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Abstract In this work we consider black holes surrounded
by anisotropic fluids in four dimensions. We first study the
causal structure of these solutions showing some similarities
and differences with Reissner–Nordström–de Sitter black
holes. In addition, we consider scalar perturbations on this
background geometry and compute the corresponding quasi-
normal modes. Moreover, we discuss the late-time behavior
of the perturbations finding an interesting new feature, i.e.,
the presence of a subdominant power-law tail term. Like-
wise, we compute the Bekenstein entropy bound and the first
semiclassical correction to the black hole entropy using the
brick wall method, showing their universality. Finally, we
also discuss the thermodynamical stability of the model.

1 Introduction

Recently, the LIGO collaboration [1,2] started the age of
gravitational wave astronomy through the detection of a grav-
itational signal coming from the merger of two astrophysical
black holes. Such signal was strong enough to permit the
observation of the ringdown phase characterized by the so-
called quasinormal modes (QNMs), which carry information
of the structure of the spacetime itself. In addition, the study
of QNMs spectra can bring a better understanding of the sta-
bility of a given black hole solution [3–7]. Moreover, this
question can be addressed through the scattering of a scalar
field in the fixed black hole background [8–13], which can
be understood as a probe field to test the (in)stability of the
black hole metric.

The QNMs and its spectrum are characterized, under
appropriate boundary conditions, by a set of complex fre-
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quencies and encode the linear response of the black hole
geometry to an external probe field with different spin
weights. The time evolution of such probe fields is divided in
three main stages: the initial burst in a short interval depend-
ing on the initial conditions, followed by the damping oscil-
lation given by the QNMs and, at late-times, a power-law or
exponential tails.

Another interesting subject that black holes bring is their
thermodynamics. The similarity between classical thermody-
namics and the laws governing the mechanics of black holes
was well established by Bekenstein and Hawking [14,15]
through the identification of black hole surface gravity and
event horizon area with the temperature and entropy of a ther-
modynamical system, respectively. This fact led to the well
known Bekenstein–Hawking formula,

SBH = Area

4
, (1)

expressed in geometrical units. Based on this novel theory
Bekenstein proposed the existence of an upper bound on the
entropy of any system of energy E and dimension R given by
S ≤ 2πER [16]. This equation is a consequence of the valid-
ity of the generalized second law (GSL) of black hole ther-
modynamics. Furthermore, in an effort to include quantum
aspects in the gravitational theory describing a black hole,
’t Hooft [17] proposed a semi-classical method to compute
the corrections to the classical entropy formula (1). This tech-
nique known as the brickwall method consists in considering
a thermal bath of scalar fields living outside the event horizon.
The quantization of these fields via statistical mechanics par-
tition function leads to quantum corrections to the black hole
entropy. By carrying out this calculation on a Schwarzschild
black hole ’t Hooft showed that the first correction is propor-
tional to the area, as expected, having a coefficient dependent
on the proper distance from the horizon to the wall. Later cal-
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culations in other solutions showed that this first correction
is the same in 4-dimensional geometries.

In this work we are interested in a solution of Einstein
equations discovered by Kiselev [18], which describes a
spherically symmetric black hole surrounded by an anisotropic
fluid [19,20]. This constitutes a line-element derived from
the solutions studied in [21], the so-called dirty black holes.
Studies on its stability [22–26] and some aspects of its ther-
modynamical behavior have been implemented in the last
years [27–31]. However, a detailed description of the causal
structure of the spacetime, the late-time behavior of the scalar
QNMs, and other aspects related to corrections to the entropy
and thermodynamical stability are absent in the literature.

The paper is organized as follows, Sect. 2 presents the
metric describing the family of black holes surrounded by
anisotropic fluid and its main features. In Sect. 3 we present
the causal structure of this spacetime. Also, the perturba-
tive dynamics due to probe scalar field evolution is formu-
lated and the QNMs spectrum and late-time tails are com-
puted. Section 4 brings a study of some aspects of black hole
thermodynamics including Bekenstein entropy bound, semi-
classical corrections to entropy through t’Hooft brick wall
method, and thermodynamical stability tested using specific
heat and Hessian matrix criteria. Finally, in Sect. 5 some final
comments are given.

2 Black hole solutions

We are interested in a kind of dirty black hole whose line-
element can be written as

ds2 = − f (r) dt2 + dr2

f (r)
+ r2dΩ2, (2)

where dΩ2 represents the metric of the 2-sphere and f (r) is
given by [18]

f (r) = 1 − 2M

r
+ Q2

r2 − c

r3ω f +1 , (3)

being M the black hole mass, Q its electric charge, c =
r

3ω f +1
q a constant (rq is a dimensional normalization con-

stant), and ω f a parameter that characterizes an anisotropic
fluid surrounding the black hole, obeying the equation of state
p f = ω f ρ f . Concerning this line-element there are four very
special cases depending on the value of the state parameter.
The value ω f = −1 corresponds to a Reissner-Nordström-
(Anti)-de Sitter black hole where 3c plays the role of the
cosmological constant. When ω f = −1/3, we have a topo-
logical Reissner-Nordström black hole. If ω f = 0, the solu-
tion describes a Schwarzschild spacetime with shifted mass.
And for ω f = 1/3 the metric corresponds to a Reissner-
Nordström black hole whenever c < Q2.

