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Abstract New phenomenological implications of the Gen-
eralized Uncertainty Principle (GUP), a modification of the
Heisenberg Uncertainty Principle (HUP) are explored in light
of constraints arising from underground experiments. An
intimate link intertwines the symplectic structure of a the-
ory, which is at the very base of the formulation of the
HUP and thus a pillar of quantum mechanics, with the sym-
metries of space-time and the spin-statistics. Within this
wide framework, a large class of non-perturbative GUPs
inevitably lead to energy-dependent violations of the total
angular momentum conservation rules, and imply hence tiny
Pauli Exclusion Principle (PEP) violating transitions. Exotic
PEP violating nuclear transitions can be tested, for exam-
ple, through extremely high precision data provided by the
DAMA/LIBRA experiment. We show that several GUP vio-
lations are already ruled out up to the quantum gravity Planck
scale.

1 Introduction

The Heisenberg uncertainty principle immediately implies
that identical particles cannot be distinguished anymore in
scattering amplitudes. Indeed, in elastic electron-electron
scatterings, we loose predictive power in determining specif-
ically the scattered electron detected by the experiment.
Instead, we have to account for two possible interfering
amplitudes, with electron pair exchanges. If the interference
of the amplitudes is destructive, i.e. if their permutation sym-
metry encodes a minus sign, the two particles are fermions
that retain spin 1

2 (electrons in our case).
On the other hand, identical particles with integer spin,

namely bosons, undergo scattering amplitudes with construc-
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tive interference. This is certainly suggesting us how inti-
mately the spin statistics is related to the Heisenberg Uncer-
tainty Principle (HUP). Therefore, a natural question would
be: what would happen if we modify the very foundations
of quantum mechanics, deforming the standard HUP so to
account for new physics? May this turn into a modification of
the Spin Statistics and the Pauli Exclusion Principle (PEP)?

Recently, we have shown how constraints on possible tran-
sitions that violate the PEP can provide strong bounds [1–3]
on a large class of non-commutative quantum gravity mod-
els that are based either on θ -Poincaré deformed space-time
symmetries [4–6] or on the κ-Poincaré deformed space-time
symmetries [7–13]. It has been shown that many of these
models can be actually ruled-out up to the second order in
the Planck energy scale, as a byproduct of the amplification
effect for the signal provided by the large mass sensitivity
of the underground experiments. Sharing the same attitude,
in this paper we will explore possible implications of the
generalization of the HUP. We may take inspiration from
the seminal work by Amati, Ciafaloni and Veneziano, who
realized that polynomial momenta dependent corrections to
HUP arise from string perturbation theory, accounting for the
formal replacement of the standard bracket [X, P] = i h̄ into
[X, P] = i h̄(1 ± βP2 + ...) [15–17]. This deformation of
HUP is commonly referred to the literature as Generalized
Uncertainty Principle (GUP) - see e.g. Ref. [18] for a modern
review on this subject.

Whenever perturbation theory breaks down, we cannot
anymore control all the infinite new contributions to the
HUP. Nevertheless, this can turn out into a natural oppor-
tunity to exploit novel non-linear GUP models, bearing in
mind that the whole power series of perturbative terms can
be actually re-summed into a complete non-analytical func-
tion f (P). Therefore, we may reverse the logical pathway,
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namely “from scattering to GUP”, into “from GUP to scat-
tering”: we can suggest reasonable effective GUP models,
and then study their different predictions for what concerns
their transition amplitudes, transitions probabilities, decay
rates and so on. A posteriori, high precision data from under-
ground experiments will phenomenologically suggest what
are the “viable roads” towards quantum gravity. In this sense,
we are here inaugurating a new effective quantum mechani-
cal approach toward quantum gravity phenomenology. This
is rooted at the theoretical level, on the very deep structure
of the symplectic phase-space of the quantum theories of
fields [19–21], and thus on their non-relativistic Galilean
limit. Changing the very same pilasters of quantum mechan-
ics, a large class of non-perturbative GUP models violates the
Spin Statistics rules. This leads to Pauli Exclusion Principle-
violating (PEPV) rare processes, which can in principle
destabilize nuclear matter. Here, we will mainly focus on
the DAMA/LIBRA data, inspired by the analysis shown in
Refs. [23,24]. PEPV transitions that emit energetic protons
from nuclear level transitions can be indeed tested by the
DAMA/LIBRA detectors with high precision, setting severe
bounds on the GUP parameter spaces.

