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Abstract We have re-analysed the lattice QCD calculations
of the 3-quark potentials by: (i) Sakumichi and Suganuma
(Phys Rev D 92(3), 034511, 2015); and (ii) Koma and Koma
(Phys Rev D 95(9), 094513, 2017) using hyperspherical vari-
ables. We find that: (1) the two sets of lattice results have only
two common sets of 3-quark geometries: (a) the isosceles,
and (b) the right-angled triangles; (2) both sets of results are
subject to unaccounted for deviations from smooth curves
that are largest near the equilateral triangle geometry and
are function of the hyperradius – the deviations being much
larger and extending further in the triangle shape space in
Sakumichi and Suganuma’s than in Koma and Koma’s data;
(3) the variation of Sakumichi and Suganuma’s results brack-
ets, from above and below, the Koma and Koma’s ones; the
latter will be used as the benchmark; (4) this benchmark result
generally passes between the Y- and the �-string predictions,
thus excluding both; (5) three pieces of elastic strings joined
at a skewed junction, which lies on the Euler line, reproduce
such a potential, within the region where the data sets agree,
in qualitative agreement with the calculations of colour flux
density by Bissey et al. (Phys Rev D 76, 114512, 2007).

1 Introduction

Soon after the inception of Quantum Chromodynamics
(QCD) Mandelstam [1,4], ’t Hooft [2] and Nambu [3] sug-
gested the formation of narrow color-electric flux tubes as the
mechanism of confinement. This suggestion has since been
essentially confirmed by lattice QCD in two-body (QQ̄) sys-
tems. But, its extension to three quarks allows two possibili-
ties: the Y-string and the �-string, with the topologies of the
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corresponding letters. The question of which type of string
best describes the three-quark confinement potential in QCD
has been open ever since.

In spite of three decades of efforts in lattice QCD, [5–
11], the functional form of the three-heavy-quark potential
remains unknown. Even the two most recent calculations
[10,11] have drawn incompatible conclusions. It must be
emphasized that the analyses of all of the above lattice calcu-
lations used only single-variable fitting - three-body poten-
tials depend on three independent variables, however.

A three-variable analysis naturally leaves more lattitude in
the interpretation of lattice results. Consequently, the devia-
tions (“error bars”) may – and indeed do – turn out larger than
in a single-variable analysis. In Refs. [12,13] we re-analysed
the lattice data from [10,11] in terms of three hyperspherical
variables, and in the present Letter we compare them for the
first time. This re-analyses graphically shows how different
the chosen geometries were between the two calculations.
There are only two (small) subsets of 3-quark geometries
that are common to both [10] and [11]: (a) the isosceles, and
(b) the right-angled triangles.

Our re-analyses showed that both calculations suffer
from significant, unaccounted for deviations (“effective error
bars”) from smooth potential curves in the same region of
triangle shape space: near the equilateral triangle configura-
tion. In this region, the two string potentials, the Y and the
�, are indistinguishable.1 We do not attempt to explain these
(enhanced) deviations here – for these are a matter for the
original authors. At any rate, these two are the latest state-
of-the-art calculations. The deviations are much smaller and
the resulting potential curves smoother in [11] than in [10].
The resulting functional form of [11] is generally within the

1 It is not the errors relative to the difference that are large here, but the
absolute errors.
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deviations of [10], i.e., [11] curve may be viewed as the con-
verged result, within two (small) subsets of their common
3-quark geometries: (a) isosceles, and (b) right-angled trian-
gles. Here the “converged” data pass between the Y- and the
�-string predictions, thus excluding both. We re-iterate that
the above statement is subject to the above proviso that in
certain regions of shape space, both sets of results are sub-
ject to unaccounted for deviations from smooth curves that
are largest near the equilateral triangle point in shape space.

In a different line of enquiry, Bornyakov et al. [14] calcu-
lated and graphically displayed the geometrical distribution
of the color-flux density among three static quarks. In the
equilateral triangle configuration three flux tubes meet at the
unique triangle center, but in asymmetrical triangle config-
urations Bissey et al. [15] showed that this three-tube junc-
tion moves and stays away from the Fermat–Torricelli center
required by the Y-string, thus leaving many open questions.

