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Abstract At finite temperature, the stable equilibrium
states of coupled two-component Bose Einstein condensa-
tions (BECs) with the same conformal mass in both non-
rotating and rotating condition can be obtained by studying
its real dynamics via holography. The equilibrium state is the
state where the free energy reaches the minimum and does
not change any more. In the case of no rotation, the spatial
phase separated states of the two components become more
stable than the miscible condensates state when the direct
repulsive inter-component coupling constant η > ηc > 0.
Under rotation, the quantum fluid reveals four equilibrium
structures of vortex states by varying the η from the miscible
region to the phase separated region. Among the four struc-
tures, the vortex sheet solution is the most exotic one that
appears in the phase separated region.

1 Introduction

The gauge-gravity duality [1–3] which relates strongly inter-
acting quantum field theories to theories of classic gravity
in higher dimensions has provided a new scheme, which can
not only study strongly interacting condensed matter systems
in equilibrium [4,5], but also study the real time dynamics
when the system is far away from equilibrium [6–10]. Also,
Schwinger-Keldysh propagators from AdS/CFT correspon-
dence [11–14] has been studied in details in order to compute
the real-time n-point functions from the partition function
in the bulk. The first proposed model of a single compo-
nent holographic superfluid/BEC was given in [15–17]. The
array of vortices is known to happen in a rotating superfluid
[18], which has been obtained in holography by studying the

Wei-Can Yang and Chuan-Yin Xia contributed equally to this work.

a e-mail: hbzeng@yzu.edu.cn (corresponding author)

full dynamics of the single component holographic super-
fluid/BEC in a rotating disk as the final time-independent
solutions [19,20], while single vortex has been obtained in
the same system as a static solution in the presence of rota-
tion without the dynamic process [21–26]. Besides the super-
fluid/BEC with only one order parameter, a two-component
superfluids/BECs with two coupled order parameters have
become one of the most concerned topics in condensed mat-
ter physics, since it demonstrates novel quantum states which
can not be observed in a single component system as con-
firmed in the frame work of two-component G–P equations
[27]. The two components Ψ1 and Ψ2 are coupled through
the direct coupling term η|Ψ1|2|Ψ2|2. In the case of no rota-
tion, the two-component BECs will enter a spatial separation
state due to the repulsive interaction η > 0 between the two
components [28–31]. In the presence of rotation, by solving
the time dependent two-component Gross–Pitaevskii (G–P)
equations where the two scalars have the same mass and
the same intracomponent interaction, the equilibrium vortex
structures can be obtained after a long time revolution, which
reveal rich structures by varying the direct coupling between
the two components [32]. Asη increase the interlocked vortex
lattices undergo phase transitions from triangular to square,
to double-core lattices, and eventually develop vortex sheets
[33]. Vortex sheet is a state that the vortices are aligned to
make up winding chains of single quantized vortices, and
the chains of two components are interwoven alternately, or
form as the cylindrical vortex sheets. Such a solution was
proposed for the first time by Landau and Lifshitz [34] and
has been observed experimentally in 3He A [35]. Vortex sheet
has proved to be an important physical object with nontrivial
topology, which has many physical applications [36].

Though the rotating single component superfluid has been
studied thoroughly in holography, the holographic study on
a rotating two component superfluid is still lacking. The pur-
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pose of this article is to study the equilibrium properties of
strongly coupled two component BECs with and without
rotation by using the holographic method. Indeed, contin-
uous phase transition can not happen in 1D and 2D since
the divergent fluctuation will destroy the long range corre-
lation. However, the holographic model we used is in the
large N limit while the fluctuations are suppressed, also
the size of the system is much larger than the correlation
length, we are not thinking of the holographic finite size
effect [37] in the present work. The equilibrium states can
be obtained by evolving the system from an initial homoge-
neous superfluid state under the disturbance of rotation or
small fluctuation. Our treatment is very similar to the cal-
culation of the time-dependent two-component G–P equa-
tion, where the static solution is also obtained as the final
state that no longer changes with time anymore [32,33].
When there is no rotation, the phase separation states was
studied in detail for different temperatures and different val-
ues of coupling constants. We found that the phase sepa-
ration states tend to occur in the case of low temperature
and relatively high inter-components direct repulsive inter-
action, while Josephson coupling always prevents the system
from phase separation. Under rotation, by turning off Joseph-
son coupling, the holographic superfluid reveals four vortex
structures corresponding to different direct coupling values
between two components. The four structures include tri-
angle lattice, square lattice, vortex stripe and vortex sheet.
Vortex sheet solution is the result of phase separation. The
vortex diagram in the intercomponent direct coupling η ver-
sus rotation-frequency Ω is also be obtained, which is similar
to the simulation results of the two-component G–P equation
[33]. Because of the nonlinear nature of the bulk theory, we
will have to rely on numerical methods by solving a highly
nonlinear partial differential bulk equations of motion.

