
Eur. Phys. J. C (2021) 81:26
https://doi.org/10.1140/epjc/s10052-021-08837-y

Special Article - Tools for Experiment and Theory

Van der Meer scan luminosity measurement and beam–beam
correction

Vladislav Balaguraa

Laboratoire Leprince-Ringuet (LLR), CNRS/IN2P3, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

Received: 15 December 2020 / Accepted: 30 December 2020 / Published online: 15 January 2021
© The Author(s) 2021

Abstract The main method for calibrating the luminos-
ity at Large Hadron Collider (LHC) is van der Meer scan
where the beams are swept transversely across each other.
This beautiful method was invented in 1968. Despite the hon-
ourable age, it remains the preferable tool at hadron colliders.
It delivers the lowest calibration systematics, which still often
dominates the overall luminosity uncertainty at LHC exper-
iments. Various details of the method are discussed in the
paper. One of the main factors limiting proton–proton van der
Meer scan accuracy is the beam–beam electromagnetic inter-
action. It modifies the shapes of the colliding bunches and
biases the measured luminosity. In the first years of operation,
four main LHC experiments did not attempt to correct the bias
because of its complexity. In 2012 a correction method was
proposed and then subsequently used by all experiments. It
was based, however, on a simplified linear approximation of
the beam–beam force and, therefore, had limited accuracy.
In this paper, a new simulation is presented, which takes into
account the exact non-linear force. Depending on the beam
parameters, the results of the new and old methods differ by
∼ 1%. This needs to be propagated to all LHC cross-section
measurements after 2012. The new simulation is going to be
used at LHC in future luminosity calibrations.

1 Van der Meer scan

1.1 Calibration methods

An absolute value of the luminosity or the cross section can
be measured at an accelerator by separating the beams in the
transverse plane and performing the so-called van der Meer
scan [1]. To illustrate the idea, let us consider the collision
of two bunches with N1,2 particles moving in the opposite
directions. If the first bunch is separated by −�x , −�y in
the plane perpendicular to the beams, the average number
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of interactions μ with the cross section σ normalized by the
number of particles is

μ(�x, �y)

N1 N2
= σ

L

N1 N2

= σ

∫∫
ρ1(x2 + �x, y2 + �y)ρ2(x2, y2)dx2 dy2,

(1.1)

where the subscript “2” of the coordinates x2, y2 refers to the
stationary second beam, L is the integrated luminosity and
ρ1,2(x2, y2) are the normalized transverse particle densities
of the unseparated bunches when �x = �y = 0. For exam-
ple, if ρ1(x, y) is a delta-function δ(x, y), the shifted density
δ(x + �x, y + �y) peaks at −�x,−�y (note the minus
sign). Integration over �x and �y drastically simplifies (1.1)
since∫

ρ1(x2+�x, y2+�y)ρ2(x2, y2)dx2 dy2 d�x d�y=1,

(1.2)

as can be easily proved by substituting x1 = x2 +
�x, y1 = y2 + �y. In the new variables the integrals∫∫

ρ1(x1, y1)dx1 dy1 and
∫∫

ρ2(x2, y2)dx2 dy2 decouple
and reduce to unity by definition.

From (1.1) and (1.2) we obtain van der Meer formula

σ =
∫∫

μ(�x, �y)

N1 N2
d�x d�y. (1.3)

The ratio

μsp = μ/N1 N2. (1.4)

is often called the “specific” number of interactions. Their
total number accumulated during the scan,

∫∫
μspd�x d�y,

gives σ .
Though van der Meer method is well known, the formula

(1.3) is sometimes reduced in the literature to the Gaussian
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bunch densities or the case when μsp is distributed indepen-
dently in x and y, discussed in the next section. Here, we
present the method in its full generality. This is required, in
particular, for explaining the novel two-dimensional scans
[2], which will probably be in wide use at LHC in Run 3.
After analyzing van der Meer scans for several years, the
author tries to share the accumulated experience on various
calibration details in the first half of the paper. The discussion
is concentrated on the general method and its accuracy but
not on the detector effects varying from one luminometer to
the other. The second half of the paper is fully devoted to the
beam–beam electromagnetic interaction, which is one of the
main factors limiting the accuracy.

The derivation of (1.3) uses only μsp but not μ or N1,2

separately. Therefore, it remains valid even if μ and N1 N2

change arbitrarily but proportionally during the scan, e.g.
due to a gradual decrease of beam currents with time. It is
required, however, that ρ1,2 remain constant.

Equation (1.3) can also be understood from other but
equivalent perspective. The transverse movements of the first
bunch smear and“wash out” its profile ρ1, so that effec-
tively it becomes constant ρ̄1. This reduces the compli-
cated overlap integral to

∫∫
ρ̄1ρ2dx2 dy2 = ρ̄1, i.e. to unity

ρ̄1 = ∫
ρ1d�x �y = 1 if ρ1,2 are normalized. Equiva-

lently, the scan can be viewed from the transverse position
of the first beam i.e. in the coordinates x1, y1. Then the
first beam is stationary while the second moves. In this case
ρ2(x1 − �x, y1 − �y) is “washed out” by �x, �y move-
ments, and the overlap integral reduces to

∫
ρ1dx1 dy1 = 1

and drops out as before.
To make a parallel translation of one beam in one trans-

verse direction, one needs 4 magnets placed at the corners
of the trapezoid-like beam trajectory. Therefore, to steer two
beams in two directions one needs 4 × 2 × 2 = 16 mag-
nets per one interaction point. It is not easy to synchronize
precisely all of them and ensure a parallel translation of the
beams with constant speeds. Therefore, the scan, e.g. at LHC,
is performed not “dynamically” using the single continuous
pass, but stepwise. I.e. the function μsp(�x, �y) is mea-
sured only in the predefined set of discrete points and inter-
polated between them or fitted to some analytic function to
get the final integral. In moving the beams from one point
to the next, one waits when the slowest magnet reaches it is
desired current value, and only then the luminosity measure-
ment starts.

This beautiful method was invented by van der Meer more
than 50 years ago for the ISR accelerator [3]. It was proposed
for Spp̄S [4], successfully applied with various modifica-
tions at RHIC [5,6] and LHC [7–18]. The method delivered
a record accuracy between 0.7% and a few percent.

At e+–e− colliders van der Meer method is biased by
strong beam–beam interactions. The luminosity is usu-
ally measured “indirectly” by counting Bhabha scattering

e+e− → e+e− events, which have a high cross-section pre-
cisely known from quantum electrodynamics. Contrary to
that, in the collisions of non-elementary hadrons it is dif-
ficult to find a physical process with accurately predicted
cross-section and convenient for the detection. In the hadron
accelerators, the best accuracy is achieved by measuring the
luminosity “directly” using its definition (1.1).

At LHC, which will only be discussed in the following,
in addition to van der Meer scans there are two alternative
direct methods of the luminosity calibration. They utilize
precise vertex detectors. The first is the so-called beam–gas
imaging [19]. Here, the profiles ρ1,2(x, y) of the bunches are
“revealed” in their interactions with a tiny amount of gas in
the beam pipe. One effectively records the bunch “photos”
using the vertex detector as a “camera” and the gas as a
“film”. Unfolding the images with the vertex resolution yields
ρ1,2 densities. To improve the accuracy, one also uses the
high statistics profile of the “luminous region” formed by
the interactions of two bunches. This provides a powerful
constraint on the product ρ1ρ2. The overlap integral is then
calculated analytically from the reconstructed ρ1,2 densities.
This method is used up to now only at LHCb [8,11], which
has a dedicated gas injection system [20], an excellent vertex
detector and a flexible trigger suitable for recording beam–
gas interactions.

The second method is called the beam–beam imaging [21].
It is very similar, but the role of the gas plays another beam
effectively “smeared” by the transverse movements in van der
Meer scan. After sweeping e.g. the first bunch, it effectively
becomes a wide and uniform “film” independently of the
initial ρ1 distribution. It allows making a “photo” of ρ2 with
high statistics. Alternatively, the same vertex distribution data
can be viewed from the transverse position of the first bunch,
where it is effectively stationary. The accumulated image
gives a “photo” of ρ1 “filmed” by smeared ρ2. In the original
van der Meer approach the smearing allows integrating over
�x �y and reducing the overlap integral

∫
ρ1ρ2 dx dy to

unity. In the beam–beam imaging the same integration is
applied to the luminous region profile, i.e. to the product
ρ1ρ2 not integrated over dx dy, and allows reconstructing
the individual densities ρ1,2.

Up to now, the beam–beam images were taken at LHCb
[8] and CMS experiments [22]. Since in both imaging meth-
ods the overlap integrals are calculated from the measured
vertex distributions, they have different systematic errors and
are complementary to the “classical” van der Meer approach
where the vertex distributions are ignored. All three methods
might achieve similar levels of accuracy. The imaging meth-
ods are more complicated, however, because they require a
deconvolution with the vertex resolution comparable to the
transverse bunch widths. Due to the simplicity and suffi-
ciency of the classical van der Meer technique, it remains
the main tool of the luminosity calibrations at LHC.
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1.2 X–Y factorization

It is impossible to guide particles exactly parallel to a beam
axis. Therefore, in any accelerator the optic elements are
designed such that the particles going away from the axis are
sent back and in the end “oscillate” in the transverse plane.
This creates the transverse bunch widths and determines the
density profiles ρ1,2. In more detail this will be discussed
in Sect. 3.1. To ensure stable operation, the accelerator is
designed such that the oscillatory motions are separately sta-
ble in the transverse coordinates x and y and are almost inde-
pendent of each other. Any “coupling” between the coordi-
nates could create extra resonances in the oscillatory motions
and, therefore, should be avoided. The bunch densities can
often be factorized into x- and y-dependent parts:

ρ1,2(x, y) = ρx
1,2(x) · ρ

y
1,2(y). (1.5)

From (1.1) it follows that the specific number of interactions
then also factorizes, μsp(�x,�y) = μx

sp(�x) · μ
y
sp(�y).

This is sufficient to simplify the two-dimensional integral∫∫
μsp(�x,�y)d�x d�y and to reduce it to a product of

one-dimensional integrals along the lines �x = �x0 and
�y = �y0. Indeed,

σ =
∫∫

μsp(�x,�y)d�x d�y

=
∫

μx
sp(�x)d�x

∫
μ

y
sp(�y)d�y

μ
y
sp(�y0)μ

x
sp(�x0)

μ
y
sp(�y0)μx

sp(�x0)

=
∫

μsp(�x,�y0) d�x × ∫
μsp(�x0,�y) d�y

μsp(�x0,�y0)
. (1.6)

The integrals in the enumerator can be measured in two one-
dimensional scans over �x at fixed �y0 and vice versa. Note
that the formula is valid for any point (�x0,�y0). This is
rarely stressed in the literature. It might be advantageous to
choose (�x0,�y0) not far from the point of maximal lumi-
nosity to collect sufficient statistics of interactions. There
might be another advantage if the beam coordinates are not
accurately measured. The potential slow drifts of the beam
orbits from their nominal positions might affect both scanned
and not scanned coordinates and bias the luminosity measure-
ment. The bias from not scanned coordinate is minimized at
the maximum of μ where the derivative of e.g. μsp(�x0,�y)

on �x0 is zero.
Performing a pair of one-dimensional scans instead of

an expensive two-dimensional scan allows saving the beam
time. Reducing the time also helps to minimize the influence
of the slow drifts of the beam orbits if they are not accurately
measured. Therefore, at LHC the cross-sections are usually
calibrated using (1.6) instead of (1.3). This approach, how-
ever, relies on the x–y factorizability of μ, which is good
at LHC but not perfect. It can be violated by many factors,

essentially, by any imperfection in the accelerator leading to
an x–y coupling.

The remaining non-factorizability is usually studied using
the distributions of the interaction vertices. After unfolding
with the vertex resolution they give the products of two bunch
densities. Ideally, the shape of their projections to one coordi-
nate should remain invariant when scanning another coordi-
nate. The deviations are interpreted as the non-factorizability
and are propagated to the cross-section corrections. This pro-
cedure is complicated because it requires the characteriza-
tion of two unknown bunch shapes using only one luminous
region profile. One can use the imaging methods to measure
directly ρ1,2 densities [23]. However, the beam–gas inter-
actions have limited statistics while the beam–beam imag-
ing suffers from the uncertainties in the beam positions and
the beam–beam systematics discussed later. Because of the
complexity of the x–y non-factorization studies, usually the
bunch shapes are fitted assuming some smooth bunch shape
model. This makes them model-dependent. The cross-section
corrections due to x–y non-factorizability and the associated
systematic errors are typically at the level � 1%.

The accuracy can be improved further by performing two-
dimensional scans over the central region giving the domi-
nant contribution to the integral in (1.3). This approach was
pioneered at LHCb in 2017 [2]. Scanning only the central
region was relatively fast but allowed evaluating ∼ 90% of
the integral. The method is model-independent and allows
reducing the non-factorization systematics by an order of
magnitude.

1.3 Crossing angle between the beams

In van der Meer scans at LHC the beams are not always
opposite. They may collide at a small angle of the order
O(100 µrad). This separates the beams outside the inter-
action region and suppresses possible parasitic collisions
between nominally not colliding bunches. It is not imme-
diately obvious how van der Meer formalism should be
extended to the case of not parallel beams. In addition, the
particles in the two beams can be different. Up to now, LHC
has performed van der Meer scans with the proton and lead
ion beams. It might be not clear whether in the asymmetric
proton - ion collisions the cross-section can be calibrated in
the laboratory frame, or it is necessary to make a transforma-
tion to the center-of-mass system.