The plan of the paper is as follows. In Sect. 2 we review
previous insights from the symplectic geometry side that shed
light on the intrinsic link between the symplectic structure
of the phase space of theories of fields, the space-time sym-
metries that label their representations and their co-algebra
structure. In Sect. 3 we specify a particular phenomeno-
logical framework, inspired by string perturbation theory,
and particularly suited to account for data from underground
experiments. In Sect. 4 we discuss phenomenological con-
straints that arise from the inspection of data provided by the
DAMA/LIBRA high precision detectors. Finally, in Sect. 5
we spell some preliminary conclusions and spare outlooks
on forthcoming refinements of this analysis.

2 From the Heisenberg principle to space-time
symmetries and statistics, and vice-versa

In the 80’s, a formalism for the covariant treatment of the field
theories’ phase-space was developed byCrnkovic andWitten
in [19–21]. The main idea was to express the symplectic
form of field theories’ Lagrangians in terms of the space-
time symmetries that are employed in labelling the solutions
of the equation of motion. This simple idea allowed to unveil
the intimate relations that links the phase-space structure of
the theory to its symmetry structure.

The approach can be illustrated moving from a generic
Lagrangian L of a scalar field �. The theory then casts

S =
∫
M

L(�, ∂α�)dt , (2.1)

with M space-time manifold. The phase space of the the-
ory is then an infinite dimensional manifold � accounting
for the pairs {�,	}, with 	 = δL

δ�̇
momentum canonically

conjugated to �, the dot “˙” denoting as usual time deriva-
tive. Points of the classical phase-space are then determined
thanks to the one-to-one correspondence with the space of
solutions A of the equation of motion, namely the Euler
Lagrange equation

∂α

(
δL

δ ∂α�

)
− δL

δ�
= 0 . (2.2)

Within this geometrical description, the points of the phase-
space are then identified with the solutions of the Euler
Lagrange equation, or in other words, � is identified with
S.

We may then introduce the tangent and cotangent elements
of A. These are respectively the vectors δ� ∈ TA, which
as small fields displacements still fulfill Eq. (2.2), and the
associated one-form δ�(x) ∈ T ∗ A, defined at each point
x ∈ M. A general p-form can be then defined to be F =∫
dx1 . . . dxp fx1...xpδ�(x1) ∧ · · · ∧ �(xp). This enables us

to see δ as a mapping that satisfies δ2 and δ(FG) = δ(F)G+
(−1)r(F)F δ(G), with r(F) rank of F .

It is now possible to specify a non-degenerate (symplectic)
two-form ω, which casts as

ω = δ

(∫
�

dσαJ α

)
, (2.3)

in terms of the conserved current J α that arises from L ,
namely

J α = δL

δ ∂α�(x)
δ�(x) . (2.4)

Poincaré invariance automatically follows from the defini-
tion in Eq. (2.3). Labelling with s any independent symmetry
generator, for the vector fields Vs ∈ TS that are tangent to
the orbits of the space-time symmetries, the evaluation of the
two-forms provides ω(Vs)=−δ(Qs), where Qs is the gener-
ator of the symmetry. On �t (the space-like hypersurfaces �

at t fixed), this latter relation reduces to the integration on the
three-dimensional space volume of a two-form expression

ω = 1

2

∫
�t

(δ	 ∧ δ�), (2.5)

which evaluated on the vectors that are tangent to the space-
time symmetry orbits provides the one-form

ω(Vs) = 1

2

∫
�t

(δ	(Vs)δ� − δ	δ�(Vs)) . (2.6)

Eqs. (2.5)–(2.6) respectively provide bilinear and linear
functionals on S. Accounting for the covariant conjugated
momenta 	α = ∂α�, these can be directly expressed in a
covariant form on any spacial hypersurface �t as [22]
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ω(�1,�2) = 1

2

∫
�t

(	1�2 − �1	2) , (2.7)

providing the symplectic product of the theory, and (on a
space-like surface � covariantly chosen)

− Qs = ω(Vs) (�) = 1

2

∫
�

dσα

(
(LVs	

α)�

−	α (LVs�)
)

, (2.8)

namely a symmetry generator, having introduced the Lie
derivative L, which on a general p-form G reads LVs G =
(δG)(Vs), while on a 0-form f , i.e. a function, readsLVs f =
(δ f )(Vs).

