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Abstract In this work, we study the strong decays of the
newly observed Ξ(1620)0 assuming that it is a meson-
baryon molecular state of ΛK̄ and Σ K̄ . We consider four
possible spin-parity assignments J P = 1/2± and 3/2±
for the Ξ(1620)0, and evaluate its partial decay width into
Ξπ and Ξππ via hadronic loops with the help of effec-
tive Lagrangians. In comparison with the Belle data, the
calculated decay width favors the spin-party assignment
1/2− while the other spin-parity assignments do not yield
a decay width consistent with data in the molecule picture.
We find that about 52–68% of the total width comes from
the K̄Λ channel, while the rest is provided by the K̄Σ chan-
nel. As a result, both channels are important in explaining
the strong decay of the Ξ(1620)0. In addition, the transi-
tion Ξ(1620)0 → πΞ is the main decay channel in the
J P = 1/2− case, which almost saturates the total width.
These information are helpful to further understand the nature
of the Ξ(1620)0.

1 Introduction

Understanding baryon spectroscopy and searching for miss-
ing baryon resonances are hot topics in hadron physics. From
the viewpoint of the quark model, the number of Ξ states
should be comparable with that of nucleon resonances. At
present, there are eleven Ξ baryons listed in the review of
the Particle Data Group (PDG) [1], which is far less than
the number of nucleon baryons. Among them, the Ξ(1620),
Ξ(2120), and Ξ(2500) are three peculiar states, since they
are catalogued in the PDG with only one star and their spin
and parity are unknown [1]. In other words, the experimental
evidence for these three Ξ bayrons are quit poor, and it is not
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yet clear whether they really exist. Fortunately, the Ξ(1620)0

was recently observed in the Ξ−π+ final state by the Belle
Collaboration [2]. Its mass and width are, respectively,

M = 1610.4 ± 6.0(stat)+5.9
−3.5(syst) MeV,

Γ = 59.9 ± 4.8(stat)+2.8
−3.0(syst) MeV, (1)

which are consistent with the earlier measured values [3,4].
Its spin-parity, however, remains unknown.

It needs to be stressed that the quark model, originally
pioneered by Gell–Mann and Zweig, still remains a useful
yardstick for baryon spectroscopy. However, one common
characteristic of the quark model is that it is very difficult to
accommodate the Ξ(1620) [5,6]. In particular, the low mass
of the Ξ(1620) is puzzling in the quark model if its existence
is further confirmed by future experiments. It is very inter-
esting to note that the authors of Ref. [7] tried to assign the
Ξ(1620) to a conventional uss or dss state with J P = 1/2−.
Although their model satisfies the Gell–Mann–Okubo mass
relation, it requires the existence of very low mass nucleon
and Λ resonances, which have not been discovered yet.

These peculiar properties of the Ξ(1620) can be naturally
accounted for in the hadronic molecule picture. Indeed, in
Ref. [8], Ramos et al. suggested to identify the Ξ(1620) as a
dynamically generated S-wave Ξ resonance based on an uni-
tary extension of chiral perturbation theory, which predicts a
Ξ resonance with a mass around 1606 MeV. In other similar
approaches (that differ in details) [9–11], the Ξ(1620) is also
dynamically generated, with a relatively larger decay width.
This state strongly couples to πΞ and K̄Λ, and it is thought
to originate from the strong attraction in the πΞ channel [9–
11]. In the Skyrme model [12], Yongseok predicted two Ξ

resonances with J P = 1/2−, which have masses consistent
with those of the Ξ(1620) and Ξ(1690).
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Following the discovery of the Ξ (1620), several theo-
retical studies have been performed [13,14]. In the Bethe–
Salpeter equation approach under the ladder and instanta-
neous approximations, based on the analysis of the mass
spectrum and the two-body strong decays, the Ξ (1620)
is explained as K̄Λ or Σ K̄ bound states with spin-parity
J P = 1/2− [13]. We note that the decay widths are 36.94
MeV and 9.35 MeV for the K̄Λ and Σ K̄ bound states,
respectively. In comparison with the Belle data, it is obvi-
ous that the Ξ (1620) has a larger contribution from the K̄Λ

component than the Σ K̄ component. From this perspective,
it is easy to understand the results of Ref. [14], where it was
shown that the K̄Λ interaction is strong enough to form a Ξ

bound state with a mass about 1620 MeV and J P = 1/2−
in the framework of the one-boson-exchange (OBE) model.

