφ

∂

∂R
, X6 = t

aφ

∂

∂R
,

X7 = t3R

aφ

∂

∂R
, X8 = t3

aφ

∂

∂R
,

X9 = 1

a

∂

∂φ
, X10 = t2

a

∂

∂φ
,

X11 = t

a

∂

∂φ
, X12 = t3

a

∂

∂φ
(86)

and

I1 = (c13 + c14t
4)
a2

12
− 2R

aφ
(−6a2ȧ fRR + 4ȧ3 fRY ),

I2 = (c13 + c14t
4)
a2

12
− 2

aφ
(−6a2ȧ fRR + 4ȧ3 fRY ),

I3 = (c13 + c14t
4)
a2

12
− t2R

aφ
(−6a2ȧ fRR + 4ȧ3 fRY ),

I4 = (c13 + c14t
4)
a2

12
− t2

aφ
(−6a2ȧ fRR + 4ȧ3 fRY ),

I5 = (c13 + c14t
4)
a2

12
− t R

aφ
(−6a2ȧ fRR + 4ȧ3 fRY ),

I6 = (c13 + c14t
4)
a2

12
− t

aφ
(−6a2ȧ fRR + 4ȧ3 fRY ),

I7 = (c13 + c14t
4)
a2

12
− t3R

aφ
(−6a2ȧ fRR + 4ȧ3 fRY ),

I8 = (c13 + c14t
4)
a2

12
− t3

aφ
(−6a2ȧ fRR + 4ȧ3 fRY ),

I9 = (c13 + c14t
4)
a2

12
− 1

a
(2ωa3φ̇ − 6a2ȧ fRφ + 4ȧ3 fYφ),

I10 = (c13 + c14t
4)
a2

12
− t2

a
(2ωa3φ̇ − 6a2ȧ fRφ + 4ȧ3 fYφ),

I11 = (c13 + c14t
4)
a2

12
− t

a
(2ωa3φ̇ − 6a2ȧ fRφ + 4ȧ3 fYφ),

I12 = (c13 + c14t
4)
a2

12
− t3

a
(2ωa3φ̇ − 6a2ȧ fRφ + 4ȧ3 fYφ).

(87)

Here we have assumed that the arbitrary constants satisfy the
conditions: b4 = 0, b8 = 0 and b2 < 0. It is interesting
to mention here that the symmetry corresponding to energy
conservation can not be recovered in this case.

In case of Noether gauge symmetry, when the function is
independent of curvature invariant term, i.e., f (R, φ), the set
of dynamical Lagrange equations result into the following set
of equations:

a3 fφ + a3R fRφ + a3Vφ − 6a2ȧ Ṙ fRRφ

−6a2ȧφ̇ fRφφ + 12aȧ2 fRφ

+6a2ä fRφ + 6a2ȧ Ṙ fRRφ + 6a2ȧφ̇ fRφφ = 0,

3a2( f + R fR + V ) + 6ȧ2 fR − 3ε2ρ0a
−(1+3ε)

+12aä fR + 12aȧ Ṙ fRR + 12aȧφ̇ fRφ

+6a2φ̈ fRφ + 6a2φ̇ Ṙ fRRφ + 6a2φ̇2 fRφφ = 0,

6a2ȧ Ṙ fRR + 6a2ȧφ̇ fRφ

+6aȧ2 fR + ρ0εa
−3ε + a3( f + R fR + V ) = 0,

Since the form of generic function coming from the existence
of Noether gauge symmetry is given by f (R, φ) = (b5R +
b6)(b7φ + b8), therefore the above equations reduce to the
following forms:

a2( fφ + R fRφ + Vφ) + 6(2ȧ2 fR + aä) fRφ = 0,

a2( f + R fR + V ) + 2ȧ2 fR − ε2ρ0a
−1−3ε

+2aä fR + 2aȧφ̇ fRφ + 6a2φ̈ fRφ = 0.