This paper is organized as follows. Section 2 introduces
the holographic superfluid model with two condensations, the
equations of motion (EoMs) of the model and also the numer-
ical method we adapted to solve the EoMs. Section 3 dis-
cusses the properties of the two-component system without
rotation and the phase separation state is obtained with a large
repulsive inter-components coupling. Section 4 presents the
appearance of exotic vortex phases of the two-component
system under rotation, and the vortex phase diagram is also
obtained. The dynamic process of vortex evolution and cor-
responding free energy properties are also studied. Section 5
is devoted to the some discussions.

2 Holographic model and the time evolution equations
of motion

The holographic model we use is a bottom-up construction
contains two coupled charged scalar fields living in an AdS

black hole background, which is an extension of the single
component holographic superfluid model proposed in [16].
The action include two charged scalar fields and one U (1)

gauge field [38]

S =
∫

d4x
√−g

[
− 1

4
F2 −

2∑
j=1

(|DΨ j |2 + m2
j |Ψ j |2)

+V (Ψ1, Ψ2)

]
, (1)

the inter-component coupling potential between the two
charged scalar fields takes the form

V (Ψ1, Ψ2) = η|Ψ1|2|Ψ2|2, (2)

where η is called the direct coupling. Note that the interac-
tion potential takes the same form as the G–P equations for
coupled two-component superfluid [32,39,40]. In the holog-
raphy, there is another more complex model dual to a two-
component superfluid with two gauge fields corresponding
to two charged scalar fields respectively [41,42].

Also in the action, Fμν = ∂μAν − ∂ν Aμ, Dμ = ∂μ −
iq Aμ with q the charge. The metric of the AdS4 black hole
background adopts Eddington-Finkelstein coordinates,

ds2 = �2

z2 (− f (z)dt2 − 2dtdz + dr2 + r2dθ2). (3)

in which � is the AdS radius, z is the AdS radial coordinate
of the bulk and f (z) = 1 − (z/zh)3. Thus, z = 0 is the
AdS boundary while z = zh is the horizon; the Hawking
temperature is T = 3/(4π zh). r and θ are respectively the
radial and angular coordinates of the dual 2 + 1 dimensional
boundary, which is a disk that suitable to study the properties
of the two- component superfluid under rotation.

The axial gauge Az = 0 is adopted as in [7,17]. Near
the boundary z = 0, by choosing that m2

1 = m2
2 = −2, the

general solutions take the asymptotic form as,

Aν = aν + bνz + O(z2), (4)

Ψ j = Ψ 1
j z + Ψ 2

j z
2 + O(z3). (5)

j = 1, 2, the coefficients ar,θ can be regarded as the super-
fluid velocity along r, θ directions while br,θ as the conjugate
currents [21]. Coefficients at and bt are respectively inter-
preted as chemical potential μ and charge density ρ in the
boundary field theory. Moreover, Ψ 1

j is a source term which

is always set to be zero, Ψ 2
j is the vacuum expectation value

〈Oj 〉 of the dual scalar operator in the boundary in the spon-
taneous symmetry broken phase. As the simplest case we set
m2