Although the studies of Refs. [8–14] seem to indicate that
the Ξ(1620)0 is a hadronic molecular state, more theoretical
efforts are needed to fully understand its nature. Considering
both the theoretical results [9–11,14] and the latest experi-
mental measurement that the mass of Ξ(1620)0 is about 3
MeV below the K̄ 0Λ threshold [1], it is reasonable to regard
Ξ(1620)0 as a bound state of K̄ 0Λ. Note that in Refs. [8,13]
theΞ(1620) is treated as a meson-baryon state with largeΛK̄
and Σ K̄ components. In the present work we study the Ξπ

decay mode of the Ξ (1620), using an effective Lagrangian
approach and assuming that the Ξ (1620) is a hadronic molec-
ular state of ΛK̄ and Σ K̄ with the following four spin-parity
assignments: J P = 1/2± and 3/2±.

This work is organized as follows. The theoretical formal-
ism is explained in Sect. 2. The predicted partial decay width
is presented in Sect. 3, followed by a short summary in the
last section.

2 Formalism and ingredients

In order to calculate the strong decay width, Ξ(1620)0[≡
Ξ∗] → Ξπ , in the molecular scenario with different spin-
parity assignments for the Ξ∗, we first need to compute the
couplings with its components K̄Λ and K̄Σ via the loop
diagrams shown in Fig. 1.

The simplest effective Lagrangian describing the Ξ∗ K̄ Y
coupling can be expressed as [15,16]

L1/2±
Ξ∗ (x) = gΞ∗ K̄ Y

∫
d4yΦ(y2)K̄ (x + ωY y)Γ

× Y (x − ωK̄ y)Ξ̄∗(x), (2)

L3/2±
Ξ∗ (x) = gΞ∗ K̄ Y

∫
d4yΦ(y2)K̄ (x + ωY y)Γ

× ∂μY (x − ωK y)Ξ̄∗μ(x), (3)

where Y denotes either Λ or Σ (for an isovector baryon Y , Y
should be replaced with Y ·τ , where τ is the isospin matrix),
ωK̄ = mK̄ /(mK̄ + mY ), ωY = mY /(mK̄ + mY ), and Γ is
the corresponding Dirac matrix reflecting the spin-parity of
the Ξ∗. Here Γ = γ 5 for J p = 1/2+ and 3/2−, while for
J p = 1/2− and 3/2+, Γ = 1. In the above Lagrangian, an
effective correlation function Φ(y2) is introduced not only to
describe the distribution of the constituents, K̄ and Y , in the
hadronic molecular Ξ∗ state but also to make the Feynmann
diagrams ultraviolet finite, which is often chosen to be of the
following form [15–32],

Φ(p2
E )

.= exp(−p2
E/β2) (4)

with pE being the Euclidean Jacobi momentum and β being
the size parameter which characterizes the distribution of the
components inside the molecule. At present, the value of
β still could not be accurately determined from first princi-
ples, therefore it should better be determined by experimental
data. The experimental total widths of some states that can be
considered as molecules [15–32] can be well explained with
β = 1.0 GeV. Therefore we take β = 1.0 GeV in this work
to study whether the Ξ∗ can be interpreted as a molecule
composed of K̄Λ and K̄Σ .

With the effective Lagrangians in Eqs. (2) and Eq. (3), we
can compute the Feynmann diagrams shown in Fig. 1, and
obtain the self-energy of the Ξ(1620),

Σ
1/2
Ξ∗ (k0) =

∑
Y=Λ,Σ0,Σ+

CY g2
Ξ∗ K̄ Y

∫
d4k1

(2π)4 Φ2[(k1 − k0ωY )2
E ]

× Γ
k/1 + mY

k2
1 − m2

Y

Γ
1

(k1 − k0)2 − m2
K̄

, (5)

Σ
μν3/2
Ξ∗ (k0) =

∑
Y=Λ,Σ0,Σ+

CY g2
Ξ∗ K̄ Y

∫
d4k1

(2π)4 Φ2[(k1 − k0ωY )2
E ]

× Γ
k/1 + mY

k2
1 − m2

Y

Γ
1

(k1 − k0)2 − m2
K̄

kμ
1 k

ν
1 , (6)

where k2
0 = m2

Ξ∗ with k0,mΞ∗ denoting the four momenta
and the mass of the Ξ∗, respectively, k1, mK̄ , and mY are the
four-momenta, the mass of the K̄ meson, and the mass of the
Y baryon, respectively. Here, we set mΞ∗ = mY +mK̄ − Eb

with Eb being the binding energy of Ξ∗. Isospin symmetry
implies that

CY =

⎧⎪⎨
⎪⎩

1 Y = Λ

1/3 Y = Σ0

2/3 Y = Σ+.