This brief summary sheds light on the link between the
effective action L , its conserved current, and then the sym-
plectic structure of the theory. As a matter of fact, it is not
unconceivable to realize that a redefinition of the conjugated
momenta to the fields that enter the symplectic structure,
actually amounts to a change in the symplectic structure of
the theory. But stepping out of the canonicity of theory actu-
ally amounts to change one of the fundamental pillars of
quantum mechanics, namely the HUP.

Furthermore, it was shown in [10] that the relationship
between symplectic structure and symmetry structure actu-
ally extends to the co-algebraic structure of the field theo-
ries’ symmetries: in other words, the link with between the
HUP and the space-time symmetries extends to the statis-
tics. This realization opened the pathway to the formulation
in the symplectic geometry approach of the Hopf algebras
symmetries, which are associated to non-commutative space-
times/effective backgrounds instantiations of several quan-
tum gravity models. Specifically, the approach made use of
the Poisson map, which preserves the symmetry structure of
the theory, even when considering a deformed space-time
symmetries. In [10], the authors deepened the case of κ-
Poincaré, but similar arguments can be extended in general,
to any deformed space-time symmetry algebra.

On the other hand, the fact that a deformation of the
space-time symmetries, and thus the effective Lagrangian,
might induce a deformation of the statistics, arises natu-
rally when reviewing a very simple, but rigorous and deci-
sive argument developed by Schwinger to prove the spin-
statistics theorem. Considering that more than relativistic
quantum field theory the proof of the spin-statistics theo-
rem requires Lorentz invariance, Schwinger realized that the
kinetic part of the Lagrangian is the fundamental ingredient to
be invoked. Therefore, crucial at this purpose are the require-
ments that, besides being derivable form a Lorentz invariant
theory, the kinetic term for a real scalar field � = �† encodes
at most linear first derivatives of the field, and is bilinear in
it. Labelling the spin of the field with l,m, Schwinger then
considered a Lagrangian of the form

L = i

2

(
�l�̇m − �̇l�m

)
K 0
lm

− i

2

∑
j=1,2,3

(
�l(∇ j�m) − (∇ j�l)�m

)
K 0
lm − Mlm �l�m,

(2.9)

where the sum of j run over the space indices, and K 0
lm ,

K j
lm and Mlm are matrices of the field Lagrangian. Thus the

Lagrangian in Eq. (2.9) can be recast in the compact form

L =
∑
lm

�l�lm�m , �lm = i

2
K 0 ↔

∂ t − i

2
K0

↔
∂ j −M ,

(2.10)

which, as an aside, we notice is intimately connected to the
definition of the internal symplectic product of the theory.

Now the argument develops very straightforwardly. We
first consider that the Lagrangian must be invariant under the
change of order of any two fields, since this is redundant and
the spin-label is summed over. Then we take into account the
properties of the SO(3) group, namely that representations
labelled by a semi-integer spin have a bilinear antisymmetric
internal product, while representations labelled by an integer
spin retain a bilinear symmetric internal product. As a con-
sequence, to ensure invariance of the Lagrangian under the
swap of fields, namely

�l�lm�m + �m�ml�l →
±�m�lm�l ± �l�ml�m , for �l ↔ �m , (2.11)

the infinite-dimensional � operator must satisfy

�lm = ±�ml . (2.12)

Relation (2.12) imposes restrictions on the matrix M , which
must be symmetric for integer-spin fields (Bose–Einstein
statistics), and anti-symmetric for half integer spin (Fermi-
Dirac statistics). Then, it is immediate to ponder that a defor-
mation of the algebra of rotation will affect the internal prod-
uct symmetries, and thus the statistics of the theory. It is also
straightforward to realize that considering either non-local
or non Lorentz-invariant Lagrangian functionals will amount
to change the symplectic product of the theory, thus the very
fundamental pillar of the HUP.

In forthcoming investigations, we will be back to this topic
with the aim to further clarify the link between deformation
of the HUP, deformation of the algebra and deformation of
the statistics [25].

3 Generalized uncertainty principle and quantum
gravity effects

We now specify the phenomenological framework, necessary
to make contact with underground experiments. We may start
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from considering the specific class of GUP models, defined
by the brackets

[Xi , Pj ] = i h̄δi j

(1 − (βP2)m
′
)k

, [Pi , Pj ] = 0 ,

[Xi , X j ] = 2i h̄β

(1 − (βP2)m
′
)2k

(Pi X j − Pj Xi ), (3.1)

where β is related to the GUP critical energy scale � as
β = �−2, and as usual X, P denote the position and
the momentum operators, while m′, k are two free index-
parameters.