As stated above, we showed that neither the Y-string
nor the �-string model form acceptable descriptions of the
lattice data [10,11]. The lattice three-static-quark potential
extracted from the small overlap of Refs. [10,11] agrees
with the potential resulting from three pieces of elastic string
joined together at a skewedY-junction, which lies on the Euler
line, but is displaced from the Fermat–Torricelli center in the
direction pointing away from the barycenter of the triangle.
This skewed Y-string model is also in qualitative agreement
with the results of the lattice calculation of SU(3) color flux-
tube configurations connecting three static quarks, or SU(3)
sources, by Bissey et al [15], and thus offers a potential end
to this long-standing dilemma.

2 Lattice QCD data

The two calculations have several important differences
in implementation: Koma and Koma used a 244 lattice at
β = 6.0 with a lattice spacing a = 0.093 fm, 221 three-
quark geometries and only one gauge configuration, using
the “multilevel algorithm” technique and the Polyakov loop;
Sakumichi and Suganuma did theirs using the Wilson loop at
two β values: (a) β = 5.8 on 163 × 32 lattice (a = 0.148(2)

fm) and (b) β = 6.0 on 203 × 32 lattice (a = 0.1022(5)

fm), with 1000–2000 gauge configurations, and 101 and
211 three-quark geometries, respectively. The Sakumichi and
Suganuma study [10] may be viewed as an update on the
Takahashi et al. study [9] made some 13 years earlier: their
choices of geometries, and the methods are quite similar, as
are the conclusions.

Because of the differing implementations, the studies have
different systematic and statistical error bars. The error bars
estimated by the original authors have sometimes turned out
insufficient to cover the apparent deviations from smooth
continuous curves, particularly in the region near the equi-

lateral configuration, see Sect. 4.2. That is a matter for the
original authors to (re)consider, however; we neglect such
troublesome regions of shape space.

Our strategy is to compare the two studies [10] and [11] on
a common baseline by (re)expressing both data sets in terms
of three-body hyperspherical coordinates. We then compare
the results in the regions of common shape-space – where the
studies used three-quark triangles of the same shape, though
not necessarily of the same size.

We then compare the two sets of extracted data against
the predicted Y-string and �-string potentials to see if and
when, they agree, within their differing error bars, and if they
suggest the Y-string or the �-string model explanation.

3 Hyper-spherical coordinates

In the hyper-spherical coordinate system, a three-quark sys-

tem is described by the hyper-radius, R=
√

1
3

∑3
i< j (ri−r j )2,

which is proportional to the root-mean-square distance of
the three particles from their geometrical barycenter and
thus denotes the size of the system and two hyper-spherical

angles, α = arccos
(

2|ρ×λ|
ρ2+λ2

)
and φ = arctan

(
2ρ·λ

ρ2−λ2

)
, or

the (x, y) coordinates in the equatorial plane x =
(

2ρ·λ
ρ2+λ2

)

and y =
(

ρ2−λ2

ρ2+λ2

)
, which define the shape of the three-quark

triangle. Here ρ = 1√
2
(r1 − r2), λ = 1√

6
(r1 + r2 − 2r3) are

the Jacobi relative vectors.
The hyperradius R scales linearly, R → λR, with λ

under dilations/contractions of spatial coordinates ri → λri
(i = 1, 2, 3) and thus measures the size of the system; the
two dimensionless (“shape”) hyperangles, or some functions
thereof, see appendix A. The scaling symmetry properties
reflect only on the hyperradius, whereas the permutation
symmetry reflects only on the φ hyperangular dependence.

Hyper-spherical coordinates have four key advantages

over the binary separations ri j =
√

(ri − r j )2 as the three-
body variables of choice: Firstly, all of the symmetries of the
system are accounted for. Secondly, hyper-spherical coordi-
nates allow simple equations to be written to define the func-
tional form of quark confinement potential, see appendix A.
Thirdly, hyper-spherical coordinates allow the size depen-
dence of the quark confinement potential to be separated
from its shape dependence because the confining potential
is homogenous. Fourth, permutation-adapted hyperspherical
coordinates graphically display the dynamical symmetry of
the Y-string potential, see Appendix A.