These questions were answered in [21] using two alterna-
tive derivations. In the first, the simple two-dimensional inte-
gral in (1.1) was extended to four dimensions and taken over
�x , �y in the same way as (1.3) was obtained from (1.1).
In the second, equivalent derivation the direct mathematical
calculation was substituted by simple physical arguments.
They will be elaborated in more detail below.
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Fig. 1 Decomposition of the beam particle velocities v1,2 to the per-
pendicular v⊥ and the parallel v1‖, v2‖ components with respect to their
difference v1 − v2 = �v

Let’s denote the velocities of the beam particles by v1,2 as
shown in Fig. 1. They can be decomposed into two parallel
(v1,2) and one common perpendicular component v⊥ with
respect to their difference v1 − v2 = �v.

There exist infinitely many relativistic frames where the
beams are parallel. In any of them, (1.3) is valid, for example,
in the center-of-mass or the rest frame of one of the particles.
It is even valid in the frame where the particles move in the
same direction one running after the other. All such frames
can be obtained by boosting the laboratory frame first with
the velocity v⊥ and then with an arbitrary velocity parallel
to �v. Indeed, in the laboratory frame boosted by v⊥, or,
equivalently, after the “active” boost of the beam particles
by −v⊥, their perpendicular momentum transforms to p′⊥ =
γ⊥p⊥−γ⊥β⊥E/c, which is zero since by construction β⊥ =
p⊥c/E . Here, c is the speed of light, E is the energy in the
laboratory system, β⊥ = v⊥/c and γ⊥ = (1 − β2⊥)−1/2

are the beta- and gamma-factors of the boost, respectively.
Therefore, after the active boost by −v⊥ the beams become
parallel to �v and any further boost along �v preserves this
parallelism.

Note that although the perpendicular velocity after the
boost by −v⊥ becomes a simple difference v⊥ −v⊥ = 0, the
remaining velocity v′‖ is, of course, not equal to the difference
v− v⊥ = v‖. This would be the case for the Galilean but not
for the Lorentz transformation. The correct formula follows
most easily from the opposite transformation from the primed
to the laboratory frame: p‖ = p′‖, E = γ⊥E ′, so v′‖ = γ⊥v‖.

Let’s find out how van der Meer formula (1.3), proved
in the primed coordinates with the parallel beams, modi-
fies in the laboratory frame. The quantities μ, N1,2 and σ

are Lorentz-invariant, only the transverse area d�x d�y is
not. Following notations of this subsection, the latter will be
denoted in the primed coordinates as d�x ′ d�y′. Its transfor-
mation to the laboratory system requires some explanations
given below. This material complements the discussion in
[21].

The space-time coordinates x = (t, x) of any particle
moving with the four-momentum p = (E, p) satisfy the
equation

x − x0 = λp, (1.7)

where λ is a free parameter and x0 = (t0, x0) is an arbitrary
point on the particle trajectory corresponding to λ = 0. Four

equations in (1.7) with one free parameter define a line in the
four-dimensional space. The values of λ uniquely label the
line points and can be expressed, for example, via the time
coordinate: λ = (t − t0)/E .

The beam displacements � = (0,�) during van der Meer
scan change the x0 parameter:

x − x0 − � = λp. (1.8)

Note that the definition of the scan implies that the beams are
moved only spatially, so there is no time component in �.

In the following, it will be convenient to decompose spatial
vectors into three components: parallel to v⊥, to the vector-
product [�v × v⊥] and to �v. They will be denoted by the
subscripts ⊥, ‖ × ⊥ and ‖, respectively, e.g.

� = (0, �⊥,�‖×⊥,�‖). (1.9)

The ‖ × ⊥ component is perpendicular to the plane of Fig. 1.
Ideally, the beam displacements should be orthogonal to �v
but we consider below the general case �‖ �= 0.

After the active boost by −�v, the line defined by (1.8)
transforms to

x ′ − x0′ − �′ = λp′. (1.10)

Note that the solutions x , x ′ of (1.8) and (1.10) for the same
λ correspond to the same four-dimensional point in the lab-
oratory and primed frames, respectively.

After the boost, the beam displacement

�′ = (−β⊥γ⊥�⊥, γ⊥�⊥, �‖×⊥, �‖) (1.11)

acquires the time component �′
t = −β⊥γ⊥�⊥. In other

words, it is impossible to transform a spatial scan in the labo-
ratory to merely a spatial scan in the primed frame. To resolve
this complication one can use the following argument. Any
system with the parallel beams is special in the sense that
the number of interactions created by two particles is deter-
mined only by the transverse distance between their lines.
It does not depend on the initial positions of the particles
x0′‖ + �′‖ along the lines or on the initial time t0′ + �′

t since
the particles are anyway assumed to travel from t ′ = −∞ to
t ′ = +∞. Contrary to the transverse initial coordinates, the
time and longitudinal shifts do not change the particle line.
Therefore, the scan with �′ from (1.11) is equivalent to the
one with

�̃′ = (0, γ⊥�⊥, �‖×⊥, 0), (1.12)

where the time and longitudinal coordinates are simply set to
zero. Comparing this equation with (1.9) one can see that the
beam displacements �‖×⊥ transform from the laboratory to
the primed system without any changes while the displace-
ments �⊥ are “extended” by the γ⊥-factor. Therefore, the
area element d�x ′ d�y′ in the primed coordinates is larger
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than in the laboratory system by γ⊥:

d�x ′ d�y′ = γ⊥d�x d�y. (1.13)

Note that one can invert the arguments and make the
opposite boost from the primed scan with the displacements
(0,�′⊥, �′‖×⊥, 0) to the laboratory system:

� = (β⊥γ⊥�′⊥, γ⊥�′⊥, �′‖×⊥, 0).

Here, the γ⊥-factor again appears in the transverse compo-
nents but now in the laboratory system. Concluding from
this formula that γ⊥d�x ′ d�y′ = d�x d�y with γ⊥ on the
opposite side would be a mistake, however, since the time and
longitudinal components can be freely changed and zeroed
only in the primed frame with the parallel beams. Setting
�t = β⊥γ⊥�′⊥ to zero in the formula above is not allowed
and spoils the equivalence of the scans in the laboratory and
the primed frames.

Using (1.13), the cross-section formula in the laboratory
system can finally be written as

σ = γ⊥
∫

μ(�x,�y)

N1 N2
d�x d�y. (1.14)

Note that the relativistic correction γ⊥ depends on the
velocities but not on the momenta or masses of the parti-
cles. For example, it coincides for proton and lead ion beams
if their velocities are the same. The formula is relativisti-
cally invariant and is valid in any frame. The area element
d�x d�y by definition lies in the plane perpendicular to �v.
Let’s denote this plane by P . If the scan plane P̃ is inclined
with respect to P at an angle α, an area element d�̃x d�̃y
on P̃ should be projected to P , i.e.

σ = γ⊥
∫

μ(�̃x, �̃y)

N1 N2
cos α d�̃x d�̃y. (1.15)

The longitudinal translations along �v do not matter.
The beam crossing angles at LHC are small, so β⊥ < 10−3

and γ⊥ − 1 < 10−6. Therefore, the relativistic correction at
LHC can be safely neglected.

The luminosity, however, is modified as it can be seen
from the following. The typical longitudinal sizes of the LHC
bunches σi L along the beam i = 1, 2 in the laboratory frame
are 5–10 cm. They are much larger than the transverse sizes
σiT ∼ 100µm. Since γ⊥ ≈ 1, the Lorentz and Galilean
transformations from the laboratory to primed coordinates
are almost equivalent. The latter preserves the bunch shapes.
Therefore, in the primed system the longitudinal spread σi L

gets projected to v⊥ at the angles α1,2 shown in Fig. 1. For
the Gaussian bunches this increases the primed transverse
width σ ′

i⊥ in the beam crossing plane to

σ ′
i⊥ ≈ σiT

√
1 + (αi σi L/σiT )2. (1.16)

This formula is valid up to the second-order αi -terms
enhanced by σi L/σiT 
 1 factor.

Note that often in the literature σ ′
i⊥ is expressed in the

form of a rotation as
√

(σiT cos αi )2 + (σi L sin αi )2. Writing
cos αi = 1−α2

i /2 +· · · instead of unity as in (1.16) implies
its validity at least up to the terms ∝ α2

i not enhanced by
σi L/σiT . At this level of accuracy one can not neglect the
difference between Lorentz and Galilean transformations,
however, and should take into account the relativistic cor-
rections.

The exact formula can be obtained using the same for-
malism as for van der Meer scan above. Let’s interpret the
parameter � = (0,�) in (1.8) not as the beam displacement
but as a stochastic variable describing the spatial spread of the
particles in the bunch in the laboratory frame. For example,�
can be a zero-mean random variable normally and indepen-
dently distributed along the transverse x , y and longitudinal
axes with the standard deviations σx,y,L , respectively. Let’s
consider the general case when neither x nor y lies in the
crossing plane of Fig. 1. Then, the transverse bunch widths
in the laboratory frame along ⊥ and ‖ × ⊥ directions are

σi⊥ =
√[

σi x cos(xi , ⊥)
]2 + [

σiy cos(yi , ⊥)
]2 + [

σi L sin αi
]2

σi‖×⊥ =
√[

σi x cos(xi , ‖×⊥)
]2 + [

σiy cos(yi , ‖×⊥)
]2

. (1.17)

Here, the notation like cos(xi ,⊥) denote the cosine of the
angle between the x direction of the i-th bunch and v⊥.
According to (1.12), the bunch spread σ⊥ is multiplied by
the γ⊥-factor in the primed frame, while σ‖×⊥ remains
unchanged:

σ ′
i⊥ = γ⊥σi⊥, σ ′

i‖×⊥ = σi‖×⊥. (1.18)

If one of the transverse axes, e.g. x , lies in the crossing
plane, this simplifies to

σ ′
i⊥ = γ⊥

√
[σi x cos αi ]2 + [σi L sin αi ]2, σ ′

i‖×⊥ = σy .

(1.19)

For ultrarelativistic beams with v1,2 ≈ c, like at LHC,
and arbitrary α1,2, which should be approximately equal in
this case, α1 ≈ α2 ≈ α, the beta- and gamma-factors can be
expressed via the angle α:

β⊥ ≈ sin α, γ⊥ ≈ 1/
√

1 − sin2 α = 1/ cos α. (1.20)

This gives

σ ′
i⊥ ≈

√
σ 2

i x + (σi L tan α)2. (1.21)

One can see that σi x is not multiplied by cos α. Instead of the
rotation formula, for σ ′

i⊥ one should use either exact (1.17),
(1.18), (1.19) or one of the approximate equations (1.16),
(1.21).
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The smallness of αi at LHC is partially compensated by
the large σi L/σiT ratio, so due to the crossing angle the effec-
tive transverse widths σ ′

i⊥ increase by 5–20%. The luminos-
ity reduces by the same amount. Once again, this does not
modify van der Meer formula (1.14), since the normaliza-
tion

∫
ρi (x, y) dx dy = 1 remains invariant. For broader

bunches, one just needs to enlarge proportionally the region
of integration.

Note that if the transverse bunch densities ρ1,2 factorize
in the primed directions x ′ and y′ but none of them lies in
the crossing plane of Fig. 1, σi L has non-zero projections
on both x ′ and y′. This makes x ′ and y′ distributions slightly
correlated and to some extent breaks the x ′–y′ factorizability.

1.4 Luminosity calibration accuracy

Van der Meer scan is the main tool of the absolute luminosity
calibration at LHC. For the given beam particles and the LHC
energy, the scan is performed in every experiment at least
once a year to check the stability of the luminosity detectors.
One or two LHC fills with carefully optimized experimental
conditions are allocated for this purpose. The accuracy is
determined by various factors discussed below. The overall
calibration uncertainty is typically 1–2%.

The calibration constant is then propagated to the luminos-
ity of the whole physics sample using linear luminometers.
In ATLAS and CMS operating at higher pile-up μ-values, the
accurate linearity is required in larger dynamic range since
van der Meer scans are typically performed with μ � 1. The
uncertainties caused by the deviations from the linearity due
to irradiation ageing, long-term instabilities etc. are reduced
by comparing several luminometers with different system-
atics. Therefore, the overall luminosity uncertainty is often
dominated by the calibration error.

Averaging over many colliding bunch pairs and several
van der Meer scans often reduces the statistical error of the
calibration to a negligible level. The systematics from the
bunch population N1 N2 measurements is typically at the
level ∼ 0.2–0.3% except in the very first LHC scans in 2010
with low-intensity beams.

The cross-section has the dimensionality of a length unit
square. It appears in van der Meer formula (1.14) due to the
integration over �x and �y. Any error in the beam displace-
ments directly affects the cross-section. An accurate mea-
surement of �x , �y scale is performed in a dedicated “length
scale calibration” (LSC), which always accompanies van der
Meer scans. The simplest LSC is described below.

Let’s assume that the true beam positions �i in the labo-
ratory frame for the beam i = 1, 2 can be written as

�i = αiai + βibi + �0
i , (1.22)

where ai , bi are unknown vectors close but not exactly equal
to the unit x , y-vectors and αi , βi are the nominally set val-

ues for x , y beam movements, respectively. The latter are
known exactly. Potential nonlinearities in the �i dependence
on αi , βi e.g. due to beam orbit drifts, are neglected here but
will be briefly discussed later. The constant vectors �0

i cor-
responding to αi = βi = 0 are also unknown.

In the simplest LSC the beams are nominally displaced by
the same amount, i.e. with α1 = α2 = αL SC , β1 = β2 =
βL SC . If the bunches have equal shapes, the center of the
luminous region OL SC is positioned in the middle between
them,

OL SC = αL SC
a1 + a2

2
+ βL SC

b1 + b2

2
+ �0

1 + �0
2

2
.

(1.23)

It can be accurately measured by the vertex detectors.
Most often van der Meer scans at LHC are performed

such that the beams are displaced symmetrically in oppo-
site directions corresponding to α1 = −α2 = 2αsym ,
β1 = −β2 = 2βsym . The advantage of the symmetric scan
is that it allows to reach maximal separations in the limited
allowed range of the beam movements. The distance between
the beams �12 = �1 − �2 is then

�12 = αsym a1 + a2

2
+ βsym b1 + b2

2
+ �0

1 − �0
2

2
. (1.24)

A comparison of (1.23) and (1.24) shows that the measure-
ments ofOL SC in the vertex detector are sufficient to calibrate
the scales (a1+a2)/2, (b1+b2)/2 necessary for the symmet-
ric scans. The fact that the shapes of the colliding bunches are
different can normally be neglected at LHC after averaging
over many colliding bunch pairs.