1 = m2
2, there is a discrete symmetry upon interchange of

the two charged scalars. Such a discrete symmetry was also
considered in the two-component G–P equations simulations
[32,33].
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We take the superfluid interpretation of the holographic
model, where the rotation is introduced by imposing the
Dirichlet boundary condition for gauge fields on the bound-
ary as [17,22]

aθ = Ωr2, (6)

where Ω is the constant angular velocity of the disk and aθ is
the superfluid velocity along the θ direction. Since the system
is only given rotational speed, and that the superfluid is con-
fined to the container, so there is no radial velocity (ar = 0).
In another word, the disk in the simulation should be static
in the inertial frame, but the superfluid rotates relative to the
disk with an angular velocity. Then the picture is that the disk
is static while the superfluid is rotating, or equivalently we
treat the superfluid as static while the disk is rotating. The
radius of the boundary disk is set as r = R. The Neumann
boundary conditions ∂r hi = 0 are adopted both at r = R
and r = 0, where hi represents all the fields except aθ .

Without loss of generality we rescale � = zh = q = 1.
Therefore, by scaling Ψ j = ψ j z and using the axial gauge
that Az = 0, the equations of motion (EoMs) can be written
as

∂t∂zψ1 = 1

2

{
− ηψ1|ψ2|2 + i

[
ψ1∂z At + 2At∂zψ1 − ψ1∂r Ar

+ 2Ar ∂rψ1 − ψ1∂θ Aθ + 2Aθ ∂θψ1

r2

]

+
[
(1 − z3)∂2

z − 3z2∂z + ∂2
r + ∂2

θ

r2 − z − A2
r − A2

θ

r2

]
ψ1

}
, (7)

∂t∂zψ2 = 1

2

{
− ηψ2|ψ1|2 + i

[
ψ2∂z At + 2At∂zψ2 − ψ2∂r Ar

+ 2Ar ∂rψ2 − ψ2∂θ Aθ + 2Aθ ∂θψ2

r2

]

+
[
(1 − z3)∂2

z − 3z2∂z + ∂2
r + ∂2

θ

r2 − z − A2
r − A2

θ

r2

]
ψ2

}
, (8)

∂2
z At = −2�(ψ∗

1 ∂zψ1 + ψ∗
2 ∂zψ2) + ∂z∂r Ar + ∂z∂θ Aθ

r2 , (9)

∂t∂z Ar = �(ψ∗
1 ∂rψ1 + ψ∗

2 ∂rψ2) − Ar (|ψ1|2 + |ψ2|2)

+ ∂z∂r At

2
+ ∂2

θ Ar − ∂r∂θ Aθ

2r2 + (1 − z3)∂2
z − 3∂z

2
Ar , (10)

∂t∂z Aθ = �(ψ∗
1 ∂θψ1 + ψ∗

2 ∂θψ2) − Aθ (|ψ1|2 + |ψ2|2)

+ ∂r∂θ Ar − ∂2
r Aθ + ∂z∂θ At

2
+ (1 − z3)∂2

z − 3∂z

2
Aθ . (11)

The EoMs are solved numerically by the Chebyshev spec-
tral method in the z, r direction, while Fourier decomposition
is adopted in the θ direction. The time evolution is simulated
by the fourth order Runge–Kutta method. The GPU com-
puting is used to speed up the calculation. The initial state
at t = 0 is always chosen to be a homogeneous solution
for fixed η when there is no rotation, which can be obtained
by solving the time independent EoMs by fixing a chemical
potential μ with the Newton–Raphson method. The solutions

are considered to be the equilibrium states when the norm of
changes of all fields become smaller than 10−5 for sufficient
long time interval. Practically, a solutions at later time t is
used to minus the solutions at t − δt , when the maximum of
the change of the solution become smaller than 10−5 for a
time interval (δt = 100). In order to verify whether its sta-
bility, random perturbation of the order ψ ∗ 10−2 is added
to the order parameter. Then the system starts to evolve and
will return to the same stable state in a short time, which is
the state before the perturbation was added. The solution can
remain unchanged at t = 20,000 and beyond, so we think
we attained a stable solution.