The advantages of hyper-spherical coordinates allow the
results from [10] and [11] to be compared, in spite of their
differing lattice sizes. The standard Ansatz, [5–11,19–21] for
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(a)

(b)

(c)

Fig. 1 Distributions of 3q configurations: a Ref. [10] β = 5.8 data; b
Ref. [10] β = 6.0 data; and c Ref. [11] β = 6.0 data. The color code
denotes the number of different sizes for an identical configuration. Note
the small overlap, and the complementarity of the chosen geometries in
Refs. [10] and [11]

the three-quark potential V in QCD

Vdata(α, φ, R) = − A(α, φ)

R
+ B(α, φ)R + C, (1)

henceforth referred to as the Coulomb+Linear potential,
is readily implemented in these variables, and the size-
dependence of the confining potential B(α, φ)R is removed;
here − A(α,φ)

R is the Coulomb part, B(α, φ)R is the confining
part and C is a constant term.

4 Re-analysis

4.1 Method

At fixed values of shape variables (α, φ), the functions
A(α, φ), B(α, φ) and C(α, φ) are (unknown) constants. In
order to determine their values we have fitted the equilateral
triangle data. With these constants fixed at one point in the
shape-space, we can subtract the well-known Coulomb V f it

Coul
and constantC f it term in all of shape-space (see appendix B),
and be left with the confining potential V ∗(x, y)R = Vdata −
V f it

Coul − C f it .
The distributions of Sakumichi and Suganuma’s, as well

as of Koma and Koma’s three-quark geometries, represented
as points in the shape-space disc, are shown in Fig. 1. Note
the complementarity of the two sets, and the small overlap
regions – two mutually orthogonal straight lines in one ele-
mentary “pizza slice” cell – between the two sets of chosen
geometries.

The two data sets have been defined in terms of a common
hyper-spherical coordinate system and a subset of points has
been selected where the two data sets have geometric overlap.
Results of Refs. [10] and [11] can now be compared to each
other and to the Y-string and �-string predictions.

4.2 Results

We showed in Ref. [12] that Koma and Koma’s [11] lat-
tice results yielded a continuous, generally smooth functional
dependence along these two (orthogonal) lines in the shape-
space disc. In Ref. [13] we subjected Sakumichi and Sug-
anuma’s lattice data [10] to the same analysis as Koma and
Koma’s [11] in Ref. [12], with somewhat less convincing
conclusions: the deviations from a unique, smooth curve are
larger than in [11]. Nevertheless, the data in Ref. [10] show
a marked improvement over the data in Ref. [9] in terms of
reduced deviations.2

2 We analysed the Takahashi et al. [9] data at the same time as the Koma
and Koma’s [11] one, but did not publish the results, as the deviations
from a continuous curve were too large. We talked about these findings
at the 2018 NFQCD meeting at Kyoto [22].
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The hyperangular dependences of Sakumichi and Sug-
anuma’s [10] and Komas’ [11] confinement potentials are
shown in Figs. 2 and 3 next to each other, so as to facilitate
comparison. The first impression is unfavourable: Sakumichi
and Suganuma’s isosceles data show large deviations from a
smooth curve between −0.4 ≤ y ≤ 0.3 at β = 5.8 (Fig. 2a),
and between −0.4 ≤ y ≤ 0.7 at β = 6.0 (Fig. 2b). A cor-
respondingly large deviation in Koma and Koma’s isosceles
data appears only below y ≤ −0.4 (Fig. 2c), however.

The right-angled triangle data of Ref. [10], on the other
hand, shows similar deviations (only) in the −0.3 ≤ x ≤ 0.3
at β = 5.8 (Fig. 3a), and between −0.7 ≤ x ≤ 0.7 at
β = 6.0 (Fig. 3b). A corresponding deviation in Ref. [11]
right-triangle data appears only above |x | ≥ 0.75 (Fig. 3c).
Note that in all cases the deviations of Ref. [10] data bracket
those of Ref. [11].

One may therefore view Ref. [11] as having superior accu-
racy to that of Ref. [10].3 Consequently, we shall use Ref.
[11] as the benchmark result.

The discerning reader will also notice the hyper-radial
dependence of the above bounds in Figs. 2, 3. Our interac-
tive web site [24] allows the interested reader to change the
value(s) of the hyperradius R, and thus select the data to be
observed through filters of one’s own choice.