Non-symmetric scans depend on other linear combina-
tions than (a1 +a2)/2 and (b1 +b2)/2 measurable in (1.23).
The simplest way to calibrate the lengths |a1,2| = a1,2 and
|b1,2| = b1,2 individually is to use the measurements of the
luminosity. Ideally it should be stationary during LSC. Any
small variation indicates that the distance between the beams
changes.

For example, let’s consider the LSC in the x-direction.
Assuming x–y factorizability and neglecting the angle
between a1,2 and the x-axis, one arrives at the scalar equa-
tions

�i,x = αL SC ai + �0
i,x ,

�12,x = αL SC (a1 − a2) + (�0
1,x − �0

2,x ),

OL SC,x = αL SC
a1 + a2

2
+ �0

1,x + �0
2,x

2
. (1.25)

The movement of the luminous region between any two LSC
points, O1

L SC,x − O2
L SC,x , allows to measure the average x-

scale
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a1 + a2

2
= O1

L SC,x − O2
L SC,x

α1
L SC − α2

L SC

. (1.26)

The corresponding change of the x-distance between the
beams �1

12,x − �2
12,x can be deduced from the luminos-

ity change L1
L SC − L2

L SC and van der Meer scan data. For
example, if one of the x-scans was performed symmetrically,
the beam separation change required to modify the luminos-
ity by a given amount can be calculated from the derivative
d�12,x/d L = dαsym/d Lsym · (a1 + a2)/2. This leads to the
equation

�1
12,x − �2

12,x = (α1
L SC − α2

L SC )(a1 − a2)

= dαsym

d Lsym
· a1 + a2

2
(L1

L SC − L2
L SC ), (1.27)

which allows to obtain (a1 −a2)/(a1 +a2) from the measur-
able values dαsym/d Lsym , L1

L SC − L2
L SC and the set differ-

ence α1
L SC − α2

L SC . Together with (a1 + a2)/2 from (1.26)
this allows to calibrate the scales a1,2 individually.

To improve the sensitivity of the method and to increase
L1

L SC − L2
L SC , LSC can be performed at a point close to

the maximum of the derivative d L/d�12, where the second
derivative is zero. For the Gaussian bunches with the widths
σ1,2, the luminosity dependence on the beam separation is

also Gaussian with the sigma 
 =
√

σ 2
1 + σ 2

1 , and the opti-
mal LSC beam separation is �12 = 
.

After the calibration, the length scale systematics is typi-
cally well below 1%.

Note that LSC is not needed for the “static” imaging meth-
ods, namely, for the beam-gas and also for the beam–beam
imaging if in the latter the reconstructed bunch is station-
ary during the scan in the laboratory frame. In both cases,
the reconstruction is performed in the vertex detector coor-
dinates, which always define an accurate scale.

The remaining most important sources of systematics
include x–y non-factorizability of the bunch densities, the
beam orbit drifts and the so-called beam–beam effects due
to the electromagnetic interaction between two colliding
bunches.

As it was discussed in Sect. 1.2, the x–y non-factorizability
can be circumvented by performing two-dimensional scans
over the central region giving the main contribution to the
integral in (1.14). Three two-dimensional scans, already per-
formed at LHCb at the end of Run 2, allowed to reduce this
uncertainty approximately by an order of magnitude [2].

The beams can drift at LHC by a few microns leading
to the cross-section uncertainties at the level of 1%. Fur-
ther improvements require accurate monitoring of the beam
positions. The LHC Beam Position Monitors (BPMs) could
not provide the necessary accuracy in Run 1 because of the
temperature drifts in the readout electronics. In Run 2 they
were upgraded and all interaction points were equipped with

the so-called DOROS BPMs. The accuracy was significantly
improved and reached a sub-micron level. This was proved
by calibrating and comparing with the beam positions recon-
structed with the beam-gas imaging at LHCb. The latter is
relatively slow and requires one or a few minutes to reach the
required accuracy even with the gas injection. This is suffi-
cient for the calibration, however, and after that, the DOROS
BPMs can accurately measure even fast beam drifts with 0.1
second time resolution. Sufficient accuracy can, possibly, be
achieved also at other experiments without the beam–gas
imaging using the correlations between the DOROS mea-
surements and the positions of the luminous centers. Using
well-calibrated DOROS BPM data, one can significantly
reduce the scan-to-scan non-reproducibility and potentially
achieve the overall calibration accuracy below 1%.

The last beam–beam systematics is caused by the elec-
tromagnetic interaction between the bunches. The electro-
magnetic force kicks the beam particles and modifies their
accelerator trajectories and the bunch densities ρ1,2. If the
perturbations were constant during the scan it would not pro-
duce any bias since van der Meer formula (1.3) is valid for
any densities. The kick strength, however, depends on the
transverse profile of the opposite bunch and the distance to
it. The perturbation of the densities ρ1,2, therefore, depends
on �x , �y. For example, it vanishes at large beam separa-
tions. Such ρ1,2 dependence on �x , �y breaks the derivation
of (1.3) from (1.1) and introduces biases in the cross-section
formulas that are difficult to estimate. The beam–beam cor-
rection is the main subject of this paper and will be discussed
in detail in the following sections.

The lead ion bunches in LHC van der Meer scans carry
much smaller charge than the proton ones. Therefore, the
beam–beam systematics is more significant for the proton–
proton scans.

The beam–beam interaction also affects the imaging meth-
ods. Like the classical van der Meer approach, the beam–
beam image is biased when ρ1,2 densities vary during the
scan. The beam–gas imaging is also biased when the beam–
beam interaction changes, e.g. during van der Meer scan at
the same or any other LHC experiment. In the latter case,
the associated beam–beam distortions propagate through the
accelerator everywhere in the ring. If the beams are station-
ary, however, the densities ρ1,2 are constant and the appro-
priate ρ1,2 fit model can describe the bunches accurately. The
required model might be complicated, however, and depen-
dent on the constant beam–beam interactions at all LHC
experiments.

In the first LHC publications, the experiments either not
considered the beam–beam systematics or assigned ∼ 1%
error to their luminosity measurements in the proton–proton
scans without making any correction. In 2012 the method
[24] was proposed for correcting the classical van der Meer
technique. It was subsequently used by all LHC experi-
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ments, and the systematic error was reduced to 0.3–0.7% [9–
11,13,15–18]. However, the beam–beam force in this method
was oversimplified and approximated by a linear function
of the transverse coordinates. More specifically, the electro-
magnetic field was described by the dipole and quadrupole
magnets responsible for the offset and the slope of this linear
function, respectively.

This was discovered by the author of this paper in Jan-
uary 2019 using a new, independently developed simula-
tion. It will be presented in this paper. Instead of the linear
approximation, the simulation uses the accurate formula of
the beam–beam force. Unfortunately, the old and new beam–
beam corrections differ by ∼ 1% as shown in Fig. 11. The
difference is dependent on van der Meer scan beam param-
eters. This requires the corresponding rescaling of all LHC
cross-sections after 2012 that were based on the luminosity
calibrated with the old oversimplified beam–beam model.

The new simulation is primarily oriented at the classical
van der Meer method. It is optimized for calculating the lumi-
nosity but not the bunch shapes required in the imaging meth-
ods. Some limited tools for predicting the shapes are imple-
mented in the simulation, however, and can be extended.

The beam–beam force depends on both transverse coor-
dinates and, therefore, introduces x–y coupling and non-
factorization. The new simulation allows to correct the lumi-
nosity measurements at each point of van der Meer scan
such that the beam–beam perturbation is effectively removed
together with its x–y coupling. The cross-section can then
be calculated from the corrected μ values using unmodified
(1.3) or (1.6).

The new simulation is sufficiently general. The bunch pro-
files can be approximated by an arbitrary weighted sum of
the Gaussians with the common center. The x- and y-widths
can be different. In addition, the luminosity correction can
be calculated in the presence of the beam–beam kicks at an
arbitrary number of interaction points. The bunch shapes of
all colliding bunches are specified individually.

2 Momentum kick induced by the beam–beam
interaction

For LHC physics one usually considers the collision of two
protons (or ions) ignoring other particles in the bunches. Con-
trary to that, the beam–beam electromagnetic interactions
have a long-range and act simultaneously between many par-
ticles. At large distances, one may neglect quantum effects
and use classical electrodynamics. Any associated electro-
magnetic radiation of protons or ions at LHC will be ignored.

The formula of the momentum kick induced by the beam–
beam interaction is well known in the accelerator community.
However, it might be not so easy to find in the literature
its rigorous derivation with the discussion of all simplifying

Fig. 2 The electrical field from the charge q1 at rest acting on the
charge q2 from another bunch

assumptions affecting the accuracy. To make the material of
this paper self-contained, we present below the derivation of
this formula from the first principles.

2.1 Electromagnetic interaction of two particles

As it will be shown in a moment, at LHC the beam–beam
force changes the transverse particle momentum in the lab-
oratory frame by a few MeV, i.e. negligibly compared to the
total momentum. Therefore, one can assume that all particles
creating the electromagnetic field move without deflections
with constant velocity. Since the equality and constancy of
velocities are preserved by boosts, this approximation can be
used in any other frame.

The electromagnetic field of a particle with the charge q1

is simplest in its rest frame where it reduces to the electri-
cal Coulomb component E1 shown in Fig. 2. The momen-
tum kick exerted on a particle q2 from another bunch can
be calculated in this frame as an integral of the infinitesimal
momentum changes along the trajectory. According to our
assumption, the velocity of q1 is constant, so its position is
fixed. Since q2 in the rest frame of q1 has even larger momen-
tum than in the laboratory, while the transverse kick is the
same, one can safely assume that its speed dz/dt = β0c is
also constant and q2 moves along the straight line denoted as
the z-axis in Fig. 2.

If the velocities of the colliding particles in the laboratory
system are ±βc, β0 can be expressed as

β0 = 2β/(1 + β2), (2.1)

which is the double-angle (or double-rapidity) formula for
the hyperbolic tangent, the analog of tan(2φ) = 2 tan φ/(1−
tan2 φ). Of course, at LHC one can safely assume β ≈ β0 ≈
1.

The momentum kick received by q2 is given by the line
integral

�p2 =
∫

q2E⊥
1 (x, y, z) dt =

∫
q2E⊥

1 (x, y, z)
dz

β0c
. (2.2)
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Because of the reflection invariance z → −z, the z-
projection of the kick should vanish, so only the perpen-
dicular component of the electric field is written in (2.2).
Its integral

∫
E⊥

1 (x, y, z) dz depends only on the transverse
coordinates. It will be denoted in the following simply by
E1(x, y). According to Gauss’s flux theorem applied to the
cylinder with the radius R shown in Fig. 2, it is equal to

E1(x, y) =
∫

E⊥
1 (x, y, z) dz = q1

2π Rε0
, (2.3)

where ε0 is the electric constant. Here, we are using the sys-
tem of units where the first Maxwell’s equation is written as
∇ · E = ρ/ε0, like the International System of Units (SI).

Substituting (2.3) to (2.2) gives

�p2 = q2 E1(x, y)

β0c
= q1q2

2π Rε0β0c
= 2α�Z1 Z2

Rβ0
, (2.4)

where α = e2/(4πc�ε0) is the fine-structure constant, e is
the proton charge, Z1,2 = q1,2/e are either 1 or 82 for proton
or lead ion LHC beams, respectively, and � is the reduced
Plank constant.

Since the momentum kick �p2 and R are perpendicular
to the z-axis, they are conserved by the boosts along this line.
Therefore, the corresponding terms in (2.4) remain invariant
and equal in all frames where q1,2 velocities are parallel. The
perpendicular electric field E1(x, y), however, depends on
the boosts and acquires a magnetic counterpart. In (2.4) it
should be used only in the q1 rest frame.

If q1 and q2 collide in the laboratory system with the small
crossing angles α1,2 as in Fig. 1, (2.4) receives corrections
of the order α2

1,2. For example, they can be calculated by
boosting the kick (2.4) from the primed to the laboratory
system with the velocity v⊥ and the subsequent projection to
the planes transverse to the beams. At LHC these corrections
are negligible.

Equation (2.4) is sufficient for a rough estimation of the
momentum kick induced by the whole bunch. If its charge
∼ 1011e is condensed into q1, the kick at, for example, one
bunch sigma ∼ 100µm is equal to �p = 3 MeV/c. This
is, indeed, negligible compared to LHC energies. The exact
formulas of the Gaussian bunch fields are presented later in
(2.10) and (2.12) and lead to the same conclusion.

Equation (2.4) was derived for the stationary charge q1.
Due to the momentum conservation, however, it receives the
opposite kick �p1 = −�p2 and starts moving. Our formulas
do not depend on the mass of q1 and, therefore, should be
valid even when the mass is much less than �p1 ∼ 3 MeV/c.
But then after the kick q1 becomes ultrarelativistic, and its
field can not be described by the simple electrostatics.

To solve this seeming contradiction one should recall that
the field from the ultrarelativistic charge q2 in Fig. 2 is con-
centrated only in a thin “pancake” perpendicular to z and
travelling together with the particle. So, q1 receives the kick

�p1 when q2 passes z = 0. Only after that and almost
instantaneously q1 becomes ultrarelativistic. Let’s denote this
moment by t (z = 0). It then takes some time to propagate
this information back to q2, which is escaping almost at the
speed of light. Namely, q2 “sees” the initial stationary field
from q1 until it passes the forward light cone emitted from
q1 at t (z = 0). This moment t (z) can be found from

(t (z) − t (z = 0))2 = (z/cβ0)
2 = (R2 + z2)/c2,

so q2 travels the distance z = Rβ0γ0 
 1 where γ0 =
(1 − β0)

−1/2. Therefore, most of �p2 kick is created by the
stationary q1.