For the line-element (2) with the metric coefficient (3) for
all possible values of fluid state parameter a relative pressure
anisotropy of the spacetime is defined by [19,20]

Δ = pr − pt
(pr + 2pt )/3

= −3

2

[
4Q2 − cω f (1 + ω f )r1−3ω f

Q2 − cω2
f r

1−3ω f

]
,

(4)

where pr and pt represent the total energy-momentum tensor
components T11 and T22 = T33, respectively. This non-zero
anisotropy labels a non-quintessential fluid, different from
what was stated in the first work which presented such a
metric [18].

Furthermore, we can reinterpret the energy-momentum
tensor of the solution as a sum of anisotropic fluids with
different state parameters instead of considering a black hole
surrounded by just one fluid component. By writing

gtt = −
∑
n

cn
r fn

, (5)

with cn and fn being constants, the energy-momentum tensor
is linear in each ’charge’ n, i.e., T = T f1 +T f2 +T f3 +· · · .
In such case by the proper choice of cn’s and fn’s we can
easily have the charged black hole surrounded by a fluid as
represented previously, meaning that the traditional compo-
nents of charge and mass can be seen as fluid charges in the
Kiselev picture [18].

Now the null energy condition imposes severe restrictions
on the state parameter of the fluid ω f . By taking the condition
of validity of the null energy statement [19,20] we have that
the density gradient of the fluid is

ρ′ =
(

m′

4πr2

)′
≤ 0, (6)

where m′ represents the derivative of the position-dependent
mass function m(r) defined as [20]

2m(r) =
N∑
i=0

Ki r
−3ωi , (7)

with Ki and ωi being general coefficients and exponents of
a Puiseux series. In our case we obtain

ρ′ = 1

8πr4

[
−4Q2

r
+ 9cω f (ω f + 1)

r3ω f

]
. (8)

Thus, the energy condition is preserved whenever −1 ≤
ω f ≤ 0, and violated otherwise. For this reason in this work
we will study dynamical and thermodynamical aspects of the
geometry within the range of validity of such condition.

In the next section we are going to characterize the causal
structure of the family of solutions represented by the line-
element (2) establishing the nature of the singularity and the
horizons. In addition, we will check the late-time behavior
of scalar QNMs in that geometry.
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3 Causal structure and probe scalar field evolution

We are going to describe the causal structure for two different
representative black hole solutions of the metric (2). We start
by considering the behavior of the Kretschmann invariant
given by

Rabcd R
abcd = 48M2

r6 − 96MQ2

r7 + 56Q4

r8

+ c2 p1

r2(2+σ)
+ 8cMp2

r (5+σ)
− 4cQ2 p3

r (6+σ)
, (9)

where we have defined σ = 3w f +1, p1 = σ 4+2σ 3+5σ 2+
4, p2 = σ 2 + 3σ + 2 and p3 = 3σ 2 + 7σ + 2. In the cases
when w f ≤ 0 we have σ ≤ 1, so the Kretschmann invariant
always diverges at r = 0 and is well behaved at the horizons
and, thus, the line-element (2) has a physical singularity at
the origin r = 0. In what follows, we are going to show that
for two specific cases ω f = −1/2 and ω f = −2/3 with
M > Q there is a range of parameters that represents a black
hole with cosmological-like horizon rc, an event horizon r+,
and Cauchy inner horizon r = r− covering the time-like
singularity at r = 0. Such causal structure is very similar to
the Reissner-Nordström-de Sitter (RNdS) black hole, except
in the region beyond the cosmological-like horizon r > rc,
where the spatial infinity (r → ∞) is light-like.

3.1 Black hole solution with w f = −1/2

Considering the line-element (2) with w f = −1/2 and the
redefinition of the radial coordinate r = z2 we have

ds2 = − c

z4 H(z)dt2 + 4z6

c
H(z)−1dz2 + z4dΩ2, (10)

where the function H(z) is given in terms of three real roots
zc > z+ > z− denoting, respectively, the cosmological-
like, event, and Cauchy horizons, and two real negative roots
(z1, z2). Thus,

H(z) = −(z − zc)(z − z+)(z − z−)(z + z1)(z + z2), (11)

yields a tortoise coordinate given by

z∗ = −2

c
z − αc log |z − zc| + α+ log |z − z+|

−α− log |z − z−| + α1 log |z + z1| − α2 log |z + z2|,(12)

which defines the usual double null system, U = t − z∗ and
V = t + z∗. Here the constants (αc, α+, α−, α1, α2) are all
positive definite and are given in terms of the horizons

αi = 2z5
i

c

∏
i �= j

1

|zi − z j | , (13)

where the indices i and j denote the horizons (zc, z+, z−, z1,

z2).

We perform a detailed examination of the behavior of the
black hole solution in the vicinity of each horizon in order
to obtain the Kruskal–Szekeres extension to end up with the
Penrose–Carter diagram of the entire manifold.