Solving the above equations for scale factor, we obtain

a(t) = k1e
(
√

2b7b3−3)t√
6b3 + k2e

− (
√

2b7b3−3)t√
6b3
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Likewise, the scalar field take the following form:

φ(t) = e
ut
3 (e

−2ut
3 − 1)(k3 +

∫
zdt);

u =
√

6

b3
(2b7b3 − 3),

where

∫
zdt = b5b7

k3
2

u

√
b3

6
(Aes1t−s2t+s3t (s1 − s2 + s3)

−1

−2Aes1t−s2t+ s3
3 t (s1 − s2 + s3

3
)−1

−2Aes1t−s2t− s3t
3 (s1 − s2 − s3

3
)−1

+Aes1t−s2t+ 5s3
3 (s1 − s2 + 5s3

3
)−1

+Aes1t−s2t−s3(s1 − s2 − s3)
−1

+Aes1t−s2t− 5s3
3 t (s1 − s2 − 5s3

3
)−1

+ερ0k2

√
6

u

{
6b3e

ut
6
√

6 + 12b3e
− ut

6
√

6

+4b3e
− ut

2
√

6 + 2b3e
ut

2
√

6

−6

5
b3e

− 5ut
6
√

6 − 6

7
b3e

− 7ut
6
√

6

})
,

where we have introduced s1 = 12
ub3

, s2 = 8b9
u and s3 = u,

and A = 49k3
2b5b8−32k3

2b9b5b3b8+8k3
2b3b5b8+8k3

2b3b10.
The graphical behavior of the calculated generic function and
scalar field potential is provided in Fig. 14. It is seen that
the scalar field potential is positive and increasing function.
The graphical behavior of expansion factor, scalar field and
cosmic volume is provided in Fig. 15 which indicates that
all these functions exhibit positive and increasing behavior
versus time. Figure 16 provides the positive but decreasing
trend of matter density versus time. Furthermore, it can be
seen that deceleration and effective EoS parameters exhibit
negative behavior versus time. So, it can be concluded that all
these cosmic measures collectively support the accelerated
expanding nature of cosmos.

Next, by replacing the values of derivatives of generic
function, the first integrals can be simplified. It easy to check
that I1 = (c13 + c14t4) a

2

12 and I1 = Ii ; i = 2, 3, . . . , 8.
Likewise, I9, . . . , I12 results into similar equations for scale
factor (as ω = 0). Thus these integrals will provide only the
forms of scale factor while scalar field remains as unknown
quantity. By re-arranging I1, we can get the form of scale

factor as a(t) =
√

12I1
c13+c14t4

. Clearly, scale factor is in power

law form and hence indicates positive increasing behavior for
specific choices of free parameters. Likewise, other quantities
also exhibit cosmological viable behavior and hence can cor-
respond to cosmic expansion. Others integrals can provide

slightly different forms of scale factor exhibiting a similar
behavior.

3.2 Model independent of scalar field: f (R,Y )

Here we shall investigate the solutions of determining equa-
tions for the model independent of scalar field. However, in
this case, the scalar field potential and coupling will be non-
zero. The obtained solutions are given by

α(a) = 0, δ(t, a) = −C1C3C2

aC10
d1

(
1

2
C7t

2

+C8) + C12C7t,

β(t, a, R,Y ) = − ( 1
2C7t2 + C8)d1

a3YeC1(R+Y )
,

γ (t, a, R,Y ) = ( 1
2C7t2 + C8)C9C4C6C11

a3YeC1(R+Y )
,

V (φ) = C5φ + C6,

f (R,Y ) = C2C3e
C1(R+Y ),

G(t, a) = C7t2

2
+ C8. (88)

Further, the set of symmetries and first integrals of motion
can be written as

X1 = t2

a
∂φ, X2 = 1

a
∂φ, X3 = t∂φ,

X4 = − t2

a3Y
∂R + t2

a3Y
∂Y , X5 = − 1

a3Y
∂R + 1

a3Y
∂Y ,

X6 = − t2(R + Y )

a3Y
∂R + t2(R + Y )

a3Y
∂Y ,

X7 = R + Y

−a3Y
∂R + R + Y

a3Y
∂Y (89)

and

I1 =
(
C7

14
t2 + C8

7

)
− t2

a
(2a3ωφ̇ − 6a2ȧ fRφ),

I2 =
(
C7

14
t2 + C8

7

)
− 1

a
(2a3ωφ̇ − 6a2ȧ fRφ),

I3 =
(
C7

14
t2 + C8

7

)
− t (2a3ωφ̇ − 6a2ȧ fRφ),

I4 =
(
C7

14
t2 + C8

7

)
+ t2

a3Y
(−6a2ȧ fRR + 4ȧ3 fRY )