From this consideration we see again that the assumption
of constant q1,2 velocities is valid only in the ultrarelativistic
limit. Therefore, the dependence 1/β0 in (2.4) is not justified
and should be dropped. The formula should be written as

�p = q2 E1(x, y)

c
= 2α�Z1 Z2

R
(2.5)

under the explicit conditionβ0 ≈ 1. The corresponding angu-
lar kick for the particles with the momentum p is

�φ = q2 E1(x, y)

pc
= 2α�Z1 Z2

Rp
. (2.6)

Note that in the present literature the angular kick and the
related parameters traditionally and most often are expressed
via the classical particle radius rc = q2/(4πε0mc2) deter-
mined by the particle mass m. For example, one can refer to
the so-called beam–beam parameter. In the recent Particle
Data Group review [25] it is defined in Eq. (31.13) as

ξy2 = mereq1q2 N1βy2

2πm2γ2σy1(σx1 + σy1)

for the y-direction, where βy2 is the beta-function discussed
later, m2, γ2 are the mass and γ -factor of q2 and me, re

are the electron mass and classical radius. Writing mass in
the formulas is misleading, since, as it was explained above,
the kick does not depend on m. In the ultrarelativistic case
β0 ≈ 1 the momentum change �p depends only on the elec-
tric charges q1,2 and R, since it is determined by Gauss’s or
Coulomb’s law. If the mass m is introduced in the beam–beam
equations, it should necessarily cancel as in the combination
mere above. For example, the kick is the same for protons
and electrons if their momenta are the same, despite the dif-
ference in their classical radii. To stress this invariance, the
fine-structure constant α should be used instead of the clas-
sical radius because only the electromagnetic interaction is
relevant here. It is better to drop completely the mass m from
the formulas.
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2.2 Simplifying assumptions in the particle interaction with
the opposite bunch

Let’s demonstrate that for calculating the kick from the whole
bunch one can assume that all bunch particles move in the
same direction with the same speed. As it will be discussed
in Sect. 3.1, the angular spread in the laboratory frame is of
the order δα = σT /β � O(10−5) where σT is the transverse
bunch size (40–100µm) and β is the beta-function in the
range 1–20 m during van der Meer scans in the interaction
points at LHC. Note also that the kick is perpendicular to the
velocity difference �v = v1 − v2 from Fig. 1, so the kick
angular variation is of the same negligible order δα.

There is one effect where this spread is enhanced. An
angular deviation of one particle changes its crossing angle
with respect to the opposite bunch. This affects the trans-
verse bunch width σ ′

T visible from the particle according to
(1.16). Therefore, the angular variation δα leads to the effec-
tive smearing of σ ′

T :

δσ ′
T

σ ′
T

≈
(

σL

σT

)2

α δα =
(

σL

σT

) (
σL

β

)
α. (2.7)

In spite of the large enhancement factor σL/σT � 1000, the
values of σL/β � O(10−2) and α � O(10−4) are so small
that in van der Meer scans the variations of the transverse
width δσ ′

T /σ ′
T � 0.01 can be neglected in the beam–beam

kick calculations.
The longitudinal momentum spread δp/p of the beam is

completely negligible for our purposes, since the beam–beam
kick is determined by the velocities that are close to the speed
of light at LHC and almost insensitive to the momentum
change. Namely, if v is the velocity corresponding to the
rapidity φ, v = tanh φ, its change is δv = δφ/ cosh2 φ =
δ(sinh φ)/ cosh3 φ = (δp/p)·β/γ 2 ∝ 1/γ 2. The associated
angular variation of �v = v1 − v2 due to the crossing angle
is additionally suppressed by the smallness of α < 10−3.

Finally, the angular variation due to the beam–beam kick
itself is also small, �p/p ∼ 10−6. Since the typical longi-
tudinal bunch length σL is 5–10 cm, the kick has no time
to develop to a sizable displacement during the interaction.
The particles should travel freely much longer distances of
the orderσT ·p/�p ∼ 100 m before their transverse displace-
ments reach σT . However, the accelerator elements control-
ling the transverse movements correct the trajectories and
bring the particles back. In Sect. 3.8 Eq. (3.37) it will be
shown that in the end the beam orbit is shifted by less than
1% of the bunch width. The angular distribution shifts by
�p/2p � 10−6. The beam–beam luminosity bias typically
does not exceed 1%. Therefore, to achieve the required over-
all calibration accuracy of 0.1% and to estimate the bias with
the relative uncertainty < 0.1%/1% = 10%, it is sufficient

to calculate the momentum kicks using the electromagnetic
fields of the unperturbed densities ρ1,2.

If one can assume that the particles in the bunches move
with constant and opposite velocities, this greatly simplifies
our four-dimensional electromagnetic problem and reduces
it to the two-dimensional electrostatics. Indeed, in (2.3) one
can easily recognize the Coulomb’s law in two dimensions.
The circle circumference 2π R in the denominator substitutes
the sphere area 4π R2 in the three-dimensional Coulomb’s
law in accordance with the Gauss’s electric flux theorem.
Therefore,

F12 = �p1c = q1E2 = −q2E1 = −�p2c (2.8)

from (2.5) is just the Coulomb’s two-dimensional force
between q1 and q2. The calculation of �p1,2 kick, i.e. the
problem of the electromagnetic interaction of the ultrarel-
ativistic laboratory bunches, reduces to the calculation of
the two-dimensional electrostatic forces between the trans-
versely projected static charges in the frame with the parallel
beams.

As it was already discussed, the longitudinal bunch distri-
butions do not matter in this frame. Indeed, the accumulated
kick remains invariant if particles in the opposite bunch are
arbitrarily displaced longitudinally as long as they follow the
same lines and traverse the whole interaction region.

2.3 Electrostatic field from two-dimensional Gaussian
distribution

In this subsection we present the formulas of the electrostatic
field from the two-dimensional Gaussian density

ρ = Q

2πσxσy
exp

(
− x2

2σ 2
x

− y2

2σ 2
y

)
. (2.9)

For the round bunch with σx = σy = σ , the azimuthally
symmetric field can be determined from the charge Q(1 −
e−R2/2σ 2

) inside the disk x2 + y2 < R2 and the Gauss’s flux
theorem:

E = Q

2πε0 R

(
1 − e−R2/2σ 2

)
. (2.10)

Therefore, the beam–beam angular kick of the particle with
the charge Z1e induced by the round Gaussian bunch with
N2 particles with the charges Z2e is

�φ = Z1eE

pc
= 2α�Z1 Z2 N2

pR

(
1 − e−R2/2σ 2

)
. (2.11)

The field from an elliptical bunch with σx �= σy is more
complicated. It was derived by Bassetti and Erskine in [26]:

Ex − i Ey = Q · e−z2
2

πε0

√
2

(
σ 2

x − σ 2
y

)
∫ z2

z1

eζ 2
dζ, (2.12)
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where the path-independent integral is taken in the complex
plane between the points

z1 =
x

σy
σx

+ iy σx
σy√

2
(
σ 2

x − σ 2
y

) , z2 = x + iy√
2

(
σ 2

x − σ 2
y

) . (2.13)

It can be expressed via the complex error function erf(z) =
2

∫ z
0 e−ζ 2

dζ/
√

π or its scaled version named Faddeeva func-
tion

w(z) = e−z2
(

1 + 2i√
π

∫ z

0
eζ 2

dζ

)
(2.14)

as

Ex − i Ey = −i Q
w(z2) − w(z1) exp

(
− x2

2σ 2
x

− y2

2σ 2
y

)

2ε0

√
2π(σ 2

x − σ 2
y )

.

(2.15)

Note that in [26] the sign in front of y2/2σ 2
y was misprinted as

plus. A simplified proof of Bassetti–Erskine formula found
by the author will be published in a separate paper.

The Faddeeva function w(z) grows exponentially when
the imaginary part I m(z) of its argument tends to −∞. In this
case, calculating the difference between two large numbers
in the enumerator of (2.15) becomes numerically unstable.
In practice, to ensure the positiveness of I m(z1,2), the cal-
culation can be performed in the following way. In the case
σx < σy the formulas might be applied with the swapped
x- and y-directions. The obtained components Ex and Ey

should be swapped back. This ensures that the square roots
in (2.13) are always taken with σx > σy and, therefore, are
real. Then I m(z1,2) becomes negative only if y < 0. Since
the field is centrally symmetric, E(x, y) = −E(−x,−y),
this case can be circumvented by calculating the field at the
opposite point (−x,−y) and by inverting the signs of the
obtained components Ex , Ey .

2.4 Average kick of bunch particles

Up to now, we have discussed the kicks of individual parti-
cles. In this subsection we present a simple formula for the
kicks averaged over the bunches. For the Gaussian shapes, it
was derived in Appendix A in [27]. Here we give an alterna-
tive proof based on simple arguments and extend the formulas
to arbitrary ρ1,2.

Let’s denote the momentum kick of the i-th particle in the
first bunch exerted by the j-th particle in the second by �pi j .
It can be calculated as �pi j = Fi j/c where

Fi j = qi q j

2πε0

�ri j

|�ri j |2 (2.16)

is the two-dimensional Coulomb’s force between the charges
qi , q j separated by �ri j = ri − r j in the transverse plane.
The full force on the first bunch is the sum

∑
i, j Fi j that can

be approximated by the integral

F1 =
∑
i, j

Fi j = N1 N2

∫
F(r1 − r2)ρ1(r1)ρ2(r2) dr1 dr2,

(2.17)

where N1,2 are the number of particles in the bunches. SinceF
depends only on the difference �r = r1 −r2, it is convenient
to use �r as the integration variable

F1 = N1 N2

∫
F(�r)ρ(�r) d�r, (2.18)

where ρ also depends only on �r:

ρ(�r) =
∫

ρ1(�r + r2)ρ2(r2) dr2. (2.19)

This is the cross-correlation ρ2 �ρ1 or, equivalently, the con-
volution ρ1 ∗ ρ̃2 where ρ̃2(r) = ρ2(−r) i.e. ρ2(r) with an
opposite argument.

Equations (2.17) and (2.18) show that �r spread in the
integral can be equivalently represented either by the two
bunch densities ρ1,2 or by only one ρ. In the latter case the
second bunch effectively collapses to the point-like charge
at the origin. Indeed, (2.18) follows from (2.17) if ρ1 and ρ2

are substituted by the artificial bunch density ρ = ρ1 ∗ ρ̃2

and by the delta-function at zero, respectively.
This is illustrated schematically in Fig. 3. The left picture

shows the overall electrostatic force
∑

j Fi j exerted by the
second bunch on the i-th particle. The origins of Fi j vectors
are varied according to the density ρ2(x, y). To obtain the
full force, one needs to sum over i , i.e. to vary the ends of Fi j

vectors. Figure 3b shows such variations for the j-th particle
of the second bunch. Since parallel translations do not change
vectorsFi j , the variations of their ends can be obtained by the
opposite variations of the origins, as shown in the picture. The
full sum

∑
i, j Fi j in Fig. 3c, therefore, can be calculated by

smearing the origins with both probability densities ρ1(−r)
and ρ2(r). Equivalently, it can be calculated by varying the
ends of �r by ρ = ρ1(r)∗ρ2(−r) in agreement with (2.19).
For the Gaussian bunches the convolution ρ1 ∗ ρ̃2 is again

Gaussian with the sigmas 
x,y =
√

σ 2
1x,y + σ 2

2x,y .

Since the momentum is conserved, the full momentum
kicks of two bunches are opposite, F1 = −F2. The average
kicks of the particles are equal to F1/N1, F2/N2 and are
different if N1 �= N2.

3 Beam–beam numeric simulation B*B

Unfortunately, there is no known analytic method that can
predict the luminosity change caused by the beam–beam
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(a) (b) (c)

Fig. 3 The force between the bunches does not change when one bunch
density ρi (r) (i = 1, 2) is collapsed to the point charge at the origin
while the other is convolved withρi (−r). For the Gaussianρ1,2 densities

the convolution has sigma 
 =
√

σ 2
1 + σ 2

2

effect. Below we describe a new numerical simulation devel-
oped for this purpose named “B*B” or “BxB” (pronounced
“B-star-B”) [28,29]. Before going into details, let’s briefly
remind the transverse dynamics of the particles in an ideal-
ized accelerator, the so-called “betatron motion”.

3.1 Recurrence relation

Every particle in the beam oscillates around a stable orbit
with a constant amplitude. Ideally, the oscillations in x and
y are independent. They are described by the Hill’s equation

u′′ + Ku(s)u(s) = 0, (3.1)

where u is the transverse coordinate (x or y), s is the cir-
cular coordinate along the ring, u′′ = ∂2u/∂s2 and Ku(s)
is a function defined by the quadrupole accelerator elements
whose field is proportional to u. The solutions of (3.1) are

u = √
εuβu(s) cos(φu(s) − φ0,u), (3.2)

where εu is a constant defining the oscillation amplitude and
called “emittance” in the accelerator language, βu(s) is the
so-called “beta-function” determined by the equation

1

2
βuβ ′′

u − 1

4
β ′2

u + β2
u Ku = 1, (3.3)

while

φu(s) =
∫ s

0

dζ

βu(ζ )
. (3.4)

is the “phase advance” whose value at s = 0 is denoted by
φ0,u . From (3.2) and (3.4) one can calculate u′ = ∂u/∂s, i.e.
the tangent of the angle between the particle and the orbit:

u′ =
√

εu

βu

(
β ′

u

2
cos(φu − φ0,u) − sin(φu − φ0,u)

)
. (3.5)

At the interaction point the beams are maximally focused to
reach the maximal luminosity. As it follows from (3.2), βu

is then minimal and β ′
u = 0, so that (3.5) simplifies to

u′ = −
√

εu

βu
sin(φu − φ0,u). (3.6)

After every turn in the accelerator the particle phase advance
increases by the constant

Qu = 1

2π

∫ L

0

dζ

βu(ζ )
(3.7)

called the “tune”. Here, the integral is taken over the whole
accelerator length L . As it follows from (3.2) and (3.6), at
the interaction point it is convenient to merge the phase-space
coordinates (u, u′) to one complex variable

zu = u − iu′βu . (3.8)

Its evolution is described by the simple rotation in the com-
plex plane

zn+1,u = √
εuβuei(φn+1,u−φ0,u) = zn,ue2π i Qu , (3.9)

where zn+1,u and zn,u = √
εuβuei(φn,u−φ0,u) are the complex

coordinates at the turns n+1 and n, respectively. Note that the
minus sign in (3.8) is chosen according to the minus in (3.6),
so that the rotation is counter-clockwise by definition. Since
there are two transverse axes x and y, there are independent
rotations in the two complex planes zx = x − i x ′βx , zy =
y − iy′βy and the full phase-space is four-dimensional.