(7)

The coupling constant gΞ∗ K̄ Y is determined by the compos-
iteness condition [16–32]. It implies that the renormalization
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Fig. 1 Self-energy of the Ξ (1620) state
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Fig. 2 Feynman diagrams for the Ξ∗0 → π+Ξ−(top) and π0Ξ0(below) decay processes. We also show the definitions of the kinematics
(p, k1, k2, p1, p2, and q) used in the calculation

constant of the hadron wave function is set to zero, i.e.,

ZΞ∗ = XK̄Σ + XK̄Λ − dΣ
1/2(3/2−T )
Ξ∗
dk/0

|k/0=mΞ∗ = 0, (8)

where XAB is the probability to find the Ξ(1620)0 in the
hadronic state AB with normalization XK̄Σ + XK̄Λ = 1.0.

The Σ
3/2−T
Ξ∗ is the transverse part of the self-energy operator

Σ
μν3/2
Ξ∗ , related to Σ

μν3/2
Ξ∗ via

Σ
μν3/2
Ξ∗ (k0) = (gμν − kμ

0 k
ν
0

k2
0

)Σ
3/2−T
Ξ∗ + · · · . (9)

For the Ξ(1620), because of phase space, only the strong
decay into Ξπ , Ξππ and radiative decay are allowed. How-
ever, radiative decay widths are often in the keV regime and
are far less than their strong counterparts. Therefore, in the
present work, we focus on the πΞ two body decay and Ξππ

three body decay of the Ξ(1620) in the K̄Λ − K̄Σ molecu-
lar picture mediated by the exchange of K̄ ∗, Λ, and Σ . The
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Fig. 3 Feynman diagrams for the Ξ∗0 → π+Ξ−π0, π0Ξ0π0 and π+Ξ0π− decay processes. We also show the definitions of the kinematics
(p, k1, k2, p1, p2, p3, and q) used in the calculation

corresponding Feynman diagrams are shown in Figs. 2 and
3, respectively.

To evaluate the diagrams, in addition to the Lagrangians in
Eqs. (2) and (3), the following effective Lagrangians, respon-
sible for the interactions of light pseudoscalar and vector
mesons are needed as well [33]

LV PP = −ig〈[P, ∂μP]Vμ〉, (10)

where P and Vμ are the SU (3) pseudoscalar and vector
meson matrices, respectively, and 〈...〉 denotes trace in the
flavor space. The meson matrices are [33]

P =

⎛
⎜⎜⎝

π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K 0

K− K̄ 0 − 2√
6
η

⎞
⎟⎟⎠ . (11)

and

Vμ =
⎛
⎜⎝

1√
2
(ρ0 + ω) ρ+ K ∗+

ρ− 1√
2
(−ρ0 + ω) K ∗0

K ∗− K̄ ∗0 φ

⎞
⎟⎠

μ

. (12)

The coupling g is fixed from the strong decay width of K ∗ →
Kπ . With the help of Eq. (10), the two-body decay width
Γ (K ∗+ → K 0π+) is related to g as

Γ (K ∗+ → K 0π+) = g2

6πm2
K ∗+

P3
πK ∗ = 2

3
ΓK ∗+ , (13)

where PπK ∗ is the three-momentum of the π in the rest
frame of the K ∗. Using the experimental strong decay width,

Table 1 Masses of the particles needed in the present work (in units of
MeV)

Λ Ξ− Ξ0 K 0 π0

1115.683 1321.71 1314.86 497.611 134.977

K ∗0 K ∗± K± π± Σ+ Σ0

895.55 891.76 493.68 139.57 1189.37 1192.642

ΓK ∗+ = 50.3 ± 0.8 MeV, and the masses of the particles
listed in Table 1, we obtain g = 4.64 [1].