− t2

a3Y
(−6a2ȧ fRY + 4ȧ3 fYY ),

I5 =
(
C7

14
t2 + C8

7

)
+ 1

a3Y
(−6a2ȧ fRR

+4ȧ3 fRY ) − 1

a3Y
(−6a2ȧ fRY + 4ȧ3 fYY ),

I6 =
(
C7

14
t2 + C8

7

)
+ t2(R + Y )

a3Y
(−6a2ȧ fRR + 4ȧ3 fRY )
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Fig. 14 The left and right graphs provide the behavior of function f (R, φ) and scalar field potential for Noether gauge symmetry, ( f (R, φ) case)

Fig. 15 The left, right and down graphs indicate the behavior of expansion radius, scalar field and cosmic volume, respectively, for Noether gauge
symmetry ( f (R, φ) case)
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Fig. 16 The left, right and down plots refer to the behavior of ordinary matter density, deceleration and effective EoS parameters, respectively, for
Noether gauge symmetry ( f (R, φ) case)

− t2(R + Y )

a3Y
(−6a2ȧ fRY + 4ȧ3 fYY ),

I7 =
(
C7

14
t2 + C8

7

)

+ R + Y

−a3Y

(
−6a2ȧ fRR + 4ȧ3 fRY

)

− R + Y

a3Y
(−6a2ȧ fRY + 4ȧ3 fYY ). (90)

By replacing the values of derivatives in these integrals,
it can be easily seen that the resulting equations are quite
complicated and hence analytical solution for scale factor and
scalar field is not possible. The graphical behavior of generic
function and scalar field potential is provided in Fig. 17. Both
these functions exhibit positive and increasing behavior.

3.3 Model independent of Ricci Scalar: f (φ,Y )

In this section, we shall explore the solutions of the deter-
mining equations for the case when the generic function is

independent of Ricci scalar. The corresponding solutions can
be written as

α = β = 0, δ(a) = 2C10C11C12C13C2
4C9

C7
a−3,

γ (a,Y ) = C9C10C11C12C13(Y 2C2
4 − 2)

a3(1 + Y )
,

V (φ) = − C1C7C3φ

2C2
4C9C10C11C12C13

(C8C6e
C7φ) + C15,

f (Y, φ) =
(

−1

2
e
√

2C4 tanh−1(
YC4√

2
)+C5

)
eC7φC8,

G(t, a) = (C1t + C2)C3. (91)

In this case, the set of symmetries and first integral of motion
are given by

X1 = 1

a3

∂

∂φ
, X2 = Y 2

a3(1 + Y )

∂

∂Y
,

X3 = − 1

a3(1 + Y )

∂

∂Y
,
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Fig. 17 The left and right graphs provide the behavior of generic function and scalar field potential for Noether gauge symmetry

I1 = 1

3
(C4t + C5) − 1

a3 (2a3ωφ̇ − 6a2ȧ fRφ + 4ȧ3 fYφ),

I2 = 1

3
(C4t + C5) − Y 2

a3(1 + Y )
(−6a2ȧ fRY + 4ȧ3 fYY ),

I3 = 1

3
(C4t + C5) + 1

a3(1 + Y )
(−6a2ȧ fRY + 4ȧ3 fYY ).

(92)

Similar to the previous case, here the analytical solutions
are also not possible. The graphical behavior of generic func-
tion along with scalar field potential is provided in Fig. 18.