There is critical value μc(η) above which the two scalar
fields will condense with the same value as a result of the dis-
crete symmetry between the two components. From numerics
we found that μc(0) ∼ 4.07, then the dimensionless critical
temperature is T 0

c = 3
4πμc(0)

= 0.0587. Turning on the direct
coupling η from − 0.5 to 0.5 will not alter the critical tem-
perature, though a positive/negative η will reduce/increase
the value of order parameter a bit. In all the dynamic simula-
tion we set T = 0.82T 0

c , at which for every combination of
− 0.5 ≤ η ≤ 0.5, the system always have a stable homoge-
neous solution with the two components have the same value
of order parameter.

3 Phase separation and the effect of η

Phase separation is an inhomogeneous solution that the two
condensates do not overlap spatially. The immiscible state
can be more stable than the miscible state with a lower free
energy, which is a result of the repulsive interaction between
the two condensations when the positive η is large enough
and can be seen from the potential Eq. (2). Such an inhomoge-
neous stable solution can be obtained by solving the full time
dependent equation. At initial time the system is in a homo-
geneous and miscible state with Ψ1 = Ψ2 at fixed η, such
a homogeneous state might be a metastable state which can
evolve to a final stable inhomogeneous state, which will not
change in time anymore, the real ground state. Without rota-
tion, it is more convenient to adopt the Cartesian coordinate
rather than the polar coordinate in the boundary theory, the
metric is then ds2 = �2

z2 (− f (z)dt2 − 2dtdz + dx2 + dy2).
To study the phase separation just in x direction, we take
the assumption that all fields are functions of t, z, x . At the
boundary, we use periodic boundary conditions. To quantita-
tively describe the spatial overlap of the two condensations,
we define an integral

χ =
∫ L

0
dx

|〈O1(x)〉||〈O2(x)〉|
|〈Oh〉|.2 , (12)
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Fig. 1 a, b The overlap factor χ as a function of η. c, d The configura-
tion of 〈O1(x)〉 (black line) and 〈O2(x)〉 (red line) in a phase separated
phase

where 〈Oh〉 is the corresponding homogeneous order param-
eter at t = 0 and the length of the x-axis is L = 50. The
system size L has no effect on the properties.

If χ = 1, system shows no phase separation, and it stays
in the initial homogeneous state. Otherwise, if χ 	 1, it
would be fair to say the system shows phase separation. In
the intermediate case, the system is partially phase-separated
and partially phase-mixed. In Fig. 1a, we show that at three
different temperatures, the overlapping integral χ as a func-
tion of η. The increase of χ along temperature when η = 0.5
indicates that the system is harder to enter the phase sepa-
ration phase, agrees with the increased correlation length of
both condensations when T is approaching Tc. Two samples
of 〈O1,2〉 of a separated phase are illustrated in Fig. 1b, c.
We tried to interchange the solutions of Ψ 1 and Ψ 2, and
then substituted them into the equations to continue the sim-
ulation. We found that the solutions are still stable, so the
solutions we obtained satisfy the commutative symmetry in
the action. Such an exotic immiscible state has been experi-
mentally observed in a two- [43] and a three- [44] component
quantum fluid. In addition, the phase separated state can also
be obtained from a holographic first order phase transition in
an inhomogeneous black holes [45,46].

4 Exotic vortex phases under rotation and phase
diagram

In this section we are going to discuss the dynamics of the
two-component BECs under rotation and also the phase dia-
gram of final equilibrium vortex. We think of a physical
process that begin with a stable homogeneous configuration
without rotation corresponding to a fixed temperature (which

can be obtained by solving the time independent EOMs by the
Newton–Raphson method). Then, by applying the boundary
condition Eq. (6), we increase the superfluid velocity along
the θ direction to make the system suddenly rotate. The added
velocity will drive the system to evolve and finally enter a
stable state. To illustrate the stability of the long time static
static states, one can also compute the free energy F of the
system. We are working in the probe limit, which means that
the fixed back ground black hole plays the role of a heat
reservoir.