Near the cosmological-like horizon z = zc, the Kruskal–
Szekeres coordinates Uc and Vc obey the following relation

UcVc = ±e(2/cαc)z |z − zc|
( |z − z−|α−

|z − z+|α+
|z + z2|α2

|z + z1|α1

)1/αc

,

(14)

where the plus sign denotes the region z > zc and the negative
sign corresponds to the region z < zc. Similarly, near the
event horizon z+ we have

U+V+= ∓ e−(2/cα+)z |z−z+|
(

1

|z − zc|αc
1

|z − z−|α−
|z + z1|α1

|z + z2|α2

)1/α+
,

(15)

where the upper sign refers to z > z+ and the lower sign
refers to z < z+. Finally, for the region near the Cauchy
horizon z ≈ z−, we have

U−V− = ±e2/cα−|z − z−|
( |z − zc|αc

|z − z+|α+
|z + z2|α2

|z + z1|α1

)1/α−
.

(16)

Introducing the Penrose coordinates T = 1
2 (Ũ + Ṽ ) and

R = 1
2 (Ũ − Ṽ ) in each region covered by the relations (14–

16) with Ũ = arctan(U ) and Ṽ = arctan(V ), we compacti-
fied the coordinates. Furthermore, combining different over-
laping coordinate patches it is possible to extend the metric
through each horizon, thus, constructing the conformal dia-
gram for the entire spacetime (10) in Fig. (1). Such diagram
shows a causal structure very similar to that of a Reissner–
Nordström–de Sitter black hole [32,33]. We observe an
infinite sequence of structures featuring two outer horizons
(event and cosmological-like), an inner Cauchy horizon, and
a time-like singularity at the origin z = 0. However, the
spatial infinity (z → ∞) in the black hole solution with
w f = −1/2 displays a light-like structure, which is differ-
ent from the Reissner–Nordström–de Sitter case, where the
spatial infinity is space-like (see Fig. 2 in [33]).

For an observer in region I crossing the event horizon and
entering region III, we observe that the coordinate z is now
time-like and the subsequent motion occurs with z decreas-
ing. However, after the observer crosses the Cauchy horizon,
the coordinate z becomes space-like again, so it is possible
for this observer to avoid the time-like singularity at z = 0
and emerge in another copy of region III.

The maximally extended black hole with w f = −2/3,
and the conformal diagram is the same as in the case w f =
−1/2, and can be obtained by performing the same steps as
discussed here. The detailed calculation of the extension is
given in the Appendix A.
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Fig. 1 Penrose–Carter diagram
for the four-dimensional black
hole with w f = −1/2 and
w f = −2/3

3.2 Klein–Gordon equation

For a black hole spacetime as represented in Fig. 1 the phys-
ical universe lies in region I, where we choose to integrate a
scalar field that do not change the geometry.

In this domain the integration of the Klein–Gordon equa-
tion, �Φ = 0, will be affected by the definition of a tortoise
coordinate system, dx = f −1dr , (now in terms of r ) used
to fix the field propagation as ingoing plane waves crossing
through the boundaries of x . In terms of this system the field
equation turns to the usual simple form

(
∂2

∂x2 − ∂2

∂t2 − V (r)

)
Ψ = 0, (17)

where Ψ represents the radial-temporal part of the Klein–
Gordon field written as

Φ =
∑
l,m

Ym
l (θ, φ)

Ψ (r, t)

r
, (18)

and V (r) plays the role of a potential for the scattered scalar
waves given by

V (r) = f (r)

[
∂r f (r)

r
+ l(l + 1)

r2

]

=
(

1 − 2M

r
+ Q2

r2 − c

r3ω f +1

)

×
[

2M

r3 − 2Q2

r4 + c(3ω f + 1)

r3ω f +3 + l(l + 1)

r2

]
.

(19)

In de Sitter spacetimes the tortoise coordinate places the
cosmological horizon r → rc at the point x = ∞ and the
event horizon of the black hole r → r+ at x = −∞. This is
also the case for dirty black holes with an anisotropic fluid
as discussed in this paper. As a consequence, when using the
above wave equation we will restrict the integration to the
region −∞ < x < ∞ in block I of Penrose diagram.

When studying the evolution of fields in fixed geometries,
Eq. (17) establishes a master equation and for different fields
(or spherical geometries) the proper V (r) must be taken.
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The sign of V (r) between asymptotic infinites determines
the possibility of field instabilities. For V (r) > 0 the field
profile is always stable as long as Im(ω) < 0 [34], while
if V (r) is partially negative in those regions, modal stabil-
ity is not granted and further analysis is necessary.1 Though
the modal stability is not mathematically proved for black
holes with anisotropic fluids (specially when l = 0), that is
the case for Kerr–de Sitter black hole [36,37] (extendible to
RNdS). The asymptotic response of the metric to field exci-
tations is demonstrated to be that of a set of quasinormal
modes in such geometries, consequently, stable. Being the
massless and chargeless scalar field evolution in RNdS sta-
ble, we expect the same stability to exist in the spacetimes
we analyzed here since the depth of the potential is always
shorter than that of RNdS.