The bunch transverse shapes are typically approximated
by Gaussians. The distributions in every complex plane then
have a form of the two-dimensional Gaussians with the same
standard deviations along u and −u′βu . They are invariant
under rotations around the origin and transform to themselves
after every accelerator turn.

As it was discussed, the beam–beam kick changes the
angle u′ while the instantaneous change of u is negligible.
Equation (3.9) then modifies to the recurrence relation

zn+1,u = (zn,u − iβu�u′)e2π i Qu . (3.10)

According to (2.8), the angular kicks in the first bunch, for
example, are determined by (�x ′, �y′) = q1E2(x, y)/pc.
The electrostatic field is given by (2.10) or (2.12) for round
and elliptical bunches, respectively. The beam–beam defor-
mations of the bunch creating the field are neglected, as it
was explained in Sect. 2.2.

The strategy of the B*B simulation is, therefore, the fol-
lowing. In the beginning, the particles are distributed in the
phase-space according to the given initial density. Then, they
are propagated through the accelerator turn-by-turn using
(3.10) and the change of the luminosity integral
∫

(ρ1 + δρ1)ρ2dx dy (3.11)

is calculated. To take into account the beam–beam perturba-
tion of the second bunch shape, the simulation is repeated
with the swapped bunches yielding

∫
ρ1(ρ2 + δρ2) dy. The

full luminosity change with respect to the unperturbed value
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is approximated as

∫
(ρ1 + δρ1) (ρ2 + δρ2) dx dy −

∫
ρ1ρ2dx dy

≈
∫

(δρ1 · ρ2 + ρ1 · δρ2) dx dy. (3.12)

The second-order term
∫

δρ1δρ2dx dy is neglected. If the
bunches are identical, two terms in (3.12) coincide and it is
sufficient to perform one simulation and to double the cor-
rection.

The main challenge of the numerical calculation of the
beam–beam modified luminosity (3.11) is the required accu-
racy. It should be negligible compared to other systematic
uncertainties, i.e. less than 0.1% at LHC. Reaching this level
with the Monte Carlo integration in the four-dimensional
phase space requires simulating many particles and too much
CPU time. Therefore, several optimizations are implemented
in B*B that are described below.

3.2 Particle weights

In (3.12) only the integrals of perturbed and unperturbed
densities are required. Contrary to the unperturbed profile
defined in B*B by a continuous analytic formula, the other
density, e.g. ρ1 + δρ1 in (3.11), should be represented by
the point-like particles. This can be achieved by splitting
the full phase-space into volumes Vi , i = 1, 2, . . . . Each
of them can be assigned to one “macro-particle” with the
weight wi equal to the phase-space density integrated over
Vi , wi = ∫

Vi
(ρ1 + δρ1)d4V , where d4V = dx dx ′ dy dy′.

In this way any continuous density can be approximated by a
weighted sum of delta-functions placed at the macro-particle
coordinates. The integral from (3.11) can then be expressed
as the discrete sum

∫
(ρ1 + δρ1)ρ2dx dy ≈

N∑
i=1

ρ2(xi , yi )

∫
Vi

(ρ1 + δρ1)d
4V

=
N∑

i=1

wiρ2(xi , yi ). (3.13)

Here, the density ρ2 is considered constant in x–y projection
of each Vi and substituted by its valueρ2(xi , yi ) at the particle
position (xi , yi ).

Let’s assume that N1 real particles in the first bunch are
approximated by N B∗B

1 � N1 macro-particles. Let’s define
that the association of the real and macro-particles does not
change, so that each Vi always contains the same N1

∫
Vi

(ρ1+
δρ1)d4V = N1wi particles. With this definition, the volumes
Vi deform due to the beam–beam force but the weights wi

are conserved as it follows from the conservation of particles.
To simplify notations, the simulated macro-particles in the

following discussion will also be called “particles” as the
meaning will be clear from the context.

Since wi are conserved, in B*B they are defined using
the simplest unperturbed density ρ1 as explained below. To
ensure a good sampling of the four-dimensional space, B*B
adopts a two-step approach. Initially, the macro-particles are
distributed at the circles whose radii rx,y form an equidistant
grid

r i
x = (ni

x − 0.5)�x , r i
y = (ni

y − 0.5)�y, (3.14)

where ni
x,y = 1, 2, . . . , nmax . The index i runs across all

1, 2, . . . , n2
max radii pairs (rx , ry), where

n2
max = Npart ∼ O(1000) (3.15)

is the configurable parameter of the simulation. Each pair
receives one macro-particle placed randomly at the circles in
the zx , zy planes. In this way the sampling of the absolute
values |zx |, |zy | is realized. The sampling of zx,y phases is
performed by the accelerator simulation itself. After every
turn the particle gets rotated by 2π Qx,y angles in the corre-
sponding planes around the origin and slightly shifted ver-
tically by the beam–beam kick according to (3.10). Since
the beam–beam interaction is small at LHC, the particle
trajectories remain approximately circular. After N B B

turn ∼
O(100−1000) accelerator turns the particle well samples
its circular trajectory and zx , zy phases. It was proved that
the initial choice of random phases has negligible impact on
the final integral. Equation (3.10) is applied approximately
Npart × N B B

turn = O(106−107) times and all calculated coor-
dinates contribute to the sampling and the final integral. The
luminosity sum over all particles (3.13) is calculated in B*B
after every turn. The average gives the final result.

In principle, it is possible to assign initially not one but
several particles to the i-th pair of zx,y-circles with the radii
(r i

x , r i
y). This would reduce the phase sampling dependency

on the tunes and the associated evolution in the accelerator.
The choice of one particle per circle in B*B was made to
simulate more accelerator turns using the same number of
calculations. This allows checking that no new effects appear
after a very large number of turns.

For the normally distributed density in the complex plane
zu = u − iβuu′,

ρu
1 (zu) = 1

2πσ 2
u

exp

(
−|zu |2

2σ 2
u

)
, (3.16)

where u = x, y, and the equidistant radii ru from (3.14), the
macro-particle weights wi are given by the integrals over the
rings ni

u�u < ru < (ni
u + 1)�u :

wu
i =

∫∫
i
ρu

1 dφu dru ≈ 1

σ 2
u

exp

(
− (r i

u)2

2σ 2
u

)
r i

u�u . (3.17)
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The final weight of the particle placed at the radii (r i
x , r i

y) is
the product

wi = wx
i w

y
i . (3.18)

In van der Meer scans at LHC, the Gaussian bunch approx-
imation is not always sufficient. The x, y-projections some-
times can be better described by the sum of two Gaus-
sians. For flexibility, B*B simulation allows defining ρ1,2

as the sum of an arbitrary number of Gaussians with config-
urable weights and widths and independently in x and y. The
field E(x, y) is calculated from each Gaussian individually
using (2.10) or (2.12). After weighing, all contributions are
summed. To speed up the simulation, the field map is pre-
calculated in the beginning, and then the interpolations are
used. This is especially important in the case σx �= σy when
the field should be computed using the complicated Bassetti-
Erskine formula (2.12). Similarly, both the initial weights wi

and the densities ρ2(xi , yi ) at every turn appearing in (3.13)
are calculated as weighted sums of the contributions from all
Gaussians.

The radii limits nmax�x , nmax�y in (3.14) in the multi-
Gaussian case are chosen in the B*B simulation such that
they have the same efficiency as rx < Nσ σx and ry < Nσ σy

cuts for the simple single Gaussian shape. The parameter Nσ

is configurable. Its default value Nσ = 5 is usually suffi-
cient to reach the required accuracy. For the single Gaus-
sian bunch the excluded weight, i.e. the density integral
of the not simulated region (rx > 5σx or ry > 5σy), is

1 − (1 − e−52/2)2 = 7.5 × 10−6. To additionally reduce
the CPU time, the largest (rx , ry) pairs are not simulated,
namely, it is required that

[
rx

nmax�x

]2

+
[

ry

nmax�y

]2

< 1. (3.19)

This increases the lost weight to (52/2 + 1)e−52/2 = 5.0 ×
10−5. The remaining weights are normalized.

The default value of the configurable Npart parameter
from (3.15) is 5 000. The real number of generated particles
is 23% less due to (3.19). This default value is used in the
simulation examples discussed in the following. The other
beam parameters are listed in Table 1. They are taken from
[24] to compare its old, biased method used at LHC in 2012–
2019 and the results of the B*B simulation. Increasing Npart

to 100 000 with the default B*B settings changes relatively
the luminosity integral by ≤ 4 × 10−5 in the full simulated
range of bunch separations from 0 to 200 µm.

3.3 Stages in the simulation

The bias associated to the phase space limit (3.19) and to the
approximation of the continuous integral by the discrete sum

in (3.13) partially cancels in the ratio

R =
∫
(ρ1 + δρ1)ρ2dx dy∫

ρ1ρ2dx dy
(3.20)

if both integrals are taken numerically in the same way.
Therefore, B*B starts from simulating N no B B

turn accelera-
tor turns without the beam–beam interaction i.e. with the
beam–beam kick �u′ = 0 in (3.10). The unperturbed lumi-
nosity

∫
ρ1ρ2dx dy is estimated turn-by-turn using (3.13).

The default value of N no B B
turn is conservatively chosen to be

1000. In Sect. 3.4 it will be explained, however, that for the
tunes Qx,y with two digits after the comma, like at LHC,
any multiple of 100 leads to identical results. Therefore,
N no B B

turn = 100 is sufficient in this case. With the beam
parameters listed in Table 1 this value gives the relative devia-
tion between the numerical and analytical

∫
ρ1ρ2dx dy inte-

grals less than 2 × 10−4 in the practically important region
of the beam separations contributing ∼ 99.9% to the cross-
section integral in (1.3). The resulting bias of the ratio R in
(3.20) should, therefore, be smaller.

After the first N no B B
turn turns the beam–beam kick is

switched on. The user has two options: either instantaneously
apply the nominal kick �u′ in (3.10) or increase it slowly or
“adiabatically”, namely, linearly from zero to the nominal
value during N adiab

turn turns. In the former case, the particle
trajectory instantaneously changes from the ideal circle to
the one perturbed by the beam–beam force. The intersection
of the two trajectories is the last point on the ideal circle. It
is positioned randomly, and different points on the ideal cir-
cle lead to different perturbed trajectories. This is depicted
in Fig. 4. Two initially opposite points, marked in the figure
by the small open circles, create two outer blue trajectories.
Their evolution is followed during 107 turns and every 1000-
th point is shown in the plot. The region in grey in the middle
is filled with all other trajectories. The unperturbed ideal cir-
cle with the center at the origin is shown by the green dashed
line. As one can see, the center of the blue circles is shifted
due to the change of the orbit in x and x ′. This will be dis-
cussed in more detail in Sect. 3.8. Note that the ideal green
circle is infinitely “thin”, but the blue points are scattered
because of the beam–beam x–y coupling and the variations
in the other zy-projection. The “thickness” of the blue tra-
jectories increases with the force strength. For much larger
forces the trajectory becomes significantly non-circular.

In the adiabatic case, the trajectories change slowly and
the particles have time to redistribute over them. The initial
position on the circle then has little importance, and the whole
initial circle transforms to approximately one final trajectory
shown in red in Fig. 4. Here, the beam–beam interaction
is slowly switched on during 1000 turns and then, as in the
previous case, every 1000-th turn is shown out of 107 in total.
The red trajectory has approximately the same spread as the
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Table 1 Bunch parameters from [24] describing one of van der Meer calibration scans in ATLAS

p Z1,2 βx,y Tune Qx , Qy Bunch σ N1,2

3500, GeV 1 1.5 m 64.31, 59.32 40 µm 8.5 × 1010

Fig. 4 The trajectories of the particles with rx = 20, ry = 30 µm in zx
projection for the bunches separated in x by 40 µm with the parameters
from Table 1 as an example. The outer blue trajectories are formed by
two initially opposite particles (marked by small open circles) after the
instantaneous switch of the beam–beam force. The grey band between
them is composed of such trajectories from all particles. The adiabatic
trajectory is in red and the initial circle with rx = 20 µm is shown by
the green dashed line

blue outer ones but less than the grey band composed of many
trajectories initiated by the instantaneous switch.

In any case, the spread is negligible compared to the width
of the opposite bunch, namely, 40 µm in Fig. 4. Therefore,
the contribution to the overlap integral in (3.13) is essentially
determined by the infinitely “thin” average trajectory, which
is the same in both instantaneous and adiabatic switch cases.
The integral does not depend on the way how the beam–beam
force is switched on. This is demonstrated in Fig. 5 by the
blue and red points for various beam separations.

In both cases only 500 (100) accelerator turns were simu-
lated to determine the perturbed (initial) overlap integral. In
the adiabatic case the force was switched on during 100 turns.
The error bars show the standard deviations of the results
obtained with different random generator seeds. Clearly, the
adiabatic switch is preferable. The instantaneous switch leads
to the spread of the trajectories and larger statistical fluctua-
tions of the final integral.