Moreover, meson-baryon interactions are also needed and
can be obtained from the following chiral Lagrangians [33,
34]

LV BB = g(〈B̄γμ[Vμ, B]〉 + 〈B̄γμB〉〈Vμ〉), (14)

LPBB = F

2
〈B̄γμγ5[uμ, B]〉 + D

2
〈B̄γμγ5{uμ, B}〉, (15)

LPBPB = i

4 f 2 〈B̄γ μ[(P∂μP − ∂μPP)B

− B(P∂μP − ∂μPP)]〉 (16)

where F = 0.51, D = 0.75 [33,35] and at the lowest order
uμ = −√

2∂μP/ f with f = 93 MeV, and B is the SU (3)

matrix of the baryon octet

B =
⎛
⎜⎝

1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

⎞
⎟⎠ . (17)
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Putting all the pieces together, we obtain the following
strong decay amplitudes,

Ma(Ξ
∗0 → Ξ−π+) = −(i)3 3√

6
g2gΞ∗ΛK̄

×
∫

d4q

(2π)4 Φ[(k1ωΛ − k2ωK̄ 0)
2]ū(p1)γμ

× k/2 + mΛ

k2
2 − m2

Λ

Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K̄ 0

× (k1ν + p2ν)
−gμν + qμqν/m2

K ∗−

q2 − m2
K ∗−

, (18)

Mb(Ξ
∗0 → Ξ−π+) = (i)3 1√

6
g2gΞ∗Σ0 K̄ 0

×
∫

d4q

(2π)4 Φ[(k1ωΣ0 − k2ωK̄ 0)
2]ū(p1)γμ

× k/2 + mΣ0

k2
2 − m2

Σ0

Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K̄ 0

× (k1ν + p2ν)
−gμν + qμqν/m2

K ∗−

q2 − m2
K ∗−

, (19)

Mc(Ξ
∗0 → Ξ−π+) = (i)3

√
2

3
g2gK−Σ+Ξ∗

×
∫

d4q

(2π)4 Φ[(k1ωΣ+ − k2ωK−)2]ū(p1)γμ

× k/2 + mΣ+

k2
2 − m2

Σ+
Γ {u(p), ikρ

2 uρ(p)} 1

k2
1 − m2

K−

× (k1ν + p2ν)
−gμν + qμqν/m2

K ∗0

q2 − m2
K ∗0

, (20)

Md(Ξ
∗0 → Ξ−π+) = −(i)3 D(D − 3F)

3
√

6 f 2
gΞ∗Σ+K−

×
∫

d4q

(2π)4 Φ[(k1ωΣ+ − k2ωK−)2]ū(p1)k/1γ5

× q/ + mΛ

q2 − m2
Λ

p/2γ5
k/2 + mΣ+

k2
2 − m2

Σ+
Γ {u(p), ikρ

2 uρ(p)}

× 1

k2
1 − m2

K−
, (21)

Me(Ξ
∗0 → Ξ−π+) = −(i)3 F(D + F)

2 f 2 gΞ∗Σ+K−

×
∫

d4q

(2π)4 Φ[(k1ωΣ+ − k2ωK−)2]ū(p1)k/1

× γ5
q/ + mΣ0

q2 − m2
Σ0

p/2γ5
k/2 + mΣ+

k2
2 − m2

Σ+
Γ {u(p), ikρ

2 uρ(p)}

× 1

k2
1 − m2

K−
, (22)

M f (Ξ
∗0 → Ξ−π+) = −(i)3 (D + F)F√

6 f 2
gΞ∗Σ0 K̄ 0

×
∫

d4q

(2π)4 Φ[(k1ωΣ0 − k2ωK̄ 0)
2]ū(p1)k/1

× γ5
q/ + mΣ−

q2 − m2
Σ−

p/2γ5
k/2 + mΣ0

k2
2 − m2

Σ0

Γ {u(p), ikρ
2 uρ(p)}

× 1

k2
1 − m2

K̄ 0

, (23)