The numerical integration in double null-coordinates for
the calculus of the quasinormal modes is a well-establish
method, which in general does not depend on the initial con-
ditions. Except for the “initial burst” of evolution, the quasi-
normal ringing phase that follows and the late-time behavior
depend only on the geometry parameters. In terms of the null
coordinate system u × v,

2dv = dt + dx

2du = dt − dx, (20)

the Klein–Gordon equation takes the form

[
4

∂2

∂u∂v
+ V (r)

]
Ψ = 0, (21)

or, written as a discrete equation,

ΨN = ΨW + ΨE − ΨS − h2

8
VS [ΨW + ΨE ] (22)

The boundary conditions in such system can be put in the
form

Ψ | f i xed v = constant, Ψ | f i xed u = Gaussian package, (23)

although discussions on the preservation of polar and radial
symmetry (for the gravitational field) have presented Neu-
mann boundary condition as the appropriate one.

After obtaining the field profile in time domain we can
employ the Prony method [38] to acquire the quasinormal
frequencies or, in the case of non-oscillatory profiles, linear
regression. We will also use the WKB6 method [39–41] as a
matter of comparison.

1 In the spacetimes we study we have a partly negative potential only for
the angular momentum l = 0. In general, the most unstable situation
comes when V (r) is entirely negative between the horizons. In such
cases no stable field evolutions can be found in the literature, e. g. [35].

3.3 Late-time behavior and quasinormal modes

The late-time evolution of the probe scalar field brings two
distinct behaviors depending on the fluid parameters c and
ω f . In Fig. 2 we can see different field profiles evolved from a
similar initial burst as defined above. Depending on the fluid
charge parameters we have an exponential decay or a power-
law tail dominating the final stage of evolution. The fact
comes surprisingly as a combination of two distinct behav-
iors already found in black holes with/without cosmological
constant, being such final stage an exponential decay/power-
law tail, respectively, for the Reissner–Nordström case.

In the left panel the exponential decay mode comes for
the highest frequencies |ω f | and the power-law tail happens
when ω f = −1/2. The dominant purely imaginary quasi-
normal modes (smallest imaginary part) also present in the
de Sitter black holes spacetimes [42] are a family of modes
connected to the presence of the cosmological constant [43]
(or, in our case, to the anisotropic fluid density). For small
enough values of the fluid state parameter ω f and density c
though, the dominant term between horizons is that of the
Schwarzschild potential generating the well-known power-
law behavior [5,44,45]. Such role is associated to the weak
decay of the potential for high values of r and may come as
a general result of the integral around the negative imagi-
nary ω axis. The same qualitative characteristic can be seen
on the right panel of Fig. 2. Whenever c > 0.1, the fluid
term is dominant and a purely imaginary quasinormal mode
overcomes the power-law tail behavior.

A region of frontier in the parameters happens approxi-
mately at −0.65 � ω f � −0.5, which is represented by an
exponential decaying final stage if ω f < −0.65 and a power-
law tail if ω f > −0.5. Between both values the dominant
final stage of the field in late-times alternates between these
two profiles, a feature we discuss in what follows.

A second element present in the scalar field evolution of
the above figures is the quasinormal modes, damped oscil-
lations that arrive given the presence of a black hole poten-
tial barrier such as (19). In Table 1 we list the fundamental
modes for different values of fluid density. As expected, the
influence of the fluid in the scalar field QNMs is very mild
when its density is small (not detectable, e.g. for c ∼ 10−6),
no matter what the state parameter is. As c increases, the
differences coming from several state parameters of the
fluid increase as well. We can see that the quality factor,
Q = Re(ω)

− Im(ω)
, decreases as we increase |ω f |. In fact, in a

spacetime with an anisotropic fluid the scalar field oscillates
better compared to a spacetime with cosmological constant:
e. g. when M = 2Q = l = 10c/3cmax = 1, we have
Q = 3.30, 3.18, 3.03 and 2.88 for ω f = −1/2,−2/3,−5/6
and −1, respectively.

The results in the Table 1 were double checked with the
WKB6 method [39]. The convergence of both calculations is
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Fig. 2 Late-time behavior of propagating scalar field in dirty black holes, profiles of exponential decay or power-law tail. Left panel: M = 2Q =
l = 10c = 1; right panel: M = 2Q = l = −2ω f = 1

Table 1 The quasinormal
modes of the RN black hole
with anisotropic fluid. The
parameters of the geometry and
scalar field read
M = 2Q = l = 1

ω f = −1/2 ω f = −2/3 ω f = −5/6

c/cmax Re(ω) − Im(ω) Re(ω) − Im(ω) Re(ω) − Im(ω)

0.000001 0.306577 0.098825 0.306577 0.098825 0.306577 0.098825

0.001 0.306339 0.098731 0.306381 0.098756 0.306393 0.098774

0.01 0.304192 0.097883 0.304614 0.098133 0.304735 0.098313

0.1 0.282652 0.089421 0.286716 0.091821 0.287854 0.093546

0.2 0.258577 0.080084 0.266302 0.084612 0.268423 0.087876

0.3 0.234234 0.070970 0.245124 0.077112 0.248194 0.081799

0.4 0.209281 0.061993 0.223141 0.069385 0.226918 0.075302

0.5 0.183879 0.052833 0.200051 0.061351 0.204263 0.068156

0.6 0.157742 0.043015 0.175489 0.052864 0.180136 0.060159

0.7 0.130354 0.033828 0.148884 0.044002 0.153675 0.050825

0.8 0.100866 0.024957 0.118713 0.034209 0.122685 0.042393

0.9 0.067115 0.016471 0.081417 0.024291 0.085918 0.027818

0.99 0.019522 0.003853 0.020814 0.011965 0.024821 0.012187

as good as 0.1% for c/cmax � 0.5, where cmax represents the
maximum value of fluid density to which 3 horizons arise.
Whenever the fluid density is high, higher divergences are
found. This comes as no surprise as long as the WKB6 has a
poor convergence for near extremal black holes.