3.4 General model f (R,Y, φ)

Here we shall find the existence of Noether gauge symmetries
through system of determining equations for general function
f (R,Y, φ) depending on all three variables. In this case, the
system yields the following solutions:

α = γ = 0, δ(a) = C8C9

a3 ,

β(a, φ) = − C6C8C9eC3φ

a3(C5 + C6eC3φ)
,

V (φ) = K1φ + C2,

f (R,Y, φ) = C1 ln(Y )(C5 + C6e
C3φ)eC3RC4,

G(t, a) = C6t + C7. (93)

The corresponding set of symmetries and first integral of
motion are given by

X = 1

a3

(
∂

∂φ
− ∂

∂R

)
,

I = (C6t + C7) − 1

a3 (2a3ωφ̇ − 6a2ȧ fRφ − 6a2ȧ fRR

+4ȧ3 fRY ).

Here we have assumed thatC5 = 0, for the sake of simplicity.
Here the resulting first integral also leads to a complicated
differential equation in terms of scale factor and scalar field
which can not be solved for these functions analytically.

4 Summary

Noether and Noether gauge symmetries are considered as one
of the most powerful techniques for determining exact solu-
tions of a complicated dynamical system of differential equa-
tions. In Lagrangian of modified gravity theories, there are
some generic functions present whose exact and significant
forms always pose a challenge for researchers. The search
for a cosmologically viable form of these generic functions
fascinated the researchers to use the technique of Noether
and Noether gauge symmetries and obtain some interesting
new forms. The present paper will provide a significant con-
tribution in this respect. In the present work, we have inves-
tigated the existence of Noether and Noether gauge symme-
tries of flat FRW model using perfect fluid matter contents in a
generalized framework of f (R,Y, φ) theory, where Y repre-
sents curvature invariant Rαβ Rαβ . Generally, a fourth-order
theory of gravity is obtained by adding higher-order curva-
ture invariant terms namely Rαβ Rαβ and Rαβγ δRαβγ δ in the
standard Einstein Hilbert action [79,80]. However, it is now
established that the term Rαβγ δRαβγ δ can be ignored by using
the Gauss-Bonnet theorem [81]. This theory is different from
other available modifications of GR in the sense that these
theories involve only Ricci scalar, along with either scalar
field, potential as well as its kinetic term or higher-order
derivatives of scalar field are added like Horndeski theory. In
the present work, we have considered the framework involv-
ing higher-order curvature invariant term (which is the basic
and distinct feature) along with scalar field kinetic term and
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Fig. 18 The left and right graphs provide the behavior of generic function and scalar field potential for Noether gauge symmetry

it’s potential. This theory is recently proposed and found to
be very interesting and successful in discussing some cos-
mic issues. This theory can be reduced to f (R, φ) gravity if
Y = 0 and also, by taking its specific form f (R, φ) = Rφ,
simple BD theory can be recovered. In some sense, one
can conclude that this theory is the extension of general-
ized Brans-Dicke theory with the inclusion of higher-order
curvature invariant. Up to our knowledge, this is first work
on the subject within this extended gravity.

In this work, we have first evaluated simple Noether sym-
metries and then explored full Noether gauge symmetries
and evaluated the corresponding conserved quantities. It is
interesting to mention here that the present work is quite gen-
eral in the sense that second-order prolongation of symmetry
generator have applied as the Lagrangian involves second-
order derivative term even after applying partial integration.
Up to our knowledge, no such work is available in litera-
ture where the second-order prolongation have been consid-
ered for obtaining symmetries and exact cosmological solu-
tions. We have further formulated the second-order Euler-
Lagrange equations and the corresponding Hamiltonian. It
have been seen that the resulting equations are quite compli-
cated and hence difficult to solve. By imposing the condition
for Noether and Noether gauge symmetries existence, we
have found the corresponding system of determining equa-
tions. Since, these are quite long systems whose solutions
are difficult to find, therefore we have assumed some specific
cases of generic function f (R,Y, φ) along with constant and
power law coupling of scalar field. In graphical analysis, we
have considered simple values of integration constants and
other free parameters (like 0 or 1). The results can be sum-
marized as follows:

• For simple Noether symmetry case, we have obtained
symmetries, conserved quantities and corresponding

exact solutions using first integrals and Euler-Lagrange
equations. It has been observed that the exact solutions
can be obtained only for some simple cases. For f (R, φ)

case, we have obtained exact solutions using dynamical
equations. The scale factor and scalar field both turned
out to be in exponential form. In order to discuss cos-
mology generated by these solutions, we have explored
different cosmic measures like cosmic volume, ordinary
matter density, deceleration and effective EoS parameters
as well as snap and jerk parameters graphically. It is seen
that scale factor, scalar field and cosmic volume exhib-
ited positive and increasing behavior versus time. More-
over, deceleration parameter along with effective EoS
showed negative behavior (particularly, it corresponds to
phantom phase) and hence supported to the accelerated
expanding nature of our cosmos. The graphs of ordinary
matter density showed positive but decreasing behavior
indicating a less dense universe in later cosmic epochs.
From the plot of snap and jerk parameters, it can be seen
that the curve is passing through a point (s, r) = (0, 1)

which is indicating that the obtained exact model has
a correspondence with standard �CDM cosmic model.
By using the first integrals, we have also found analyti-
cal form of scale factor using power law choice of scalar
field. From the graphical behavior of scale factor and
cosmic volume, it can be concluded that these measures
support to phenomenon of cosmic acceleration. The same
conclusion can be drawn from the plot of effective EoS
parameter which exhibited negative behavior (particu-
larly, refers to quintessence or phantom phases). For the
power law choice of coupling parameter, the obtained
scale factor also showed positive and increasing behav-
ior and hence similar conclusions can be drawn in this
case;
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• For F(R,Y ) case, we have found and listed non-trivial
symmetries along with conserved quantities. It is seen
that only numerical solutions can be obtained in this
case as the Euler-Lagrange equations and first integrals
resulted in quite complicated differential equations in
terms of scale factor. For the constant coupling case,
we have solved this differential equation (first integral)
numerically and it is seen that obtained scale factor also
indicated positive increasing behavior versus time. For
the F(φ,Y ) case, we have found exact solutions using
power law form of scalar field for both constant and power
law scalar field coupling. It is seen that graphical behav-
ior of scale factor and effective EoS parameter refers
to expanding cosmic nature. It is worthwhile to men-
tion here that these solutions exhibit the �CDM era. We
have also discussed possible constraint on free parame-
ters using deceleration parameter q < 0. Also, the values
for which the obtained model can show correspondence
with �CDM model have also been provided using snap
and jerk parameters;

• It has been argued that quadratic term R2 or its higher-
order give rise to strong gravity [82–84] and predict an
over production of scalarons in the very early universe.
Also, the inclusion of R−1 term in GR action results in
the field equations which naturally produce the observed
cosmological acceleration [85,86]. In the present work,
obtained f (R, φ), f (R,Y ), f (Y, φ) and f (R,Y, φ)

generic functions are either in some type of polynomial
(involving negative or positive powers of R. Y or φ), or
in exponential or natural logarithm form. It is argued that
quadratic potential V ∼ φ2 is widely used in the dis-
cussion of chaotic inflationary models [49,87]. It would
be worthwhile to mention here that in majority of the
discussed cases of present work, the scalar field poten-
tial turned out to be quadratic in nature. Further, in some
cases, it have been seen that by constraining the value
of parameter α, the early radiation and matter domi-
nated eras of cosmos can be discussed. In these cases,
the deceleration parameter is turned as a positive quan-
tity and therefore, in these cases, early cosmic epochs can
be explained. For example, it has been pointed out that
in f (Y, φ) case, the deceleration parameter is found to
be q = 2 representing Zel’dovich universe model (stiff
matter);

• For general F(R,Y, φ) case, we have listed the non-
trivial symmetries and conserved quantities but the exact
solutions are not possible due to the complexity of result-
ing dynamical equations and first integrals.