Mg(Ξ
∗0 → Ξ−π+) = (i)3 D(D + F)√

6 f 2
gΞ∗ΛK̄

×
∫

d4q

(2π)4 Φ[(k1ωΛ − k2ωK̄ 0)
2]ū(p1)k/1

× γ5
q/ + mΣ+

q2 − m2
Σ+

p/2γ5
k/2 + mΛ

k2
2 − m2

Λ

Γ {u(p), ikρ
2 uρ(p)}

× 1

k2
1 − m2

K̄ 0

, (24)

Mh(Ξ
∗0 → Ξ0π0) = −(i)3 D(D + F)√

6 f 2
gΞ∗ΛK̄

×
∫

d4q

(2π)4 Φ[(k1ωΛ − k2ωK̄ 0)
2]ū(p1)k/1

× γ5
q/ + mΣ0

q2 − m2
Σ0

p/2γ5
k/2 + mΛ

k2
2 − m2

Λ

Γ {u(p), ikρ
2 uρ(p)}

× 1

k2
1 − m2

K̄ 0

, (25)

Mi (Ξ
∗0 → Ξ0π0) = −(i)3 F(D + F)√

3 f 2
gΞ∗Σ+K−

×
∫

d4q

(2π)4 Φ[(k1ωΣ+ − k2ωK−)2]ū(p1)k/1

× γ5
q/ + mΣ+

q2 − m2
Σ+

p/2γ5
k/2 + mΣ+

k2
2 − m2

Σ+
Γ {u(p), ikρ

2 uρ(p)}

× 1

k2
1 − m2

K−
, (26)

M j (Ξ
∗0 → Ξ−π+) = (i)3 (D − 3F)D

6
√

3 f 2
gΞ∗Σ0 K̄ 0

×
∫

d4q

(2π)4 Φ[(k1ωΣ0 − k2ωK̄ 0)
2]ū(p1)k/1

× γ5
q/ + mΛ

q2 − m2
Λ

p/2γ5
k/2 + mΣ0

k2
2 − m2

Σ0

Γ {u(p), ikρ
2 uρ(p)}

× 1

k2
1 − m2

K̄ 0

, (27)

Mm(Ξ∗0 → Ξ0π0) = (i)3 1√
3
g2gΞ∗Σ+K−

×
∫

d4q

(2π)4 Φ[(k1ωΣ+ − k2ωK−)2]ū(p1)γμ

× k/2 + mΣ+

k2
2 − m2

Σ+
Γ {u(p), ikρ

2 uρ(p)} 1

k2
1 − m2

K−

123
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× (k1ν + p2ν)
−gμν + qμqν/m2

K ∗−

q2 − m2
K ∗−

, (28)

Mn(Ξ
∗0 → Ξ0π0) = (i)3

√
3

2
g2gΞ∗ΛK̄

×
∫

d4q

(2π)4 Φ[(k1ωΛ − k2ωK̄ 0)
2]ū(p1)γμ

× k/2 + mΛ

k2
2 − m2

Λ

Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K̄ 0

× (k1ν + p2ν)
−gμν + qμqν/m2

K ∗0

q2 − m2
K ∗0

, (29)

Mr (Ξ
∗0 → Ξ0π0) = (i)3 1

2
√

3
g2gΞ∗Σ0 K̄ 0

×
∫

d4q

(2π)4 Φ[(k1ωΣ0 − k2ωK̄ 0)
2]ū(p1)γμ

× k/2 + mΣ0

k2
2 − m2

Σ0

Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K̄ 0

× (k1ν + p2ν)
−gμν + qμqν/m2

K ∗0

q2 − m2
K ∗0

, (30)

where {u(p), and ikρ
2 uρ(p)} are J P = 1/2 and J P = 3/2

Ξ(1620) fields,respectively.
The amplitudes of the Ξ0(1620) → ππΞ that are shown

in Fig. 3 can be also easily obtained from the Lagrangians

Ma(Ξ
∗0 → Ξ−π0π+, Ξ0π−π+) = i(i)3 D

f 3 gΞ∗Σ K̄

×
{√

6

24
,
−√

3

12

} ∫
d4q

(2π)4 Φ
[
(k1ωΣ+ − k2ωK−)2

]

× ū(p1)k/1
q/ + mΛ

q2 − m2
Λ

p/2γ5
k/2 + mΣ+

k2
2 − m2

Σ+

× Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K−
, (31)