Note that the benchmark data consistently fall between
the �-string prediction (upper, blue) and the Y-string predic-
tion (lower, green) in the aforementioned region. It ought to
be clear that neither the Y- nor the �-string can adequately
describe the present lattice data.

5 Interpretation: skewed junction Y-string

This unexpected result calls for an interpretation in terms of
an elastic string model. We define an infinite class of skewed
Y-string potentials:

Vsk.Y = σsk.Y

3∑
i=1

|xi − x0(α)| (2)

whereby three pieces of elastic string are joined at a junction,
x0(α), defined as

x0(α) = xF.T.
0 + α�x0. (3)

Here α ∈ (−∞,+∞) is a free parameter such that the
barycenter xCM

0 = x0(α = −1) corresponds to α = −1:, and
the Fermat–Torricelli center xF.T.

0 = x0(α = 0) corresponds

3 Such large deviations did not propagate into the single-variable anal-
ysis completed by the original authors. We do not wish to speculate
about possible explanations of this fact, but it should be clear that this
region appears to require at least a re-analysis of error bars.

(a)

(b)

(c)

Fig. 2 Extracted values of the hyperangular part of the confining poten-
tial V ∗(x, y) = 1/R[Vdata − V f it

Coul − C f it ] for isosceles triangles
(x = 0.5): a β = 5.8, Ref. [10]; b β = 6.0, Ref. [10]; c β = 6.0,
Ref. [11]. The black points correspond to all values of size R, whereas
the red ones correspond to sizes R ≥ 7. The blue lines represent the
�-string prediction, the green lines the Y-string
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(a)

(b)

(c)

Fig. 3 Extracted values of the hyperangular part of the confining poten-
tial V ∗(x, y) = 1/R[Vdata − V f it

Coul − C f it ] for right triangles (y = 0):
a β = 5.8, Ref. [10]; b β = 6.0, Ref. [10]; c β = 6.0, Ref. [11].
The black points correspond to all values of size R, whereas the red
ones correspond to sizes R ≥ 7. The blue lines represent the �-string
prediction, the green lines the Y-string

to α = 0. Thus the junction lies on the Euler line,4 defined
by the vector �x0

�x0 = xF.T.
0 − xCM

0

= 1

2l2Y

√
3

2

(
V + W × A

|ρ × λ|
)

(4)

where

V = λ(λ2 − ρ2) − 2ρ(ρ · λ) (5a)

A = ρ(λ2 − ρ2) + 2λ(ρ · λ) (5b)

W = ρ × λ (5c)

l2Y = 3

2
(ρ2 + λ2 + 2|ρ × λ|) (5d)

The junction determined by the lattice data is displaced from
the Fermat–Torricelli point of the triangle in the direction
away from the barycenter, i.e., at positive α > 0. Any point
on the Euler line may be used as a junction of three strings,
within a subset of the shape-space disc. This region of appli-
cability of a string potential is determined by the position of
the center at which the strings have their junction, and how
the position of the center changes with the triangle shape.
Of course, in an equilateral triangle all centers coincide. As
a triangle shape becomes more obtuse, some of its centers
move outside the triangle. When a center moves outside the
boundary of the triangle, it stops being acceptable as a junc-
tion of three strings. The exit point on the boundary inherits
the property of being the junction.

We find that such a string model potential can fit the data
in Figs. 2 and 3 , i.e., the lattice results of both [10] and [11],
though the spread of the data does not, as yet, allow a more
precise determination than α 	 0.5 ± 0.2.

The direction of the displacement of the junction from
the Fermat–Torricelli center is well established, however, as
being opposite to the barycenter. This leads to a reduction
of the value of the critical angle, down from 120◦, which is
sufficient to show that this elastic string model is in qualitative
agreement with the results of the lattice calculation of SU(3)
color flux-tubes connecting three quarks by Bissey et al. [15],
who found flux-tubes in the shape of letters L and T, i.e., with
a critical angle of 90◦.

6 Discussion

The displacement of the three-string junction from the
Fermat–Torricelli point is perhaps the least expected fea-

4 The Fermat–Torricelli center of a triangle is one of many – the
barycenter, the inscribed center, the circumscribed center being but a
few examples – all of which lie on the Euler line. As each such center
is defined in a permutation-symmetric way the resulting potential Eq.
(2) is also permutation symmetric.
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ture of three-quark confinement. Neither Bissey et al. [15],
who observed it first, nor anyone thereafter has offered an
explanation of the T- and L-letter-shaped flux tubes.