For a large range of parameters we investigate the transi-
tional behavior of the scalar field at late-times. Testing for
the linear correlation of two different profiles written as

Ψ |late times → t−a, (24)

Ψ |late times → e−αt , (25)

we perform calculations for different state parameters going
from ω f = −0.5 to ω f = −1. The results are given in Table
2. Observing the high values of linear correlation we state
that both behaviors (exponential decay and power-law) are

present in the final stage of the field evolution being one of
them dominant.

We can see a small variation in the linear coefficients
of the power-law series for −0.65 � ω f � −0.5 and
an explosion after that, softening its behavior in the field
composition Ψ |late times → C1t−a + C2e−αt . This makes
the presence of this term subdominant in relation to the
exponential decay series, which is prevalent for ω f �
−2/3.

This comes as an interesting result not stated until now
in the available literature, e. g. for RNdS geometries, the
presence of a power-law tail term subdominant to the
imaginary quasinormal mode in late-times in such space-
times.
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Table 2 Quasinormal modes
and late-time behavior of the
RN black hole with anisotropic
fluid in a geometry with
M = 2Q = 100c = 1. The
scalar field angular momentum
reads l = 1

−ω f a R2 α R2 Re(ω) − Im(ω)

0.52 4.88671 1.00000 0.01551 0.98920 0.29729 0.095191

0.55 2.29142 0.99582 0.00611 0.99981 0.29629 0.094800

0.58 2.87836 0.99906 0.00917 0.99459 0.29518 0.094512

0.61 3.18710 0.99933 0.01014 0.99398 0.29395 0.094148

0.64 3.79916 0.99723 0.01213 0.99741 0.29260 0.093758

0.67 6.07792 0.99753 0.01618 0.99997 0.29108 0.093323

0.7 9.01819 0.99703 0.02402 1.00000 0.28941 0.092925

0.73 12.82665 0.99698 0.03416 1.00000 0.28755 0.092521

0.76 17.40289 0.99697 0.04635 1.00000 0.28550 0.092112

0.79 26.61588 0.99697 0.07089 1.00000 0.28159 0.091429

0.82 28.67909 0.99697 0.07639 1.00000 0.28073 0.091293

0.85 35.26838 0.99697 0.09394 1.00000 0.27795 0.090884

0.88 42.40377 0.99697 0.11294 1.00000 0.27488 0.090478

0.91 50.01264 0.99697 0.13321 1.00000 0.27150 0.090076

0.94 72.31642 0.99753 0.15068 0.99759 0.26776 0.089683

In the last two columns of the Table 2 we can see the
quasinormal modes frequencies for a variety of ω f . The fre-
quencies were obtained via Prony method with the same field
profiles used in the late-time test. Again they were checked
with WKB6 method with very good agreement in the results
(maximum deviation of 0.1%).

We should stress that we extensively studied field propaga-
tion along a multitude of black hole parameters (M, Q, c, ω f )
and found always stable evolutions as those reported here.
On the other hand, there is also another kind of instability
produced by a more general perturbation, a charged scalar
field, whose origin comes from superradiance. This process
is associated to the extraction of energy and charge from a
black hole by scattering waves [46]. In order to have superra-
diant scattering it is necessary to have a charged field pertur-
bation trapped somewhere between the event horizon and a
reflecting mirror [47,48]. This can be realized by an effective
potential with a maximum and a minimum outside the hori-
zon such that the wave is amplified in the valley between these
extrema. Alternatively, it has also been proposed that the
mirror could be supplied by a plasma surrounding the black
hole [49,50]. A case in point is the Reissner–Nordström–de
Sitter black hole for which it has been proved that a mass-
less charged scalar field with l = 0 displays an instability
at late times whose origin is superradiant [51]. However, it
was also demonstrated that superradiance is a necessary but
not sufficient condition to trigger instability [52]. Regarding
the black hole solution surrounded by an anisotropic fluid
studied here, a study using a massive charged perturbation
with l = 3 has found no instabilities [53]. Nevertheless, a
more careful study with different parameters would be nec-
essary in order to have a definite answer about superradiant
instability.

4 Thermodynamics

In this section we are going to discuss some thermodynamical
aspects of the dirty black holes under consideration.

First of all, we can rewrite the metric coefficient (3) in
terms of the event horizon as

f (r) = r − r+
r

− Q2

r2

(r − r+)

r+
+ c

r3ω f +1

(r3ω f − r
3ω f
+ )

r
3ω f
+

.