The temperature of the superfluid is fixed, then the free
energy of the probe superfluid can evolve to the lowest value.
At a fixed temperature, F can be computed from the renor-
malized on-shell action Sren , which consists of two parts So.s.
and Sc.t.. Then one can get that F = T Sren = T (So.s.+Sc.t.).
So.s. is the bare on-shell action obtained by subtracting the
equation of motions from (1) and Sc.t. = −∑2

j=1

∫
dtdrdθ√−γΨ jΨ

�
j |z=0 is the term to remove the divergence near

the boundary z = 0, in which γ is the determinant of the
reduced metric. Therefore, the form of the renormalized on-
shell action is

Sren = −1

2

∫
dtdzdθ

[
1

r
Aθ ∂r Aθ

]
|r=R

+1

2

∫
dtdrdθ

⎡
⎣r

⎛
⎝ − atbt + 1

r2 aθbθ

+
2∑
j=1

(Ψ 1�
j Ψ 2

j + Ψ 2�
j Ψ 1

j )

⎞
⎠

⎤
⎦

+
∫

dtdzdrdθ [3η|Ψ1|2|Ψ2|2]

+ iq

2

∫
dtdzdrdθ

[
r

z4 Aμ

2∑
j=1

(Ψ �
j ∂

μΨ j

−Ψ j∂
μΨ �

j ) − 2iq Aμ|Ψ j |2
]

(13)

In the presence of rotation, focusing on the case when the
holographic two-component superfluid is at a temperature
T = 0.82T 0

c , development of vortex lattices from t = 0 to
the final equilibrium state at t = 2000 for R = 20 , Ω = 0.1
and η = −0.2 are shown in the above two rows of Fig. 2a.
The Fig. 2b shows the dynamics for the average value of
order parameters 〈O1〉 and 〈O2〉. After t 
 1500, the two
averages are equal and do not change any more. The bottom
row of Fig.2 shows the time evolution of the corresponding
free energy (F−Fn)/T , in which Fn is the free energy in the
normal state, i.e., Ψ j = 0. In the regime 30 � t � 100 the
system is in a high free energy metastable state. At time t 

100 the free energy begins to decrease, and at the same time
the vortices begin to form at edge of the disk. After t � 200,
when vortices have fully formed and gradually move into the
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Fig. 2 a The dynamical formation of two-component vortex lattice at
separate times with R = 20 , Ω = 0.1 and η = −0.2. The temperature
is T = 0.82T 0

c . The top row is component 〈O1〉 and the second row
is component 〈O2〉. b The time evolution of average value of order
parameter. c The time evolution of rescaled free energy under the same
parameters as above

inner of the disk and align to the lattice structure, we can see
the system is in a equilibrium state with constant lower free
energy. Until the final square lattice is formed, the free energy
always stays at this minimum, which confirms the stability
of the final structure. Also in [47], the time dependent “free
energy” was also plotted in the vortex dynamics in a type II
superconductor under a periodic magnetical field.

Through the dynamic evolution of vortex under differ-
ent coupling constants, we found several kinds of vortex
phases. By increasing the inter-component interaction η from
− 0.6, the system will approach the phase separated regime.
Then the interlaced lattices are expected, where vortices in
either component are filled by the other component. The
sum of 〈O1〉 and 〈O2〉 is found to be an approximate con-
stant with small fluctuation, this is the holographic realization
of Thomas-Fermi distribution. In Fig. 3a–c, by increasing η

from − 0.6 we see triangular lattices (− 0.6 ≤ η ≤ − 0.45),
square lattices (− 0.45 ≤ η ≤ − 0.1) and vortex stripes
(− 0.1 < η < 0.05). The square lattice is stable, presumably
due to the fact that each vortex in one component can have

Fig. 3 Four typical vortex phases at T = 0.82T 0
c and the correspond-

ing radial profiles of 〈O1,2〉 in the θ = π/2 direction: a η = −0.6,Ω =
0.1. b η = −0.2,Ω = 0.1. c η = −0.05,Ω = 0.1

all its nearest-neighbor vortices to be in the other component
[48].These various structures are similar to that obtained by
two component G–P equations [33].