To be fair, de Forcrand and Jahn [17] suggested a theoreti-
cal scenario wherein a transition from the �-string, holding at
shorter distances, to the Y-string holding at longer distances
would take place at separations of around 0.8 fm. Putting
aside, for the time being, theoretical arguments against this
scenario advanced in Ref. [16], see also Appendix A, we note
that there is no evidence for such a transition taking place in
the data shown in Fig. 5, nor in any of the results in Refs.
[10,11].

Of course, our conclusions are only as good as the data
they are based on, which left a number of things to be
desired, so we can only re-iterate that the deviations from
continuous curves must be ironed out. Therefore, all fur-
ther checks, including refutations, corroborations and refine-
ments by future lattice QCD studies will be welcome. A
straightforward check would have to contain both sets of
geometries (isosceles and right-angled) used so far, at as
many different hyper-radii as possible, whereas a refinement
would include new type(s) of geometries, again at least at
four different values of hyper-radius.

Our result, if correct, has consequences for three-quark
spectroscopy and the confinement potential for multiquark
systems:

1. in baryon spectroscopy the three-quark force leaves a
clear signature in the second odd-parity, and higher shells
of baryon resonances, and even there only in a few select
states [25–27]. However, these three-quark force effects
can easily be confused with relativistic effects. Therefore
the shifted junction is not likely to be observed soon in
heavy baryon spectroscopy.

2. The displacement of the three-string junction from the
Fermat–Torricelli point would dramatically influence the
binding energies and confinement properties of multi-
quark systems. This is because in systems of four or
more quarks the Y-string is replaced by a Steiner tree
[28], which should be distorted due to the skewness of
the junction.

Our results open new questions: firstly, what is the pre-
cise position of the string junction for three-quarks at zero
temperature? Secondly, what happens to this junction at non-
zero temperatures? Thirdly, what are the Casimir scaling
properties of the confining 3-body potential? How does the
three-body potential depend on the color SU(3) multiplet to
which the three bodies belong? It has been suggested [29]
that the color SU(3) dependence should be the symmetric
structure constants dabc, but that implies its vanishing for

self-conjugate multiplets, such as the octet, which would be
a dramatic effect.
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Appendix A: Y- and �-string potentials in the isosceles
and right-angled configurations

The string, Coulomb and the CM-string potentials are defined
in terms of x and y as below:

V�(x, y)

= σ�

(
r12(x, y) + r23(x, y) + r13(x, y)

)
(A1)

VY (x, y)

= σY

√
3

2

(
1 +

√
|1 − (x2 + y2)|) (A2)

VCM (x, y)

= σ1b

(
r1(x, y) + r2(x, y) + r3(x, y)

)
(A3)

VCoulomb(x, y)

= K

(
1

r12(x, y)
+ 1

r23(x, y)
+ 1

r13(x, y)

)
(A4)

where

r23(x, y)
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Fig. 4 The l.h.s. panel a the � (red) and Y-string (green) potentials in the right-angled triangle configurations. r.h.s. panel b The � (red) and
Y-string (green) potentials in the isosceles triangle configurations

= R

√
1 +

(√
x2 + y2

)
sin

(π

6
− arctan

( y

x

))

= R

√
1 + x − √

3y

2
(A5)

r13(x, y)

= R

√
1 +

(√
x2 + y2

)
sin

(π

6
+ arctan

( y

x

))

= R

√
1 + x + √

3y

2
(A6)

r12(x, y)

= R

√
1 −

√
x2 + y2 cos

(
arctan

( y

x

))

= R
√

1 − x (A7)

Note that this can be simplified using the identities

sin
(π

6
− arctan

( y

x

))
= x − √

3y

2
√
x2 + y2

cos
(π

6
− arctan

( y

x

))
= y + √

3x

2
√
x2 + y2

r1(x, y) = R

√
1

3

(
1 −

√
x2 + y2 cos

(π

6
+ arctan

( y

x

)))

= R

√
1

3

(
1 + 1

2

(
y − √

3x
))