(26)

In addition, using the metric (2) we can write the surface
gravity of this horizon as

κ=1

2
f ′(r)|r=r+=1

2

[
2M

r2+
− 2Q2

r3+
+(3ω f + 1)

c

r
3ω f +2
+

]
.

(27)

Both expressions will be useful in our next calculations.

4.1 Entropy bound

Let us consider a particle in equatorial motion near a black
hole. The constants of motion are given by

E = πt = gtt ṫ

J = −πφ = −gφφφ̇, (28)

corresponding to the energy and angular momentum of the
particle, respectively. Since the energy conservation for a
particle of mass m implies −m2 = πμπμ, using the metric
(2) together with the metric coefficient (3) we can obtain a
quadratic equation for the conserved energy E of the particle,
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E2 − f J 2

r2 − m2 f = 0, (29)

whose solution becomes

E =
√
m2 f + f J 2

r2 . (30)

As the particle is approaching the black hole gradually, this
process must stop when the proper distance from the body’s
center of mass to the black hole horizon equals the body’s
radius R,∫ r++δ(R)

r+

√
grr dr = R, (31)

where r++δ(R) represents the point of capture of the particle
by the black hole. At this point the energy of the particle (30)
can be evaluated and minimized with respect to the angular
momentum of the particle. This results in Jmin = 0, such
that

Emin = √
f (r+ + δ)m. (32)

In order to perform the integral (31), express δ in terms
of R, and evaluate Eq.(32), we considered 3 cases, ω f =
−1/2, −2/3, −5/6. To first order in δ the proper distance
integral yields,

δ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2r2+rq−2Q2rq−3r2+
√
r+rq )R2

8r3+rq
, for ω f = −1/2

(r2+rq−Q2rq−2r3+)R2

4r3+rq
, for ω f = −2/3

(2r2+r2
q−2Q2r2

q−5r3+
√
r+rq )R2

8r3+r2
q

, for ω f = −5/6

(33)

From the first law of thermodynamics we have that

dM = κ

2
d Ar , (34)

being Ar the rationalized event horizon area A/4π and
dM = Emin , the change in the black hole mass due to the
assimilation of the particle. Using Eqs. (27), (32), and (33)
we obtain

d Ar = 2mR, (35)

in the three cases considered here. Now assuming the validity
of the Generalized Second Law (GSL), SBH (M + dM) ≥
SBH (M) + S, we derive an upper bound to the entropy S of
an arbitrary system of proper energy E ,

S ≤ 2πmR. (36)

This result is independent of the black hole parameters and
perfectly agrees with the universal bound found by Beken-
stein [16].

4.2 Semiclassical corrections to black hole entropy

Following ’t Hooft’s brickwall method [17] we consider a
thermal bath of scalar fields propagating just outside the hori-
zon of a black hole background given by Eqs. (2) and (3). The
minimally coupled scalar field with mass μ satisfies Klein–
Gordon equation,

1√−g
∂μ(

√−ggμν∂νΦ) − μ2Φ = 0. (37)

The idea is to quantize this field using the partition function
of statistical mechanics, whose leading contribution comes
from the classical solutions of the Euclidean action that yield
the Bekenstein-Hawking formula. This scalar field will pro-
duce quantum corrections to the black hole entropy which
can be calculated using the brickwall method. The ’t Hooft
method consists in introducing an ultraviolet cut-off near the
event horizon such that Φ = 0 for r ≤ r+ + ε. In addition,
in order to eliminate infrared divergences another cut-off is
introduced at a large distance from the horizon, L  r+,
where Φ = 0 for r ≥ L . By decomposing the scalar field as

Φ(t, r, θ, φ) = e−i Et R(r)Y (θ, φ), (38)

the radial part of Eq. (37) turns into

R′′ +
(

f ′

f
+ 2

r

)
R′ + 1

f

[
E2

f
− �(� + 1)

r2 − μ2
]
R = 0, (39)

where �(� + 1) is the variable separation constant. Then,
using a WKB approximation for R(r) ∼ ei S(r) in Eq. (39),
where S(r) is a rapidly varying phase, to leading order only
the contribution from the first derivative of S is important.
This contribution represents the radial wave number K ≡ S′,
which can be obtained from the real part of Eq. (39) as

K = 1√
f

[
E2

f
− �(� + 1)

r2 − μ2
]1/2

. (40)

In terms of this quantity the number of radial modes nr is
quantized semiclassically as,

πnr =
∫ L

r++ε

K (r, �, E)dr. (41)

Furthermore, the entropy of the system will be calculated
from the Helmholtz free energy F of the thermal bath of
scalar particles with temperature β−1 = κ/2π ,

F = 1

β

∫
d� (2� + 1)

∫
dnr ln(1 − e−βE )

= −
∫

d� (2� + 1)

∫
nr

eβE − 1
dE, (42)
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where we made an integration by parts in the last step. Using
Eqs. (40) and (41) and performing the integral in � we obtain

F = − 2

3π

∫
dE

eβE − 1

∫ L

r++ε

dr

[
r2

√
f

(
E2

f
− μ2

)3/2
]

.