Mb(Ξ
∗0 → Ξ−π0π+, Ξ0π−π+) = i(i)3 F

f 3 gΞ∗Σ K̄

×
{
− 1

12
,

1

4
√

6

} ∫
d4q

(2π)4 Φ
[
(k1ωΣ+ − k2ωK−)2

]

× ū(p1)k/1
q/ + mΣ0

q2 − m2
Σ0

p/2γ5
k/2 + mΣ+

k2
2 − m2

Σ+

× Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K−
, (32)

Mc(Ξ
∗0 → Ξ−π0π+, Ξ0π−π+) = i(i)3 F

f 3 gΞ∗Σ K̄

×
{

1

4
√

6
,− 1

4
√

3

} ∫
d4q

(2π)4 Φ
[
(k1ωΣ0 − k2ωK̄ 0)

2
]

× ū(p1)k/1
q/ + mΣ+

q2 − m2
Σ+

p/2γ5
k/2 + mΣ0

k2
2 − m2

Σ0

× Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K̄ 0

, (33)

Md(Ξ
∗0 → Ξ−π0π+, Ξ0π−π+) = i(i)3 D

f 3 gΞ∗Σ K̄

×
{
− 1

4
√

6
,

1

4
√

3

}∫
d4q

(2π)4 Φ
[
(k1ωΛ − k2ωK̄ 0)

2
]

× ū(p1)k/1
q/ + mΣ+

q2 − m2
Σ+

p/2γ5
k/2 + mΛ

k2
2 − m2

Λ

× Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K̄ 0

, (34)

ME (Ξ∗0 → Ξ0π0π0, Ξ−π+π0) = i(i)3 D

f 3 gΞ∗Σ K̄

×
{

1

8
√

3
,

1

4
√

6

} ∫
d4q

(2π)4 Φ
[
(k1ωΛ − k2ωK̄ 0)

2
]

× ū(p1)k/1
q/ + mΣ0

q2 − m2
Σ0

p/2γ5
k/2 + mΛ

k2
2 − m2

Λ

× Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K̄ 0

, (35)

M f (Ξ
∗0 → Ξ0π0π0, Ξ−π+π0) = i(i)3 F

f 3 gΞ∗Σ K̄

×
{

− 1

4
√

3
,−

√
6

12

}∫
d4q

(2π)4 Φ[(k1ωΣ+ − k2ωK−)2]

× ū(p1)k/1
q/ + mΣ+

q2 − m2
Σ+

p/2γ5
k/2 + mΣ+

k2
2 − m2

Σ+

× Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K−
, (36)

Mg(Ξ
∗0 → Ξ0π0π0, Ξ−π+π0) = i(i)3 D

f 3 gΞ∗Σ K̄

×
{

−1

8
,

√
2

8

}∫
d4q

(2π)4 Φ
[
(k1ωΣ0 − k2ωK̄ 0)

2
]

× ū(p1)k/1
q/ + mΛ

q2 − m2
Λ

p/2γ5
k/2 + mΣ0

k2
2 − m2

Σ0

× Γ {u(p), ikρ
2 uρ(p)} 1

k2
1 − m2

K̄ 0

. (37)

Once the amplitudes are determined, the corresponding
partial decay width can be easily obtained, which reads as,

Γ (Ξ(1620)0 → πΞ) =
∫

1

2J + 1

1

32π2

|p1|
m2

Ξ∗0

¯|M|2d�,

(38)

Γ (Ξ(1620)0 → πΞπ) =
∫

1

2J + 1

1

(2π)5

1

16M2
¯|M|2|p∗

3|
× |p2|dmπΞd�∗

p3
d�p2 , (39)
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where J is the total angular momentum of the Ξ(1620),
|p1| is the three-momenta of the decay products in the cen-
ter of mass frame, the overline indicates the sum over the
polarization vectors of the final hadrons. The (p∗

3,�
∗
p3

) is
the momentum and angle of the particle Ξ in the rest frame
of Ξ and π , and �p2 is the angle of the π in the rest frame
of the decaying particle. The mπΞ is the invariant mass for
π and Ξ and mπ +mΞ ≤ mπΞ ≤ M −mπ . The total decay
width of the Ξ(1620)0 is the sum of Γ (Ξ(1620)0 → πΞ)

and Γ (Ξ(1620)0 → ππΞ).