(A8)

r2(x, y) = R

√
1

3

(
1 −

√
x2 + y2 cos

(π

6
− arctan

( y

x

)))

= R

√
1

3

(
1 − 1

2

(
y + √

3x
))

(A9)

r3(x, y) = R

√
1

3

(
1 +

√
x2 + y2 cos

(
arctan

( y

x

)))

= R

√
1

3
(1 + x) (A10)

The above Eq. (A2) for the Y-string potential shows that
it depends only on (x2 + y2). Converted into permutation-
adapted hyperspherical coordinates, this explicitly shows that
VY depends only on the hyperangle α, and not on the hyper-
angle φ, i.e., that the Y-string potential has an O(2) dynam-
ical symmetry, which is not shared by the �-string potential
[16,18]. This fact puts these two potentials into two distinct
universality classes, in the sense of phase transitions in sta-
tistical mechanics, meaning that one cannot change one into
another without a discontinuity in at least one variable [16].

We need the formulae for the Y- and �-string potentials
in the isosceles and right-angled configurations in terms of
(x, y) coordinates. We can choose one of three permutations;
we shall use the “simplest” parametrization: (1) isosceles
y = 0; (2) right-angled triangles x = − 1

2 .
Therefore, the isosceles potentials are

V�(x, y = 0) = σ�R

(√
1 − x + 2

√
x

2
+ 1

)
(A11)

VY (x, y = 0) = σY R

√√
1 − x2 + 1√

2
(A12)

and the right-angled triangles ones are

V�(x = −1

2
, y) = σ�R

(√
1

2

(
−√

3y − 0.5
)

+ 1

+
√

1

2

(√
3y − 0.5

)
+ 1 +

√
3

2

)
(A13)

VY (x = −1

2
, y) = σY R

√
1 + √

0.75 − y2

2
(A14)
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(a) (b) (c)

Fig. 5 Fit (blue solid line) to lattice data for the potential energy (red points) in the equilateral triangles configuration as a function of hyperradius
R, using the Coulomb+linear Ansatz at a β = 5.8 Ref. [1]; b β = 6.0 Ref. [1]; c β = 6.0 Ref. [2]

Table 1 Our and Sakumichi and Suganuma’s (from Table II in (1)
fitted constants in the 3-quark potential for equilateral triangles: the
Coulomb coefficient A = 3A3Q , the string tension B, and the constant

C = C3Q . Error bars are in parentheses – note the substantial difference
in the error bars of our fitted values and those in Ref. [1]

Name Afit Bfit Cfit ASak BSak CSak

Sak β = 5.8 0.381(77) 0.166(6) 0.951(53) 0.357(9) 0.168(2) 0.93(1)

Sak β = 6.0 0.297(42) 0.088(2) 0.884(26) 0.363(9) 0.081(2) 0.936(9)

Figure 4 shows the � and Y-string potentials in the right-
angled and the isosceles triangle configurations. Note that the
difference is generally small (only about 2% in the isosce-
les right-angled configuration (Fig. 4a), except near the end-
point y = −1 (where the two-body collision singularity
resides) where it grows to 50 % (i.e. the l� = 2lY is twice
the Y-string length).

Appendix B: Fitting the lattice data with the Coulomb+
Linear Ansatz

We used the fixed equilateral triangle geometry with multiple
sizes to fit the three free couplings A, B, C, see Table 1, to
the data, see Fig. 5.

Note that the error bars of the Coulomb (A) and the con-
stant term (C) are substantial: ranging from 21% for A, and 5
% for C, to only 2.4 % for the string tension B. This suggests
that the (total) error bars in Ref. [10] were sometimes sig-
nificantly underestimated, particularly in the Coulomb cou-
pling. To be fair, we note that Koma and Koma [11] had also
found a 26% variation of the Coulomb coupling over var-
ious spatial configurations. This suggests that the issue of
Coulomb coupling leaves definite space for improvements,
such as inclusion of as yet unknown generalizations of the so-

called Lüscher term [30] in three-quark configurations.5 We
close with the (obvious) comment that such 1/R corrections
are immaterial for confinement potential.
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26. V. Dmitrašinović, I. Salom, Phys. Rev. D 97, 094011 (2018)
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