The central black points in Fig. 5 are the result of the sim-
ulation when the beam–beam force was switched on slowly
in 104 turns and the luminosity integral was calculated over
106 turns. As one can see from Fig. 5, simulating only 500
turns already gives sufficient accuracy. The default B*B val-

Fig. 5 The deviation of the ratio R defined in (3.20) from unity in per
mille in the x-scan versus the separation of the bunches expressed in the
bunch widths. The beam parameters are taken from Table 1. The error
bars show the standard deviation of the results when the simulation was
repeated with different random seeds 100 and 25 times for instantaneous
(blue) and adiabatic (red points) switch of the beam–beam force, respec-
tively. The number of simulated turns are [N no B B

turn , N adiab
turn , N B B

turn] =
[100, 0, 500] (blue), [100, 100, 500] (red), [10 000, 10 000, 1 000 000]
(black). The red and blue points are displaced horizontally to the left
and right, respectively, to reduce overlapping

ues, N no B B
turn = 1000, N adiab

turn = 1000 and N B B
turn = 5000,

are, therefore, quite conservative and may be reduced by a
factor of 10 in practice.

After the beam–beam force is fully switched on and before
calculating the overlap integral over N B B

turn turns in the final
stage, the B*B simulation has an option to run N stab

turn turns
for a “stabilization”. This period is not used for calculating
the luminosity integral. Normally this parameter can be set to
zero because, for example, in the adiabatic case the particle
arrives at its final trajectory as soon as the force reaches its
nominal value. The following evolution does not change the
trajectory. N stab

turn parameter exists only for flexibility and for
experimenting with the B*B simulation.

3.4 Lissajous curves

Without the beam–beam interaction the x–y trajectory of a
particle placed at the zx , zy-circles with the radii (rx , ry) and
with the initial phases φ0

x,y is described by (3.9):

xn = rx cos(2π Qx n + φ0
x ), yn = ry cos(2π Qyn + φ0

y),

(3.21)

i.e. appears to be a Lissajous curve. The beam–beam force
leads to the dispersion of the trajectory as shown in Fig. 6
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Fig. 6 Left: the trajectory of one particle with rx = 20, ry = 30 µm
followed during 5000 turns in the presence of the beam–beam force. The
bunch parameters are from Table 1 except the tunes. The black points
are obtained with Qx = 0.3, Qy = 1/3. The red points, scattered in the
background, are simulated with Qx , Qy shifted by +e−8.5/4,−e−8.5/4,
respectively. Right: the probability density of x–y localization of the
particle followed during 106 turns

left by the black points for the artificial values Qx = 0.3,
Qy = 1/3 and 5000 accelerator turns.

In general, for the rational Qx,y and a small beam–
beam force the trajectory “cycles” after LC D(Qx , Qy) turns
where LC D denotes the lowest common denominator. In the
above example LC D(3/10, 1/3) = 30, so after one “cycle”
with 30 turns the phase increments 30 · Qx,y become integer
and the following turns pass through approximately the same
region of the phase-space. Therefore, they do not immedi-
ately improve its sampling. After many more turns the beam–
beam spread forces the points to fill and to sample the whole
rectangle, but then the simulation takes too much CPU time.

To improve the sampling but keep the number of turns
low, one can artificially shift Qx,y by a small amount and,
for example, make them irrational. This “opens” the Lis-
sajous curve, so that it fills the whole rectangle |x | < rx ,
|y| < ry even without the beam–beam force. The modifi-
cation should be sufficiently small to ensure that the overlap
integral changes negligibly. In B*B two small irrational num-
bers δQx,y randomly distributed in the interval [−ε, ε] are
added to Qx and Qy by default, where ε is chosen to be
e−8.5/2 = 1.01734 · · · × 10−4. As an example, the points
obtained with the shifts δQx = ε/2, δQy = −ε/2 in 5000
turns are shown in Fig. 6 left by the red points. They much
better fill the rectangle. This modification of the tunes is con-
figurable and can be switched off if desired.

When the trajectory fills the whole rectangle, the proba-
bility density of the particle peaks at the boundaries. This is
shown in Fig. 6 right for N B B

turn = 106. This can be under-
stood from the simple case when the beam–beam force is
absent and at least one of Qx,y is irrational, so that the Lis-
sajous curve is open. Then, the density is factorizable in x
and y, ρrx ,ry (x, y) = ρrx (x)ρry (y). The terms ρru (u), where

u = x, y, can be derived by projecting the uniform density
dφ/2π of the zu-circle with the radius ru to the u-axis:

ρru (u) = 1

2π

∣∣∣∣dφ

du

∣∣∣∣ = 1

2πru

∣∣∣ d cos φ
dφ

∣∣∣
= 1

2π
√

r2
u − u2

.

(3.22)

Therefore,

ρrx ,ry (x, y) = 1

4π2
√

(r2
x − x2)(r2

y − y2)
. (3.23)

It is interesting that the smooth two-dimensional x–
y Gaussian shape of any bunch is always intrinsically
composed from such peaking ρrx ,ry densities. As follows
from (3.17), they should be taken with the weights ∝
exp(−r2

x /2σ 2
x − r2

y/2σ 2
y )dr2

x dr2
y . Conversely, only the dis-

tributions decomposable to ρrx ,ry can represent the bunch
shapes ρ1,2(x, y).

The functions Ku(s) in (3.1) and the accelerator phase
advances (3.4) can be modified by configuring the quadrupole
currents. The LHC tune values in all Run 1 and 2 van der
Meer scans were deliberately kept constant: Qx = 64.31,
Qy = 59.32. The fractional parts of these values have two
digits after the comma, and their lowest common denomina-
tor is LC D(0.31, 0.32) = 100. This is larger than 30 from
the example above, so the phase-space sampling is better.
The tiny tune change δQ ∼ 10−4 mentioned above intro-
duces a sizeable spread to the trajectory only after O(103)

turns. Figure 5 shows, however, that 500 turns are already
sufficient to get the required accuracy for the bunch settings
from Table 1 if the beam–beam force is switched on adiabat-
ically. With 500 turns the small irrationality δQx,y ∼ 10−4

does not matter. The luminosity bias due to modifications of
Qx,y is also negligible, it is less than 5 × 10−5 for all bunch
separations. Therefore, δQx,y plays no role here but might be
useful in the cases when LC D(Qx , Qy) is relatively small
or to improve the accuracy of the overlap integrals in exper-
imenting with individual particles.

With a low number of turns ∼ O(100), it is important to
choose them as multiples of LC D(Qx , Qy). For the LHC
tunes, they should be multiples of 100, like N no B B

turn = 100,
N B B

turn = 500 in Fig. 5. This ensures that every particle trajec-
tory is sampled an integer number of “cycles”. Not complete
“cycles” introduce a bias and a dependence on the initial
phases.

Figure 7 shows the luminosity R-correction from (3.20)
in the x-scan calculated “cycle-by-cycle”, i.e. averaged over
non-intersecting 100-turn windows. Six facets correspond to
different bunch separations. One can see small “oscillations”
for large separations. This is the reason for larger red error
bars in Fig. 5 at higher bins. They show the level of statistical
fluctuations of R-averages over N B B

turn = 500 turns, i.e. over
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Fig. 7 (R−1)×103 in the x-scan versus the “cycle” number, where R
is defined in (3.20) and averaged per “cycle”, i.e. within non-intersecting
windows of 100 accelerator turns. Green and yellow bands delimited by
the two vertical dashed lines correspond to N no B B

turn = 1000 first turns
without the beam–beam force and next N adiab

turn = 1000 turns when it
is being adiabatically switched on. The facet labels denote the bunch
separation in the bunch sigmas. The simulated beam parameters are
listed in Table 1

the first 5 beam–beam “cycles” to the right from the second
vertical dashed line in Fig. 7.

3.5 Beam–beam interactions at several interaction points

During van der Meer scan, at each LHC experiment there are
colliding and not colliding bunches. Since ATLAS and CMS
detectors are exactly opposite in the LHC ring, due to this
symmetry they share the same colliding bunch pairs. On the
other hand, these pairs never collide in ALICE and LHCb.
The latter can have either “private” bunch pairs not colliding
anywhere else or pairs with one or both bunches colliding
in one, two or three other experiments. The beam–beam dis-
turbance at any interaction point propagates everywhere in
the LHC ring and biases van der Meer calibrations in other
experiments.

B*B allows to determine the luminosity correction in the
general case of one bunch colliding with an arbitrary number
N of fixed bunches of specified geometries at other interac-
tion points. One should also specify their beta-functions β i

x,y
and the constant phase advances normalized by 2π

Qi
x,y = 1

2π

∫ si

s1

dζ

βx,y(ζ )
(3.24)

between the first and i-th points. By definition, the first point
has Q1

x,y = 0. The emittance εx,y of the particle in the linear
accelerator is conserved everywhere in the ring, therefore,
the radii of the circles at different interaction points scale
according to (3.2) as r i

u = √
εuβ i

u ∝ √
β i

u . The recurrence
relations then take the form

z2
n+1,u =

(
z1

n,u − iβ1
u�u′1) e2π i

(
Q2

u−Q1
u
)√

β2
u/β1

u ,

z3
n+1,u =

(
z2

n,u − iβ2
u�u′2) e2π i

(
Q3

u−Q2
u
)√

β3
u/β2

u ,

. . .

z1
n+1,u =

(
zN

n,u − iβN
u �u′N )

e2π i
(
Qu−QN

u
)√

β1
u/βN

u .

(3.25)

Let’s consider, for example, the last equation. The kick �u′N
is determined by the electrostatic field at the last interaction
point N at the position (x N , yN ) = (Re(zN

x ), Re(zN
y )). The

factor e2π i
(
Qu−QN

u
)
, where Qu is the full tune, rotates the

phase, while the term
√

β1
u/βN

u changes the radii scale from
the last to the first interaction point. Note that to simulate the
perturbation of the second bunch, the order of the interaction
points should be reversed, N → (N −1) → · · · → 1 → N ,
due to its opposite direction. Also note that, contrary to the
overall tunes, the phase advances at LHC are different for two
beams. For example, their values in Run 2 proton–proton van
der Meer scans at

√
s = 13 TeV are listed in Table 2.

Figure 8 shows how the luminosity in a scan at one LHC
interaction point is affected by the beam–beam force at other
points. As an example, here the bunch of the first beam collid-
ing at all four LHC experiments is simulated. The luminosity
change due to the beam–beam perturbation of only this bunch
is presented in the plot. To get the full change, a similar con-
tribution due to the perturbation of the opposite bunch should
be simulated and added. Note that each of the four opposite
bunches might collide with other bunches at other interaction
points and this needs to be included in its simulation.

The β-function values for Fig. 8 simulation are listed in
Table 2. Together with the ATLAS beam parameters from
Table 1 they are taken from [24]. The number of parti-
cles and emittances of all bunches are the same. The emit-
tances are determined from the bunch width and β-value
at ATLAS. Four plots in Fig. 8 show the R-corrections
from (3.20) when the scan is performed along the x-axis at
ATLAS, ALICE, CMS and LHCb, respectively. Let’s denote
the scanned experiment by the index i = 1, 2, 3, 4. The cor-
rections are calculated and color-coded separately when the
force is switched on only at the j-th LHC interaction point
(Ri, j ) or simultaneously at all (Ri,1234). One can see that the
latter, shown by the solid circles, is relatively close to the
product of the four corrections Ri,1 Ri,2 Ri,3 Ri,4 each calcu-
lated in the absence of the beam–beam force at three other
points.

In addition to the luminosity corrections at the scanned
interaction point, B*B automatically calculates similar cor-
rections at all other experiments where the beams remain sta-
tionary. In the simulation of Fig. 8, they collide head-on. The
corresponding R-corrections are not shown because they are
not needed for van der Meer calibration. They less depend on
the separation and are closer to unity, the mismatches do not
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Table 2 The phase advances Qi
x,y defined in (3.24) for two LHC beams in x and y directions with respect to ATLAS in Run 2 proton–proton van

der Meer scans at
√

s = 13 TeV. Last column lists the beta-functions βx = βy from [24] used in Fig. 8 simulation

Qbeam 1
x Qbeam 2

x Qbeam 1
y Qbeam 2

y βx,y , m

ATLAS 0 0 0 0 1.5

ALICE 8.2960 8.2728 7.6692 7.9577 10

CMS 31.9757 31.9844 29.6486 29.7613 1.5

LHCb 56.0648 55.7990 51.0171 51.7158 3

Fig. 8 (R − 1) × 103 versus the beam separation expressed in bunch
widths. The facets correspond to the x-scans at four LHC interaction
points i = 1, 2, 3, 4. The solid black (colored dotted) lines with the
smaller open circles correspond to the correction Ri,i (Ri, j , j �= i)
when the beam–beam force is switched on only at the scanned LHC
interaction point i (one of three other points j �= i). The case when the
beam–beam force is switched on at all four points, Ri,1234, is shown by
the blue solid curves with the larger solid circles. The purple dashed
lines with the larger open circles are their approximations by the four-
products Ri,1 · Ri,2 · Ri,3 · Ri,4. The beams at not scanned interaction
points collide head-on. The simulation parameters are listed in Tables
1 and 2

exceed 4×10−3. B*B also allows to simulate the beam–beam
interactions at multiple points and to calculate all luminosity
corrections when the scans are performed simultaneously in
several experiments.

3.6 Invariance under βx,y , p, ε and N scalings

As one can see from Table 2, the beta-functions β i
x,y and,

therefore, the bunch widths σi ∝ √
β i in the simulated exam-

ple are different at ATLAS/CMS, ALICE and LHCb. ALICE
has the largest bunches and the smallest beam–beam kick.

The solid black curves in Fig. 8 correspond to Ri,i correc-
tion when the beam–beam force is switched on only at the
scanned experiment. One can see that all such curves in the
four facets are the same and also identical to Fig. 5. Let’s
understand why this happens despite different bunch widths
and kicks.