(43)

According to brickwall method we should study the contri-
bution of this integral near the horizon. Thus, using Eq. (26)
to write an approximate expression of the metric near the
horizon and performing the integral in E we get

F ≈ − 2π3

45β4

∫ L̄

1+ε̄

r3+

[(
1− Q2

r2+

)
(y−1)+ c

r
3ω f +1
+

(y3ω f −1)

]−2

dy,

(44)

where we rescaled some quantities as y = r/r+, L̄ = L/r+,
and ε̄ = ε/r+. At this point it is convenient to consider
different values of ω f separately. We should notice that the
divergent contribution of the integral to the Helmholtz energy
comes from its lower limit. Thus, the leading divergent term
Fε is given by

Fε =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 8π3r4+
45β4ε

(
2 − 2Q2

r2+
− 3

√
r+
rq

)−2

, for ω f = −1/2

− 2π3r4+
45β4ε

(
1 − Q2

r2+
− 2r+

rq

)−2

, for ω f = −2/3

− 8π3r4+
45β4ε

[
2 − 2Q2

r2+
− 5

(
r+
rq

)3/2
]−2

, for ω f = −5/6

(45)

The corresponding entropy Sε = β2 ∂Fε

∂β
, then, becomes

Sε =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

32π3r4+
45β3ε

(
2 − 2Q2

r2+
− 3

√
r+
rq

)−2

, for ω f = −1/2

8π3r4+
45β3ε

(
1 − Q2

r2+
− 2r+

rq

)−2

, for ω f = −2/3

32π3r4+
45β3ε

[
2 − 2Q2

r2+
− 5

(
r+
rq

)3/2
]−2

, for ω f = −5/6

(46)

We can express our results in terms of the proper thickness
α defined as

α =
∫ r++ε

r+

√
grr dr. (47)

To first order this expression can give us a relation between
ε and α for the values of ω f considered here,

ε ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− α2

8r3+

(
2Q2 − 2r2+ + 3

r5/2
+√
rq

)
, for ω f = −1/2

− α2

4r3+rq

(
Q2rq + 2r3+ − r2+rq

)
, for ω f = −2/3

− α2

8r3+

(
2Q2 − 2r2+ + 5

r7/2
+
r3/2
q

)
, for ω f = −5/6

(48)

Replacing these values and the corresponding expressions
for the surface gravity (27) in Eq. (46) we finally obtain in
the three cases,

Sε = r2+
90α2 , (49)

or in terms of the black hole horizon area A = 4πr2+,

Sε = A

360πα2 . (50)

This expression is the same correction found by ’t Hooft and
other authors for 4-dimensional black holes, a fact that shows
its universality.

4.3 Thermodynamical stability

In order to see the influence of the fluid on the stability from
a thermodynamical point of view the first step is to analyze
the specific heat,

C = T

(
∂S

∂T

)
, (51)

which in our case becomes

C =
2π

(
3cω f r2+ − Q2r

3ω f +1
+ + r

3ω f +3
+

)
3Q2r

3ω f −1
+ − r

3ω f +1
+ − 9cω2

f − 6cω f

. (52)

The plot of the specific heat for different values of ω f , dis-
played in the left panel of Fig. 3, shows the rich structure of
the geometry already noticed in the literature [27–31]. There
are positive (stable) and negative (unstable) regions alternat-
ing with each other. These regions are separated by several
points that signal first order phase transitions where C = 0
and also second order transitions whenever C becomes infi-
nite. However, the sign of the specific heat is not enough to
ensure stability. One additional criterion to verify the exis-
tence of critical points comes from the Hessian matrix of the
Helmholtz free energy F related to the black hole [54]

H =
⎛
⎝ ∂2F

∂T 2
∂2F
∂T ∂C

∂2F
∂C∂T

∂2F
∂C2

⎞
⎠ , (53)

where C is the conjugate quantity to the “charge” c related to
the presence of the anisotropic fluid given by

C = ∂M

∂c
= −r

−3ω f
+

2
. (54)

Using the entropy S = πr2+ and the temperature of the black
hole T = κ/2π with κ given in Eq. (27) we find that

F = −
∫

S dT = r+
4

+ 3Q2

4r+
−

(
1

2
+ 3

4
ω f

)
c r

−3ω f
+ .

(55)
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Fig. 3 Specific heat (left) and
trace of Hessian matrix (right) in
terms of the event horizon for
the different values of ω f used
in this paper. We set black hole
parameters Q = 1/2 and
c = 0.1

Fig. 4 Trace of Hessian matrix
in terms of the event horizon
with Q = 1/2 for different
values of c (left) and with
c = 0.1 for different values of Q
(right)

With all this information we can calculate the determinant
of the Hessian matrix. However, this determinant vanishes,
what means that one of the eigenvalues of the matrix is zero.
The other eigenvalue corresponds to the trace Tr(H) of the
Hessian matrix (53). Then, a necessary criterion for the model
to be stable is the positivity of this quantity, i.e., Tr(H) ≥ 0.
We plotted this trace in the right panel of Fig.3. We observe
that, in fact, there are regions where Tr(H) ≥ 0 for the values
of ω f considered along this work. Moreover, in the left panel
of Fig.4 we see that small black holes fulfill the stability
criterion independent of the value of c, whose influence is
only visible for bigger r+. A curious fact is that for ω f =
−2/3 the trace of the Hessian matrix does not depend on c.
In addition, the effect of the charge on the stability criterion
can be seen in the right panel of Fig.4, small charge black
holes have shorter regions of instability. Therefore, with this
analysis we see that it is possible to have phase transitions
for different values of the black hole and anisotropic fluid
parameters.