3 Results and discussions

Before calculating the two body decay width, we need to
determine the coupling constants relevant to the effective
Lagrangians listed in Eqs. (2) and (3). Considering Ξ(1620)0

as a K̄Λ − K̄Σ hadronic molecule, the coupling constants
gK̄Ξ∗Λ and gK̄Ξ∗Σ can be estimated from the compositeness
condition that we introduced in the previous section. The xK̄Λ

dependence of the coupling constants gK̄Ξ∗Λ and gK̄Ξ∗Σ
are presented in Fig. 4. The coupling gK̄Ξ∗Λ monotonously
increases with increasing XΛK̄ , and the dependence on XΛK̄
is the weakest for the J P = 1/2− case, where the Ξ∗(1620)

is an S-wave K̄Λ − K̄Σ molecular state, while it is the
strongest for the J p = 3/2− case. Comparing gK̄Ξ∗Σ with
gK̄Ξ∗Λ, we find that their line shapes are very different,
i.e., the coupling constant gK̄Ξ∗Σ decreases with increasing
XΛK̄ . We find that gK̄Ξ∗Σ is the largest for the J P = 3/2−
case, is intermediate for the J P = 1/2+ and J P = 3/2+
cases, and is the smallest for the J P = 1/2− case. The
opposite trend can be easily understood, as the coupling con-
stants gK̄Ξ∗Λ and gK̄Ξ∗Σ are directly proportional to the
corresponding molecular compositions [23]. Moreover, the
relations between the coupling constants gK̄Ξ∗Σ and gK̄Ξ∗Λ
can be deduced from Eq. (8) and are given in Table 2.

Fig. 4 Coupling constants of the Ξ(1620) with different J P assign-
ments as a function of the parameter XΣ K̄ and XΛK̄ which is the prob-
ability to find the Ξ(1620)0 in the hadronic components K̄Σ and K̄Λ,
respectively

Table 2 Relations between the coupling constants gK̄Ξ∗Σ and gK̄Ξ∗Λ

Spin-parity (AgK̄Ξ∗Λ)2 = 1 − (BgK̄Ξ∗Σ)2

A B

J P = 1/2− 0.6014 0.1969

J P = 1/2+ 0.1023 0.0559

J P = 3/2− 0.0132 0.0111

J P = 3/2+ 0.0620 0.0436

Fig. 5 Partial decay widths of the Ξ(1620)0 → πΞ (black solid line),
Ξ(1620)0 → ππΞ (blue dash dot line), and the total decay width (red
dash line) with different J P assignments depending on the parameter
XK̄Λ and XK̄Σ . The LT Cyan bands correspond to the total experimental
decay width

With the obtained couplings gK̄Ξ∗Λ and gK̄Ξ∗Σ , the par-
tial decay width of the Ξ(1620)0 can be calculated straight-
forwardly. The dependence of the partial decay width on
XK̄Λ of the Ξ(1620) for various quantum numbers is given
in Fig. 5. In the present study, we vary XK̄Λ from 0.0 to 1.0.
For small XK̄Λ, the total decay width decreases with increas-
ing XK̄Λ. However, it increases when XK̄Λ varies from 0.91
to 1.00 and 0.54 to 1.00 for the J P = 1/2± and J P = 3/2±
assignments, respectively.

As shown in Fig. 5, the LT Cyan bands in these plots denote
the experimental data. For the J P = 1/2+ case, the predicted
total decay width increases from 0.011 to 6.787 MeV and
is much smaller than the experimental total width, which
disfavors such a spin-parity assignment for the Ξ(1620)0

in the K̄Λ − K̄Σ molecular picture. For the J P = 3/2−
assignment, the total decay width is also much smaller than
the experimental total width. This disfavors the assignment
of this state as a K̄Λ − K̄Σ molecular state as well. The
same is also true for the J P = 3/2+ case. Hence, only the
assignment as an S−wave K̄Λ− K̄Σ molecular state for the
Ξ(1620)0 is consistent with the Belle data [2] when XK̄Λ is
in the range of 0.52–0.68. In this region, the total decay width
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Fig. 6 Decomposed contributions to the decay width of the Ξ(1620)0

into πΞ and ππΞ as a function of the parameter XK̄Λ and XK̄Σ

for this state is predicted to be about 50.39–68.79 MeV. From
Fig. 5 we conclude that the total experimental decay width
can be well reproduced, which provides direct evidence that
the observed Ξ(1620)0 is an S− wave K̄Λ− K̄Σ molecular
state.