• In Noether gauge symmetry case, the same cases of
generic functions have been taken into account. It is seen
that in each case, both τ and scalar field coupling ω turned
out to be zero and consequently, energy conservation law
can not be recovered in these cases. For F(R, φ) func-

tion, we have found the non-trivial symmetries, non-zero
gauge function and first integrals of motion. In this case,
exact solutions are also obtained using Euler-Lagrange
equations and first integrals. From the graphical behavior
of these solutions, it is seen that expansion factor, cosmic
volume and scalar field indicate positive and increasing
behavior which is in accordance with the expanding cos-
mic nature. Also, the negative behavior of deceleration
parameter and effective EoS (provided phantom cosmic
epoch) also affirmed the accelerated cosmic expansion
in this case. For other cases, we have evaluated the non-
trivial symmetries and corresponding conserved quanti-
ties only as the exact solutions were not possible to be
found due to complicated system of differential equa-
tions.

There are many works available in literature on the subject
using Lagrangians involving either curvature invariants or
higher-order derivatives of scalar field. Like, Motavali et al.
[49] and Sharif and Waheed [50] explored the existence of
Noether gauge symmetries using FRW spacetime by con-
sidering the curvature correction term μ0

R or induced gravity.
These cases can be considered as sub cases of our work where
one can fix f (R, φ) = φ(R − μ0

R ) or f (R, φ) = φ2R and
Y = 0. They have investigated the cosmology generated by
the exact solutions obtained by scaling/dilatational symme-
tries and interpolation method (numerical approach). In liter-
ature [88,89], Noether symmetry analysis have been applied
to some general frameworks involving higher-order curva-
ture corrections namely �R (without scalar field) or F(R,G)

generic function, where some anstaz were taken into account
like F(R,G) = f0Rn + g0Gm and F(R,G) = f0RnGm ,
with n and m as real numbers. Similarly, Frasat [71] inves-
tigated the existence of Noether symmetries for flat FRW
model in f (R, φ, χ) theory (where φ and χ denote the scalar
field and its kinetic term, respectively) and found the scale
factors by taking different ansatz for f (R, φ, χ) function and
discussed it graphically which indicated expanding behavior
versus cosmic time but no further graphical illustration of
other important cosmological measures like effective EoS
parameter, deceleration parameter, statefinders etc. was pro-
vided. Likewise, Massaeli et al. [90] found exact solutions by
taking ceratin assumptions in Horndeski theory and explored
the possible constraints on free parameters using effective
EoS parameter only which turned out as a constant quan-
tity in each case. In [72], Capozziello et. al. discussed the
Noteher symmetries for flat FRW model using Horndeski
theory but their primary objective was just to provide clas-
sification of solutions and hence no cosmological discus-
sion was provided. In the present work, we have solved the
system of determining equations in a general way without
assuming any ansatz for generic function f (R,Y, φ) or field
potential V (φ). In fact, we proposed their forms by solving
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system of determining equations where we have considered
two cases of scalar field coupling parameter ω(φ) and full
phase space {t, a, φ, R,Y }. So, our work not only specifies
the new forms of generic function and scalar field potential
but also further provides the exact solutions for the obtained
Lagrangian forms. It would be worthwhile to check the exis-
tence of non-trivial symmetries and possibility of exact solu-
tions for Bianchi type models in this non-minimally coupled
curvature and scalar field theory.
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5 Appendix

q = −aä

ȧ2 , r = q + 2q2 − q̇

H
, s = r − 1

3(q − 1/2)
,

ρe f f = 1

fR
(ρm + ρd) pef f = 1

fR
(pm + pd),

ρd = 1

κ2

(
1

2
(R fR − f ) − 1

2
ω(φ)φ̇2 − 3H ḟR

−6H(2Ḣ − 3H2) ḟY − fY (
...
H + 4H Ḧ

+6Ḣ H2 − 2H4) − V (φ)

2

)
,

pd = 1

κ2

(
1

2
( f − R fR)

−1

2
ω(φ)φ̇2 − f̈ R + 2H ḟR + 4H(Ḣ + 3H2) ḟY

+ fY (4
...
H + 20H Ḧ + 10Ḣ H2 + 16Ḣ2 − 18H4)

+V (φ)

2

)
.
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