Scaling of both βx and βy by a constant factor βx,y →
αβx,y changes the linear scale in the zx,y planes by

√
α.

The two-dimensional electrostatic field from a point charge q
drops with the distance as ∝ 1/R, so the angular kick changes
as �u′ → �u′/

√
α. According to the definition (3.8), in the

zu complex planes the angular kick is additionally multiplied
by β, so �zu = −iβu�u′ scales as �zu → √

α�zu . There-
fore, the distributions of two bunches and the kicks �zx,y

scale proportionally to
√

α. New particle trajectories can be
obtained by the simple

√
α-scaling of the whole zx,y planes.

This modifies the luminosities by α but keeps constant their
ratios, e.g. R in (3.20).

To stress this invariance, it is better to rewrite (3.25) via
the ratios zu/

√
βu :

z“i+1′′
n+1,u√
β“i+1′′

u

=
(

zi
n,u − iβ i

u�u′i
√

β i
u

)
e

2π i
(

Q“i+1′′
u −Qi

u

)
, (3.26)

where “i + 1′′ index denotes the next interaction point, e.g.
the first after the last, while Q“N+1′′

u is the full tune Qu .
Variables in the complex planes zu/

√
βu have another

advantage: they do not change across the interaction points in
the ideal linear accelerator. Indeed, both the phase Arg(zu) =
φu and the absolute value

∣∣zu/
√

βu
∣∣ = √

εu are invariant,
since the emittance εu is conserved. So, the complex planes
zx/

√
βx and zy/

√
βy are common to all interaction points. As

we have seen, the beam–beam kick −iβ i
u�u′i/

√
β i

u in (3.26)
happen to be invariant to the scalingβ i

x,y → αiβ i
x,y with arbi-

trary αi because of ∝ 1/R Coulomb’s law in two dimensions.
Therefore, the trajectories in the zu/

√
βu planes drawn from

the fixed initial points z1
u/

√
βu using (3.26) do not depend

at all on β i
u values. This is true under the condition that β i

x
and β i

y scale proportionally but independently in different
experiments. If β i

x/β
i
y ratio changes at any point i , this also

changes the relative xi and yi scales in Ri = √
(xi )2 + (yi )2

and in the Coulomb’s law, and breaks the kick invariance.
At LHC, however, typically at all interaction points the two
beta-functions are equal, β i

x = β i
y .

The horizontal axes in Figs. 5 and 8 are also chosen
in the form of the scale-invariant ratio. Therefore, all Ri,i -
correction curves shown in these figures do not depend on the
specific β i

x = β i
y values from Tables 1 and 2. They are deter-
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mined only by the distribution of the emittances εu or the
areas of the zu-circles πr2

u = πεu . For example, β i = 1 m
at all four experiments leads to the same figures.

Contrary to the tune values, the phase advances are spe-
cific for each experiment. Therefore, with multiple interac-
tion points this symmetry between the experiments is lost
and Ri,1234 and Ri, j , i �= j curves in Fig. 8 are different.

There is another interesting invariance of the beam–beam
perturbations. During acceleration of the particles, their
angles u′ decrease due to the growth of the longitudinal
momentum. If the acceleration is sufficiently slow, like at
LHC, the emittance decreases according to the “adiabatic
damping” formula

εu = ε̃u · m/p, (3.27)

where m is the mass of the particle and ε̃u is the constant nor-
malized emittance. Therefore, when p increases, the complex
plane zu/

√
βu shrinks as 1/

√
p and the beam–beam force

increases as
√

p. The angular beam–beam kick �p/p con-
tains p in the denominator as in (2.6), and decreases as 1/

√
p,

i.e. coherently with the zu/
√

βu complex plane. Therefore,
in the complex plane corresponding to the normalized emit-
tances zu

√
p/mβu = √

ε̃ueiφu the trajectories remain invari-
ant if the phase advances are constant and ε̃u are conserved.
The beam–beam perturbations of the bunches with identi-
cally distributed normalized emittances are identical.

Finally, let’s formulate the scaling law for the number of
particles N2 in the opposite bunch. It will be called “second”
in the following to distinguish from the “first” bunch with
the studied trajectories. The bunch variables will be marked
by the corresponding indices.

Multiplying the normalized emittance of the first bunch
by α increases the linear scale by

√
α and reduces the beam–

beam angular kick by 1/
√

α. In order to have the same
√

α

change in the linear and angular scales for the first bunch, the
beam–beam force from the second should be enhanced by
α. This can be achieved by increasing Z1 Z2 N2. Therefore,
the simultaneous scaling of ε̃1u and Z1 Z2 N2 by the same
factor changes the scale but not the shapes of the first bunch
trajectories. It also keeps constant the luminosity correction
ratios. If the trajectories are analyzed in the complex plane

z1u

√
p1

m1βu1 Z1 Z2 N2
=

√
ε̃1u

Z1 Z2 N2
eiφ1u , (3.28)

the results depend only on the initial distributions, the phase
advances and β1x/β1y ratios, but do not depend on the indi-
vidual values of β1x,1y , ε1u , p1, Z1,2 or N2. Only their com-
bination

ε̃1u

Z1 Z2 N2
= ε1u p1

Z1 Z2 N2m1
(3.29)

matters. This can also be confirmed with the B*B simulation.

3.7 Simulation of the beam crossing angle

If the beams collide with the crossing angle as in Fig. 1,
the betatron oscillations occur in the planes transverse to the
beam vectors v1,2. They determine the transverse widths σiT

of the bunches i = 1, 2. The luminosity, however, depends
on the bunch widths σ ′

iT perpendicular to �v. According to
(1.21), they get additional contributions from the longitudinal
widths σi L .

The beam–beam kick is also perpendicular to �v either
in the laboratory or, for example, in the rest frame of the first
bunch particle q1 shown in Fig. 2. Therefore, q1 “sees” the
opposite bunch width σ ′

2T enhanced by σ2L , and this value
should be used in the B*B simulation for ρ2. The bunch
creating the field is “static” in the B*B model, its betatron
transverse motion and σ2T do not matter.

However, to simulate the betatron trajectories in the first
bunch, the initial widths σ1x , σ1y should be specified in B*B
without the longitudinal component. The betatron oscilla-
tions are insensitive to σ1L spread. Since the crossing angles
are small at LHC, α1,2 = α < 10−3, the kicks calculated in
the primed frame with the parallel beams can be propagated
without changes to the frame of the betatron motion. Simi-
larly, the simulated x , y beam transverse coordinates can be
propagated back for the luminosity calculation.

In this way the luminosity correction is determined for
the unperturbed widths σ1T , σ ′

2T instead of the required
σ ′

1T , σ ′
2T . Therefore, the final density ρ1+δρ1, corresponding

to σ1T , should be additionally smeared by the contribution
from σ1L . This is performed in the B*B simulation in the
following way. Let’s consider the general case when neither
x nor y of the first bunch lies in the crossing plane, and
denote by β1 the angle between the x-axis and the projec-
tion of the crossing plane to the x–y plane. The perturbed
density ρ1 + δρ1 should then be convolved with the two-
dimensional Gaussian G(x, y) with the sigmas ασ1L cos β1

and ασ1L sin β1 in x and y, respectively. If, for example, the
x-axis belongs to the crossing plane and β1 = 0, the smearing
occurs only along x with the sigma ασ1L , while G(x, y) pro-
jection to y reduces to the delta-function. Instead of smearing
ρ1 + δρ1 in the overlap integral, it is simpler to perform an
equivalent smearing of ρ2:

L ∝
∫

((ρ1 + δρ1) ∗ G) ρ2 d2r

=
∫ (∫

(ρ1 + δρ1)(r′)G(r − r′)d2r′
)

ρ2(r)d2r

=
∫

(ρ1 + δρ1)(r′)
(∫

G(r′ − r)ρ2(r)d2r
)

d2r′

=
∫

(ρ1 + δρ1) (G ∗ ρ2) d2r′, (3.30)
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since G(r − r′) = G(r′ − r), where r and r′ denote the
two-dimensional vectors in the (x, y) plane.

To implement this scheme, the B*B simulation takes the
values

�σ i
1x = ασ1L cos β1, �σ i

1y = ασ1L sin β1 (3.31)

as configurable parameters defining the Gaussian Gi (x, y)

for each interaction point i . Its convolution with the multi-
Gaussian ρ2 is performed analytically. The result is used in
(3.13) instead of ρ2 for the overlap integral calculation. Note
that it receives contributions from both σ1L and σ2L . The
field is determined from ρ2 not smeared by Gi (x, y), where
only σ2L contributes. The beam–beam perturbation of the
longitudinal beam dynamics is neglected and the longitudi-
nal spread is always approximated by a single Gaussian. By
default the parameters (3.31) are zero.

3.8 Cross-checks and comparison with the old model used
at LHC in 2012–2019

In Sect. 2.4 it was shown that the full beam–beam force
exerted on the first bunch can be easily calculated as the force
between the first bunch collapsed to the origin (0, 0) and the
second one with the density “inflated” from ρ2 to ρ̃1 ∗ ρ2.
In case of the Gaussian bunches with the widths σ1,2;x,y and
the centers r0

1,2, the cross-correlation ρ̃1 ∗ ρ2 is also Gaus-

sian and has the widths 
x,y =
√

σ 2
1;x,y + σ 2

2;x,y and the

center �r0
21 = r0

2 − r0
1. Its electrostatic field E2u , given

by (2.10) or (2.12), allows to calculate the average angular
beam–beam kick �u′ = q1 E2u/p1c = eZ1 E2u/p1c, of the
first bunch particles. This value is exact if all bunch particles
move with the opposite and constant velocities close to the
speed of light, so that one can calculate the kicks using the
laws of electrostatics.

Let’s substitute the beam–beam angular kick by its aver-
age. The x- and y-directions then decouple. To simplify nota-
tions, let’s drop the coordinate subscript u, denote the one-
turn phase advance by 2π Q = φ, introduce the constant
� = β1�u′ = β1q1 E2u/p1c and consider for simplicity the
case with only one interaction point. The recurrence relation
(3.10) then defines the geometric sequence

zn+1 = (zn − i�)eiφ

= z1einφ − i�eiφ
(

1 + eiφ + e2iφ + · · · + ei(n−1)φ
)

= z1einφ − i�eiφ einφ − 1

eiφ − 1
. (3.32)

This can be rewritten as

zn+1 − i�eiφ

eiφ − 1
=

(
z1 − i�eiφ

eiφ − 1

)
einφ. (3.33)

A comparison with the equation zn+1 = z1einφ without the
beam–beam interaction shows that the constant kick only
shifts the center of rotation from the origin to the point

z0 = i�eiφ

eiφ − 1
= eiφ/2

2 sin φ
2

= �

2 tan φ
2

+ i
�

2
. (3.34)

Its real part determines the shift of the beam orbit, while
the scaled imaginary part −I m(z0)/β1 = −�u′/2 gives the
angular shift just before the beam–beam interaction. After
receiving the kick +�u′, it flips from −�u′/2 to +�u′/2,
while the next accelerator turn changes it back to −�u′/2.

The orbit shift expressed in the bunch widths should be
invariant and should depend only on ε̃1/Z1 Z2 N2. Indeed,
since � = β1�u′ = (

σ 2
1 p1/ε̃1m1

) · (eZ1 E2u/p1c), it can
be written as

Re(z0)

σ1
= e(E2uσ1)

Z2 N2
· 1

2m1c tan φ
2

· Z1 Z2 N2

ε̃1
. (3.35)

Here, E2u has ∝ Z2 N2/R dependence, so e(E2uσ1)/Z2 N2

is invariant. For example, for the round bunches with σ1 =
σ2 = σ , 
x,y = √

2σ separated in x by �x , substituting
E2u from (2.10) or (2.11) gives

Re(z0)

σ
= 1 − e−�x2/4σ 2

�x/σ
· α�

m1 tan φ
2

· Z1 Z2 N2

ε̃1
. (3.36)

The maximal value of the first term depending only on �x/σ

is 0.31908 . . . . Therefore, for protons one has

Re(z0)

σ
≤ N2

(2.0420 · · · × 1012) · [ε̃1/µm] · tan φ
2

, (3.37)

which is less than 1% for the typical LHC values ε̃1 ≈ 3 −
−4 µm, N2 ≈ (7−9) × 1010 and φx/2 = 0.31π , φy/2 =
0.32π .

In case of several interaction points with the phase
advances 2π Qi = φi with respect to the first point where
by definition φ1 = 0, and the constant kicks �i , i =
1, 2, . . . , N , the first equation in (3.32) modifies to

zn+1 = zneiφ − i�1eiφ − i�2ei(φ−φ2) − · · · − i�N ei(φ−φN ), (3.38)

which becomes equivalent to (3.32) after the substitution

N∑
i=1

�i e
−iφi = �. (3.39)

So, we have again a circular trajectory with the center shifted
to

z0 =
i
(∑N

i=1 �i e−iφi

)
eiφ

eiφ − 1
=

∑N
i=1 �i ei[φ/2−φi ]

2 sin φ
2

=
∑N

i=1 �i cos(φ
2 − φi )

2 sin φ
2

+ i

∑N
i=1 �i sin(

φ
2 − φi )

2 sin φ
2

,

(3.40)
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whose real and opposite imaginary parts define the spatial and
β1-scaled angular shifts, respectively. This formula is very
well known in the accelerator physics, which uses different
tools for its derivation [30].

For experimenting and debugging, B*B has configurable
options to substitute the exact kick formula by its average
and to output the x , y orbit shifts. The latter are calcu-
lated as weighted sums

∑N
i=1 wi ui over the simulated par-

ticle coordinates ui , averaged over accelerator turns simi-
larly to (3.13). For example, with (N no bb

turn , N adiab
turn , N bb

turn) =
(100, 100, 500), default other settings and the single inter-
action point with the parameters from Table 1, the mismatch
between the simulated and predicted orbit shifts averaged
over the beam separation range [0−200]µm has the stan-
dard deviation σ � 2 nm. The maximal predicted orbit shift
is 0.28 µm. The simulated shifts without the beam–beam
force are compatible with zero with σ � 0.3 nm.