This class of models encodes a natural solution to sev-
eral quantum gravity problems: when P = 1/

√
β =

�, uncertainties diverge, i.e. limP→� �X�P → ∞ and
limP→� �Xi�X j → ∞. This implies that at a critical UV
scale, space-time singularities cannot be formed, and thus
becomes impossible to probe length shorter than l̄ = 1/�.
On the other hand, commutativity of space coordinates is
fully lost around P = �. This is also suggesting that the
angular-momentum operators may loose certainty around the
UV fixed energy. Indeed, Eq. (3.1) implies a deformation of
the standard angular-momentum generators algebra, namely

[Li , L j ] = i h̄

(1 − (βP2)m
′
)k

(
Xi Pj − X j Pi

)

= i h̄

(1 − (βP2)m
′
)k

εi jk Lk , (3.2)

which is compatible with a new definition of the angular-
momentum operators,

Li = 1

(1 − (βP2)m
′
)k

εi jkr j pk . (3.3)

Similarly, also the [Xi , X j ] bracket can be cast in terms
of the Li j generators, namely

[Xi , X j ] = −2i h̄β

(1 − (βP2)m
′
)k
Li j . (3.4)

This implies that space coordinates cannot commute any-
more, but are rather proportional to a linear superposition of
the angular-momentum generators. Within this framework,
the scale of non-commutativity is individuated by β = 1/�2.

Conservation of the angular-momentum components in
presence of a central interaction potential is also ensured from
considering the average expectation of Eq. (3.2), namely
〈[L2, H ]〉 = 〈[Lz, H ]〉 = 0. Nonetheless, Eq. (3.2) implies
that �Li�L j → ∞ for p → �, i.e. quantum fluctua-
tions may become extremely relevant even while considering
eigenstates of the angular-momentum operators, if the corre-
sponding energies do approach the UV scale �. The uncer-
tainty of the orbital angular-momentum operators at the UV
scale � would amount to an uncertainty of the total angular
momentum, and thus therefore would imply a spin uncer-
tainty. Actually, a similar argument holds in general, even

without accounting for GUP modifications at the UV-scale,
and explains why the simple but crystal-clear argument by
Schwinger is successful in proving the spin-statistic theorem.

Coming back to the phenomenological consequences, we
take into account a generic bound-state of fermions (e.g. a
Fermi nuclear hole model) endowed with two levels, char-
acterized by the eigenvalues j1,m1 and j2,m2. In standard
quantum mechanics, one can measure both Jz and J 2 with
theoretical infinite resolution, the only price to pay being
the complete uncertainty on the components Jx , Jy . But
according to Eqs. (3.1)–(3.2), this is impossible within the
framework of the non-perturbative GUP. Indeed, Jz and J 2

can only be measured with finite resolution, even theoret-
ically, and the uncertainty on the z-component grows as
�Jz ≥ k(βP2)m

′
h̄/2+ higher-orders. If for a certain value

of P it happens that �Jz > |J (1)
z − J (2)

z | for any two dif-
ferent levels, then it is impossible to distinguish the level
in which fermions are localized. In other words, the wave-
functions of the fermion angular-momentum operators cast
as linear combinations of the levels that undergo the uncer-
tainty. In our previous example, this corresponds to con-
sidering the superposition of the two eigenstates |J, M〉 �
α(P)| j1,m1〉 + β(P)| j2,m2〉, with |α(p)|2 + |β(p)|2 = 1.
In the low-energy limit, one of the coefficients of the two-
levels superposition in the fermion wave-function would van-
ish polynomially, as k(βP)m

′
.

In compliance with the aforementioned considerations,
we shall consider a simple low-energy, single-fermion state,
which results as a super-position of two eigenstates, i.e.

|J ′, M ′〉 � (1 − k(βP2)m
′
)| j1,m1〉 + k(βP2)m

′ | j2,m2〉,
(3.5)

being the normalization factor power-series negligible.
According to Eq. (3.5), each fermion wave-function results in
an energy-dependent mixing of several angular-momentum
eigenstates, each one labelled by different quantum numbers.
Therefore, for each fermionic particle there exists an energy-
dependent probability to transit from a level with a certain
angular-momentum eigenvalue to another one characterized
by a different eigenvalue. Correspondingly, this can violate
not only the very conservation of the angular-momentum, but
also the Pauli exclusion principle.

To further clarify this point, we may inspect another rele-
vant example and account for a wave-function that is almost
localized on the second level, namely

|J, M〉 � [
k(β P̃2)m

′ | j1,m1〉 + (1 − k(β P̃2)m
′
)| j2,m2〉

]
.