5 Final remarks

In this paper we investigate charged black hole spacetimes
surrounded by anisotropic fluids. We firstly obtained the

conformal structure of the entire manifold showing that its
Penrose-Carter diagram is similar to Reissner-Nordström-
dS spacetime, i.e., there is a cosmological-like horizon, an
event horizon, and inner Cauchy horizon. In addition, there
is a time-like singularity at the origin that could be avoided
by an observer crossing the inner horizon. The novelty in
the spacetimes considered in the present work is the light-
like structure beyond the cosmological-like horizon differ-
ently from the RN-dS black hole where this region presents
a space-like structure.

Having established the causal structure of the black hole
spacetime we evolve the scalar field between the event and
cosmological-like horizons obtaining two interesting fea-
tures. The first one is that the late-time behavior is domi-
nated firstly by a power-law term for small state parameter
of the fluid |ω f | and, afterwards, by an exponential decay
(purely imaginary quasi normal mode) for higher |ω f |. For
these geometries the presence of a power-law term in the
final stage comes as an interesting new result never reported
before even in de Sitter black hole spacetimes where this
phenomenon may also be present. The second one concerns
the quasinormal modes obtained in Sect. 3. They provide the
spectrum of oscillation of the black hole when perturbed by
a scalar field. We show that they are very similar for different
state parameters when the fluid density is small being hugely
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influenced when it becomes large. When varying the state
parameter, the oscillations have both imaginary and real part
diminished as we increase |ω f |. Furthermore, no instability
was found in our analysis with various black hole parame-
ters (M, Q, c, ω f ). Apart from that, it would be insteresting
to check if charged perturbations could trigger superradi-
ant modes since this case has been only partially discussed
in [53] and no instability was found. However, as already
mentioned, superradiant modes can still exist even if they do
not produce an instability. Thus, the question of the existence
of superradiance in these models, given the natural boundary
provided by the cosmological-like horizon associated to the
anisotropic fluid, is still open and will be reported elsewhere.

Regarding the thermodynamical calculations, we consid-
ered an arbitrary particle of proper energy E in equatorial
motion and captured by these black holes surrounded by
anisotropic fluids. Our result shows that these geometries
yield the universal bound for the entropy of the falling sys-
tem originally found by Bekenstein [16]. In addition, we also
considered a thermal bath of scalar fields propagating out-
side the event horizon of these black holes in order to find
the semiclassical corrections to their entropy. Following ’t
Hooft’s brickwall method we found the same kind of correc-
tion corresponding to 4-dimensional black holes showing the
universality of this result [17]. Finally, we also analyzed the
thermodynamical stability looking at the specific heat of the
black hole. As an additional criterion to ensure the presence
of critical points, we also calculated the trace of the Hessian
matrix of the Helmholtz free energy. In this way we showed
that phase transitions of first and second order are possible
for different values of the black hole and anisotropic fluid
parameters.
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Appendix A Maximal extension for the black hole
solution with w f = −2/3

The case with w f = −2/3 has the following line-element

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2
2 , (A.1)

with

f (r) = 1 − 2M

r
+ Q2

r2 − cr. (A.2)

In the cases where M > Q it is possible to express the
metric components gtt and grr in terms of three distinct posi-
tive real roots (rc, r+, r−) which, as in the case w f = −1/2,
represents the cosmological-like horizon, event horizon, and
Cauchy horizon, respectively. So,

f (r) = − c

r2 (r − rc)(r − r+)(r − r−), (A.3)

and the tortoise coordinate r∗ can be written as

r∗ = − 1

κc
log |r − rc| + 1

2κ+
log |r − r+|

− 1

κ−
log |r − r−|, (A.4)

with (κc, κ+, κ−) referring to the surface gravity in each hori-
zon. Following the same steps as in the case w f = −1/2,
we obtain the maximal extension in each horizon. For the
cosmological-like horizon r = rc we have

UcVc = ±|r − rc| 1

|r − r+|κc/κ+ |r − r−|κc/κ− , (A.5)

where the upper sign refers to r > rc and the lower sign
corresponds to r < rc. In the cases of event horizon r+ and
Cauchy horizon r−, we have found similar expressions,

U+V+ = ∓|r − r+| 1

|r − rc|κ+/κc

1

|r − r−|κ+/κ− , (A.6)

and

U−V− = ±|r − r−||r − rc|κ−/κc
1

|r − r+|κ−/κ+ . (A.7)

Thus, introducing the Penrose coordinates T = 1
2 (Ṽ + Ũ )

and R = 1
2 (Ṽ − Ũ ) in each horizon we obtain the Penrose-

Carter diagram as shown in Fig.1.
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