If the beam–beam interaction is small, even with the exact,
not constant kick the particle trajectory remains approxi-
mately circular as illustrated in Fig. 4. One particle trajec-
tory corresponds to two circles in zx,y-planes. The orbit shift
is then approximately determined by the beam–beam force
Ftr averaged over the trajectory like shown in Fig. 6, with
the x–y density projection (3.23). The circle from Fig. 4 in
the zx -plane shifts according to the average x-component
of the force Ftr

x , dependent, however, on the radius in zy-
plane. So, different zx,y-circle pairs have different Ftr and
shift differently. However, the ratio rRe/I m of the real and
imaginary parts in Eqs. (3.34) and (3.40) remains constant
regardless ofFtr . Therefore, the shifted centers z0 = x0+iy0

lie on the line rRe/I m = x0/y0 and the spatial and angular
shifts are proportional. Averaging over the bunch should pre-
serve this proportionality. Therefore, if �, �i denote exactly
known average bunch angular kicks in (3.34) and (3.40),
these equations should correctly predict the average z0 shifts.
For example, the real part Re(z0) predicts the spatial aver-
age or “orbit” shifts. Note that contrary to the exact average
angular kicks �u′ and �, the values of z0, i.e. the angular
and the orbit shifts calculated from (3.34) and (3.40), depend
on the assumption that the trajectories are approximately cir-
cular, which is violated for strong kicks or a large number of
interaction points.

As an example, Fig. 9 shows the x-orbit shifts in the same
simulation as in Fig. 8. The beam–beam kick is switched
on at all four interaction points. The mismatches between
the shifts calculated by the B*B simulation and the analytic
approximation (3.40) reach 26 nm. Although small in the
absolute scale, they are significantly larger than the statistical
fluctuations. The orbit shift along y-coordinate, where the
beams are not separated, is compatible with zero within σ =
0.4 nm.

In the old beam–beam model used at LHC in 2012–2019,
the field E2 in the momentum kick �p1 = q1E2/c was

Fig. 9 Upper row: x-coordinate averaged over the first bunch at four
experiments, lower row: its deviation from (3.40) approximation, both
in nm, versus the beam separation expressed in the bunch widths. The
column labels denote the scanned interaction points (marked by the
solid lines in the plots), at other points the beams collide head-on (the
dashed lines). The simulation is the same as in Fig. 8

not taken from (2.10) or (2.12) but was approximated by
a simple linear function of the x and y coordinates. The
constant term was chosen to reproduce the orbit shift from
(3.34). The slopes were taken from the derivatives ∂�p1/∂x ,
∂�p1/∂y at the first bunch center. The model was limited
to the case when the Gaussian bunches collided head-on
in the not scanned coordinate. Under this assumption, the
cross-derivatives ∂�p1,y/∂x , ∂�p1,x/∂y vanish, and the x ,
y-slopes were taken as ∂�p1,x/∂x , ∂�p1,y/∂y, respectively.
They can be calculated from (2.10) for the round bunches.
For example, in the x-scan at the center of the first bunch,
where R = �x , one has

1

k1

∂�p1,x

∂x

∣∣∣∣
x=�x,y=0

= − 1

�x2 +
(

1

σ 2
2

+ 1

�x2

)
e−�x2/2σ 2

2 ,

1

k1

∂�p1,y

∂y

∣∣∣∣
x=�x,y=0

= 1 − e−�x2/2σ 2
2

�x2 , (3.41)

where k1 = 2α�Z1 Z2 N2. The full kick at �x-separation was
approximated as the following linear function of x and y:

�p1,x ≈ x · ∂�p1,x

∂x

∣∣∣∣
x=�x,y=0

+ k1
1 − e−�x2/2(σ 2

1 +σ 2
2 )

�x

�p1,y ≈ y · ∂�p1,y

∂y

∣∣∣∣
x=�x,y=0

. (3.42)

Note that to reproduce the orbit shift in the first formula, the
constant term is not equal to the value of the kick at the bunch
center k1(1− e−�x2/2σ 2

2 )/�x . It contains σ 2
1 +σ 2

2 instead of
σ2 in the exponent. Therefore, (3.42) is not a linear expansion
of �p1,x .
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The linear kick significantly simplifies the analysis. As
known from the accelerator physics, in this case the Gaussian
bunch remains Gaussian. The offset term is equivalent to
the dipole magnet. It shifts the Gaussian center according to
(3.34). The linear terms u · ∂�p1,u/∂u

∣∣
x=�x,y=0 represent

the quadrupole magnets usually used to focus or defocus the
beams [30]. They modify the Gaussian widths according to
the formula

σ ′
u = σu

√
1 + β1

2 tan(2π Qu)

∂�p1,u

∂u

∣∣∣∣
x=�x,y=0

. (3.43)

Another simplification of (3.42) is that the x and y
kicks are independent, so the beam–beam x–y coupling is
neglected. Multiple interaction points also decouple and the
analysis can be limited to the point where the scan is per-
formed. Indeed, other interactions only modify bunch Gaus-
sian widths and centers, but in any case, they are consid-
ered as free parameters in van der Meer analyses. Since the
transverse positions of the beams at not scanned points are
kept constant, the beam–beam modifications are also con-
stant and do not bias van der Meer calibration. Although the
beam–beam kick at multiple points have been discussed and
simulated in [24], where the old model was introduced, in
practice this was never used.

For the Gaussian bunches, the luminosity can be calcu-
lated from the known centers and widths. In the old model the
luminosity modification due to the orbit shift, induced by the
equivalent dipole magnet, was calculated analytically. The
contribution from the quadrupole magnet was obtained using
LHC MAD-X accelerator simulation for the beam parame-
ters from Table 1. They were tabulated and then extrapolated
analytically to other bunch settings. Two contributions were
summed.

The results of the old quadrupole simulation for Table 1
settings are shown in Fig. 10 by the open circles. The curves
denoted by “D”, “Q” and “D+Q” correspond to the dipole,
quadrupole contributions and their sum, respectively. As in
other plots, the luminosity bias R − 1 from (3.20) due to the
perturbation of only one bunch is shown. The analytic cor-
rections due to the dipole orbit shifts (3.34), the quadrupole
bunch width changes (3.43) or both are shown by the corre-
sponding solid lines. One can see that the quadrupole MAD-
X simulation is well described analytically and (3.43) could
be used instead of the tabulated values in practice.

To compare these known results with B*B, its exact
kick formula was replaced by (3.42), by only its dipole or
quadrupole parts. The simulated values R − 1 are shown in
Fig. 10 by the solid points. They are also in good agreement
with the analytic predictions “D+Q”, “D” and “Q”, respec-
tively.

The B*B results with the exact kick are shown by the solid
circles connected by the dashed line “E”. They were already

Fig. 10 (R − 1) × 103 correction for the bunches with the parameters
from Table 1 colliding at one interaction point versus their separation in
the x-scan expressed in the bunch widths. The solid points are the results
of the B*B simulation when in the recurrence relation (3.10) the exact
formula (E), dipole constant dependent on the separation (D) or their
difference (E-D) are used. The open circles show the tabulated values
from the old simulation with the quadrupole kick (Q) and their sum
with the values from the dipole analytic formula (D+Q). The curves are
analytic predictions for the dipole (D), quadrupole (Q) kicks and their
sum (D+Q)

shown in Fig. 5. These results significantly differ from the old
“D+Q” simulation. Both “E” and “D+Q” contain the dipole
contribution. To compare with “Q” alone, the B*B simulation
was performed with the dipole constant subtracted from the
exact kick in the recurrence relation. The result is shown
as “E-D” curve. It differs significantly from “Q” and to a
larger extent compensates the luminosity reduction by “D”.
As expected, the sum of “D” and “E-D” is in agreement with
“E”.

The knowledge of the R-correction allows determining
the bias induced on the reference cross-section σ e.g. when
using (1.6) for the Gaussian bunches in one-dimensional x ,
y van der Meer scans. The integrals in (1.6) should be taken
over the unperturbed values

μsp ∝ e−�x2/2(σ 2
1 +σ 2

2 )

2πσ1σ2
(3.44)

modulated by R2 from Fig. 10 or the corresponding figure
for the y-scan. R should be squared to take into account
the perturbation of the second bunch. The luminosity cor-
rections for the x- and y-scans are slightly different because
of the difference in the fractional parts of the tunes Qx , Qy ,
0.31 �= 0.32. The resulting biases of van der Meer cross-
section σ ′/σ − 1 are shown in Fig. 11 separately for B*B,
dipole (D), quadrupole (Q) approximations and their sum
(D+Q). For the proton bunches colliding at one point, the
correction depends only on the specific normalized emittance
ε̃/N assuming identical bunches with N = N1 = N2 and
β1 = β2. Therefore, this variable is chosen as the horizontal
axis. As shown by the dashed line, the difference between
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Fig. 11 The beam–beam cross-section bias (σ ′/σ − 1) × 103 deter-
mined from (1.6) versus ε̃/N × 1011, where ε̃ is the normalized emit-
tance ε̃ = ε/(p/m p), identical for both bunches, m p is the proton mass
and N = N1 = N2 is the number of protons. The bias is calculated for
the single interaction point using B*B, analytic dipole (D), quadrupole
(Q) approximations or their sum (D+Q). The tunes are Qx = 0.31,
Qy = 0.32 and it is assumed that βx = βy = β. Under these condi-
tions, σ ′/σ depends only on the combination ε̃/N but not on ε, p, N
or β individually. The vertical dashed line shows the value ε̃/N × 1011

for the bunch parameters from Table 1

B*B and the old model for Table 1 settings is 0.96%. The old
linear kick approximation was too simple to describe accu-
rately the beam–beam luminosity bias.

4 Conclusions

The main tool for the absolute luminosity calibration at LHC
is van der Meer scan. Its systematics dominates the overall
luminosity uncertainty, which, in turn, gives one of the main
contributions to the uncertainty of the accurate cross-section
measurements, for example, in the electroweak sector.

Various details of van der Meer method are discussed in
the paper. Currently, the main sources of systematic uncer-
tainties are the beam orbit drifts, x–y non-factorizability and
the bunch deformations induced by the beam–beam elec-
tromagnetic interaction. The first two can be significantly
reduced by the accurate monitoring of the beam positions
and the two-dimensional scans, respectively. The formalism
of one- and two-dimensional scans is presented in the paper
in detail. Other sources of systematics include the measure-
ments of the bunch populations, the length scale calibration,
luminometer detector effects, other bunch shape changes dur-
ing the scan, e.g. after particle losses, and various unknown
factors contributing to the scan-to-scan non-reproducibility.
The alternative beam–gas and beam–beam imaging calibra-
tion methods are also briefly mentioned.

The beam–beam bias is the main subject of the paper. The
derivation of the beam–beam kick is presented in Sect. 2 from
the first principles together with the discussion of various
approximations and the induced errors. It is shown that under

the assumption of the constant and opposite velocities of the
bunch particles, the calculation of the beam–beam electro-
magnetic force reduces to the simple electrostatics between
the charges in the transverse plane. In particular, this allows
deriving the average kick formulas (2.18) and (2.19) for the
bunches of arbitrary shapes.

In the last section, we present the B*B simulation for cal-
culating the beam–beam luminosity corrections. Contrary to
the previous model with the linear kick used at LHC in 2012–
2019, it is based on the exact nonlinear electrostatic force
between the point and the Gaussian charge density, either
round (2.10) or elliptical (2.12). The perturbed particle tra-
jectories are followed in the accelerator assuming their ideal
transverse betatron motion with the known phase advances.
The perturbed luminosity is calculated at the interaction
points with maximally focused beams, where the derivative
of the β-function is zero, and the elliptical phase-space tra-
jectories of the betatron motion become circular.

The luminosity corrections due to the perturbations of two
bunches are calculated separately and then summed. It is
assumed that the bunch creating the field is not disturbed by
the beam–beam interaction. Therefore, the coherent oscilla-
tion modes of the two beams are neglected.

The B*B simulation allows to correct the beam–beam
luminosity bias in van der Meer scan point-by-point and to
remove it together with the associated x–y non-factorizability.
The bunch shapes may be approximated by an arbitrary sum
of Gaussians. The electrostatic field is pre-calculated and
then the interpolations are used to save CPU time. An arbi-
trary number of interaction points is allowed. The simulation
of different particles is parallelized in the processors with
multiple cores. The B*B code is written in C++. It can be
used as a standalone application or as a library available in
four computer languages: C, C++, python and R.

In Sect. 3.6 it is shown that, for example, the first
bunch phase-space trajectories drawn in the complex planes√

ε̃1x,1y/Z1 Z2 N2 · eiφ1x,1y are determined only by the initial
distribution of ε̃1x,1y/Z1 Z2 N2 ratios, by the phase advances
and β1x/β1y ratios, if the normalized emittances ε̃1x,1y =
ε1x,1y/(p1/m1) are conserved. They do not depend on the
individual values of the beta-functions β1x,1y , the emittances
ε1x,1y , the momentum p1, the proton numbers Z1,2 or the
number of particles in the opposite bunch N2. This leads
to the corresponding invariance of the luminosity correction
ratios.

For the bunch parameters from Table 1, i.e. for the refer-
ence values of the old model with the linear kick, the B*B
simulation predicts 0.96% less van der Meer cross-section
correction than the old model. As one can see from Fig. 11,
the latter significantly overcorrects the bias. This needs to be
propagated to all LHC cross-sections after 2012 taking into
account the bunch parameters in the corresponding van der
Meer calibrations. For other Run 2 proton–proton van der
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Meer scans the discrepancies are in the range 0.8–1.4%. The
B*B predictions are going to be used at LHC in the future
calibration analyses, for example, they already appear in [31].
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