In a classical turbulence, the vortex sheet is a thin interface
across which the tangential component of the flow velocity is
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Fig. 4 Two typical perfect vortex sheet solutions and the correspond-
ing radial profiles of 〈O1,2〉 averaged in the θ direction at T = 0.82T 0

c :
a η = 0.2,Ω = 0.15. b η = 0.2,Ω = 0.3

discontinuous. In quantum fluid, Landau and Lifshitz firstly
proposed the vortex sheets scenario in rotating superfluid
[34], almost at the same time when Feynman published his
paper on quantized vortices in superfluid. A quantum vortex
sheet solution is that the vorticity concentrated in line with
the irrotational circulating flow stay between them. A typical
picture of vortex sheet can be found in Fig. 1 of a review paper
[36], where the vortices concentrated in circles with a uni-
form distance between the circles. As a novel quantum state,
the vortex sheet had never been observed in superfluid 4He.
However, vortex sheet has been observed in chiral superfluid
3He-A since it can be stable due to the confinement of the
vorticity within the topologically stable solitons [35], which
may has many physical applications. The other candidate to
demonstrate vortex sheet is a quantum fluid with repulsive
two order parameters, because the phase separation naturally
provides a region of vanishing order parameters of one com-

0.05 0.1 0.15 0.2 0.25 0.3 0.35
2

4

6

8

d
-2.5 -2 -1.5

ln

0.8

1

1.2

1.4

1.6

ln
 d

1.8

Fig. 5 (Top): the sheet distance d as a function of Ω on a Ω − d plot:

d = 1
0.95 Ω− 2

3 . (Bottom): the sheet distance d as a function of Ω on a
Log–Log plot. The straight line is the best fit to ln d = a ln Ω + b with
a = − 0.655 ± 0.027 and b = 0.060 ± 0.048

ponent and filled by the other component. Under rotation,
the nucleated vortices merge to form a winding sheet struc-
ture like serpentine instead of forming a periodic lattice. As
shown in Fig. 4, in the phase separation region η > 0.05
(see the line corresponding to 0.82T 0

c in Fig. 1a), we find
the expected exotic vortex sheet solutions. The vortices of
the 〈O1〉 are located at the region of the domains of 〈O2〉
component. This can be understood from the fact that the
condensate of one component works as a pinning potential
for the vortices in the other component due to the phase sepa-
ration nature [33]. By forming vortex sheets, the condensate
achieves remarkable phase separation compared to a lattice.
Furthermore, the vortex sheets nearly uniformly fill the disk,
and the distance d between the layers are equal.

According to the calculation by Landau and Lifshitz [34],
the distance d between sheets is determined by the surface
tension σ of the soliton and the kinetic energy of the counter-
flow (vn − vs) outside the sheet, where vn is the normal fluid
velocity and vs is the vortex-free superfluid velocity. In unit
volume, the counterflow energy is 1

d

∫ 1
2ρs(vn − vs)

2dy =
ρsΩ

2d2

6 , and the surface energy is σ
d , where ρs is the superfluid

density, which can be obtained from the conjugate current
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Fig. 7 Vortex number of both components vs. angular velocity Ω .
The straight line is the best fit to N = aΩ where a = 272.78 with
error = 1.05%. The temperature is fixed to be T = 0.82T 0

c

Jθ = ∂z Aθ |z=0, as [21]

ρs = Jθ
(∇arg[Ψi ])θ − Aθ

, (14)

where Aθ = 1
2ρ2Ω and the denominator (∇arg[Ψi ])θ − Aφ

is the gauge-invariant superfluid velocity along the angular
direction.

By the minimization of energy, one obtains

d =
(

3σ

ρsΩ2

) 1
3

. (15)

We confirm that the formula also hold in a two-component
superfluid, a sample result when η = 0.2 is plotted in Fig. 5.