(3.6)

It is then easy to show that the transition amplitude probabil-
ity is not vanishing, but that instead
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〈J, M |J ′, M ′〉|J,M �=J ′,M ′

= [k(β P̃2)m
′
(1 − k(βP2)m

′
)

+k(βP2)m
′
(1 − n(β P̃2)m

′
)] . (3.7)

This transition amplitude goes to zero either for P, P̃ → 0
or for β → 0 (� → ∞). If the two states are degenerate in
the energy, the leading order transition amplitude would be

〈J, M |J ′, M ′〉 � 2k(βP)m . (3.8)

Equation (3.7) then implies that two nucleons can have a tiny
overlap probability, and both stay in levels characterized by
the same quantum numbers, hence violating the PEP.

4 Constraints from DAMA/LIBRA high precision data

We now give a closer look to what Nature can tell us, and
inspect the high precision data provided the DAMA/LIBRA
experiment. Of course, the probabilities associated to transi-
tions that violate the PEP are much smaller than the Standard
Model total rate. Keeping this in mind, we can parametrize
PEPV transitions rate as

�PEPV = n(�−1P)m�SM , (4.1)

where n = 4k2, m = 4m′.
This parameterization is directly computed inserting the

squared amplitude of Eq. (3.8) in the low energy limit, as
a PEPV dressing suppression factor to the SM transition
rate. The DAMA/LIBRA collaboration set strong limits on
the PEPV nuclear level transitions [24]. The DAMA/LIBRA
experiment is indeed sensitive to PEPV nuclear processes
of 23Na and 127I , emitting protons with an energy of about
Ep ≥ 10 MeV. Since this process has not been observed, this
amounts to the possibility to set limits on the transition time of
τp > 1.63 × 1033 s (90% C.L.) — see again Ref. [24]. Such
a limit corresponds to n(�−2P)m < 4 × 10−55 (90% C.L.).
For a complete nuclear modeling of the proton emission, we
refer to Ref. [23].

Limits on the parameter space (n, m, �(GeV )) can
be worked out. In particular, Fig. 1 shows the excluded
parameter space (�,m) from DAMA/LIBRA experiment for
four different values of n = 1, 2, 10, 100. As we can see,
very remarkably a large part of parameter space are already
excluded at energies above the Planck scale and, in particu-
lar, for m � 2.7 nearly independently on the n value. This
argument is confirmed studying the dependence of � from
n, which is reported for three sample values of m = 1, 2, 3 in
Figs. 2, 3, 4, respectively. The region above the Planck scale
is excluded for m = 1, 2.

The DAMA/LIBRA constraints can be compared to other
underground experiments based on different experimental
techniques. Interesting comparative analysis can be per-
formed considering experiments searching for PEPVs in

Fig. 1 Excluded parameter space (�,m) from DAMA experiment: the
four contour limits correspond to fix n = 1, 2, 10, 100 respectively

Fig. 2 Excluded parameter space (�, n) from DAMA experiment, fix-
ing m = 1

atomic transitions rather than nuclear ones. The VIP experi-
ment is dedicated on searches of PEPV atomic transitions in
Copper atoms [26].

5 Conclusion

In conclusion, we have shown that a large class of non-
perturbative GUP models, endowed with three free param-
eters, can be constrained/ruled out by the DAMA/LIBRA
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Fig. 3 Excluded parameter space (�, n) from DAMA experiment, fix-
ing m = 2

Fig. 4 Excluded parameter space (�, n) from DAMA experiment, fix-
ing m = 3

experiment, within a large parameter space region. We notice
that the specific framework we analyzed predicts angular
momentum violating transitions, as well as PEP violations.
Exotic nuclear transitions can be tested with high precision by
the DAMA/LIBRA experiment, having a background clean
window for the detection of either the proton or the neutron
with momentum of about 10 MeV.

The characteristic GUP energy scale � = 1/
√

β can be
then constrained to be larger than the Planck energy scale.
For example, the case considered in Ref. [27] is already ruled

out by the data, up to the Planck scale (corresponding to
n = m = 1).

On the other hand, it is also conceivable that matter stabi-
lization would be guaranteed by either discrete symmetries or
selection rules. In this case, it is important within a comple-
mentary strategy to test PEPV from recombination scattering
processes, as suggested by the VIP collaboration [26].

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: We don’t have
any problem to share the data.]
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