Fig. 5 also tell us that the transition Ξ(1620)0 → πΞ

is the main decay channel, which almost saturates the total
width of Ξ(1620)0. However, the transition Ξ(1620)0 →
ππΞ that is not considered in Ref. [13] gives minor contri-
butions and the ππΞ three-body transition strength is of the
order of about 1.0 KeV.

From Fig. 5, we also note that the decay width of the
observed Ξ(1620)0 can not be well reproduced in a pure K̄Λ

or pure K̄Σ molecular state picture. Namely, the interference
among the two channels is sizable, leading to a total decay
width consistent with the experimental data in the case of
the J P = 1/2−. In other words, the K̄Λ channel strongly
couples to the K̄Σ channel. Comparing our results with those
in Ref. [14], it seems that a study of the spectroscopy alone
does not give a complete picture of its nature. Furthermore,
the K̄Λ component provides the dominant contribution to
the partial decay width of the πΞ two-body channel. This
is consistent with the result of Ref. [13] that the Ξ (1620)
has a larger contribution from the K̄Λ channel than the Σ K̄
channel.

The coupling constants and the partial decay width of the
Ξ(1620) with different J P assignments as a function of the
parameter XΣ K̄ which is the probability to find the Ξ(1620)0

in the hadronic component K̄Σ are also shown in Figs. 4 and
5, respectively. Both the coupling constants and the decay
width exhibit opposite trend to the XK̄Λ dependence. More-
over, the individual contributions are presented in Fig. 6. One
can see that the contribution from the Σ and Λ exchanges is
smaller than those from K̄ ∗ meson exchanges for the XK̄Λ

and XK̄Σ range studied.

It should be noted that Ref. [8] showed that the Ξ(1620)

couples strongly to the πΞ and the K̄Λ channels but very
weakly to ηΞ and Σ K̄ . If we treat the Ξ(1620) as a pure
ηΞ molecular state, we find that the ηΞ channel provides a
negligible contribution to the partial decay width into πΞ .
Furthermore, based on the Weinberg–Salam compositeness
condition, we find the πΞ component is significantly sup-
pressed and it contributes negligibly to the partial decay width
into πΞ . A possible explanation for this may be that the
threshold for πΞ is too low to allow for a bound state at
1620 MeV [28]. Because of these reasons, the ηΞ and πΞ

channels are not considered in this work.
The Ξ∗(1620) is one of the peculiar resonances discov-

ered during past few years and its properties cannot be simply
explained in the context of conventional constituent quark
models. As indicated in Refs. [8–14] and our work, the
Ξ∗(1620) can be understood as a pure molecular state in
comparison with the Belle data [2]. However, at present we
cannot fully exclude other possible explanations such as a
mixture of three quark and five quark components (as long
as quantum numbers allow, it might well be the case). We
note that such studies in the quark pair creation model still
suffer from relatively large uncertainties [36].

4 Summary

We have studied the strong decay of the newly observed
Ξ(1620)0 into πΞ and ππΞ with different spin-parity
assignments and assuming that it is a K̄Λ − K̄Σ molecu-
lar state. With the coupling constants between the Ξ(1620)0

and its components determined by the compositeness condi-
tion, we calculated its partial decay width into πΞ and ππΞ

via triangle diagrams in an effective Lagrangian approach.
In such a picture, the decay into πΞ and ππΞ occurs
by exchanging K ∗, Λ, and Σ . We found that the total
decay width can be reproduced with the assumption that
the Ξ(1620)0 is an S−wave K̄Λ − K̄Σ bound state with
J P = 1/2−, while the P- and D-wave assignments are
excluded. The K̄Λ component provides the dominant con-
tribution to the partial decay width into πΞ and ππΞ . More
specifically, about 52–68% of the total decay width is from
the K̄Λ channel, while the K̄Σ channel provides the rest.
We find that if the Ξ(1620)0 is a K̄Λ− K̄Σ molecular state,
the ππΞ three-body transition strength is quite small and the
decay width is of the order of about 1.0 keV. Future experi-
mental measurements of such a process can be quite useful
to test the molecule interpretation of the Ξ(1620)0.
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