We show in Fig. 6 the profile of ρs in the x-direction for
the vortex sheet case η = 0.5. ρs of one component has
a constant value where the other one vanishes, we take the
constant value of superfluid density in the Landau’s equation,
then σ can be written as σ = 1

3 (
ρs

0.95 )3.

Fig. 8 Ω − η phase diagram of the vortex states, where � symbolize
triangular lattice, � symbolize square lattice, × stripe vortex and ◦
vortex sheet lattice

As another important properties of superfluid, the Feyn-
man linear relation [18] between the excited vortex numbers
and angular velocity in one component superfluid may can
naturally generalizes to a two-component superfluid as

N j = MjΩR2, (16)

where N represents the number density of vortex and M is
the atomic mass of BECs. Since the discrete symmetry upon
interchange of the two charged scalars, the vortices numbers
of the two components are expected to be the same. In the
holographic model we also investigated the validity of the
Feynman relation in the two-component system and found no
deviations from it, also the numbers for the two components
are the same, N1 ≈ N2. A sample result is given in Fig. 7 for
η = 0.2, R = 20. By fitting we can get the value of the mass
M1 = M2 = 0.6820. We also computed the cases where R is
15, 20, 22, 25, the linear Feynman relations between rotating
velocity and vortices still holds and we got that M is equal to
0.67, 0.68, 0.7, 0.69 respectively. This means that the radius
has no effect on the vortices number density as confirmed in
the single component superfluid under rotation [19].

At last, we investigate the phase diagram of the vortex
structures in the intercomponent direct coupling η versus
rotation-frequency Ω as plotted in Fig. 8. The upper limit
of the rotation frequency is set by Ω = 0.1 while the bottom
limit is set by Ω = 0.05. The diagram show a transition from
triangular lattices to square lattices and then stripe and sheet
for all angular velocities. The triangle lattices locate at the
region when the coupling constant η is negative, where the
two components prefer to attract each other. Keep increasing
η to zero, square lattices appear and the vortices arrange in
line then the vortex stripes appear at η = 0. When η > 0.05,
where is the region of phase separation, it always presents a
sheet solution, that shows that the sheet solution under rota-
tion is a result of phase separation.
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5 Discussions

In order to study the properties of rotating multi-components
BECs, a two-components Einstein–Maxwell–Higgs model
defined in a fixed black hole background is used while the
charged scalars and gauge fields are just a probe to the grav-
ity background. The probe limit corresponds to neglecting
the effect of the bulk stress–energy due to the scalar field
and gauge fields on the space-time geometry. In the dual
fluid, this corresponds to neglecting the effect of the super-
fluid condensate on the normal component of the fluid [7,8].
We don’t consider the effect of the superfluid onto the nor-
mal fluid. So our hypothesis is similar to the G–P equation, in
which vortex lattice and phase separation do not occur in nor-
mal fluid components. Furthermore, it is extremely important
to extend present work to the back-reaction case, as long as
we are going to study the how the dynamics change as we
incorporate the back reaction of the superfluid on the nor-
mal component and also the change of condition for “phase
separation”.

The vortex phase diagram obtained from AdS/CFT corre-
spondence in the simulation are very similar to that shown
in the two-component GP equations [32,33], the similarities
include also four vortex states and also the phase transitions
from triangular lattices to square lattices, to double-core lat-
tices, and eventually develop vortex sheets. The results can
also related to some experiments, for example, in ref [48],
the interlaced square lattice similar to Fig. 3b was observed.
Also in the same experiment, the vortex core size of the inter-
locked are bigger than the one of single component, which
we can also observe in Fig. 3. The sheet solution is expected
in the highly separated region, which may can be observed
experimentally in a two-component BECs with tunable inter-
component interactions, which can be deeply in a phase sep-
arate region [49,50]. The two species are of the same mass,
then the vortex core size are the same as shown in Figa. 3
and 4. Using of different masses for the two components then
the discrete symmetry upon interchange of the two charged
scalars will not be reserved, one will realize a coexistence
system of vortices with different vortex-core sizes, then the
lattice structure shown in this work may be changed, which
deserves to be studied in future.
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