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Abstract In this paper, we study four-dimensional topo-
logical black hole solutions of Einsteinian cubic gravity in
the presence of nonlinear Born–Infeld electrodynamics and
a bare cosmological constant. First, we obtain the field equa-
tions which govern our solutions. Employing Abbott–Deser–
Tekin and Gauss formulas, we present the expressions of con-
served quantities, namely total mass and total charge of our
topological black solutions. We disclose the conditions under
which the model is unitary and perturbatively free of ghosts
with asymptotically (A)dS and flat solutions. We find that, for
vanishing bare cosmological constant, the model is unitary
just for asymptotically flat solutions, which only allow hori-
zons with spherical topology. We compute the temperature
for these solutions and show that it always has a maximum
value, which decreases as the values of charge, nonlinear
coupling or cubic coupling grows. Next, we calculate the
entropy and electric potential. We show that the first law of
thermodynamics is satisfied for spherical asymptotically flat
solutions. Finally, we peruse the effects of model parameters
on thermal stability of these solutions in both canonical and
grand canonical ensembles.

1 Introduction

General relativity has passed all tests successfully. The lat-
est one was the detection of gravitational wave [1], almost
one hundred years after Einstein predicted it. Despite these
achievements, it is unavoidable to modify general relativity
when spacetime curvature becomes extremely large, say, near
a singularity. The most natural modification is to take into
account the higher-order curvature terms. The well-known
higher-order Lovelock terms provide this kind of modifica-
tion while they respect the constraints of early version of
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general relativity [2,3]. However, these terms have no con-
tribution in four dimensions. Recently, a cubic order curva-
ture model with contribution in four dimensions called Ein-
steinian cubic gravity (ECG) has been proposed [4]. This
model has attracted a lot of attention [5–19]. ECG respects
some of the constraints that Lovelock theories have. For
example, on a maximally symmetric background, it just prop-
agates a transverse and massless graviton and in all dimen-
sions it has the same relative coefficients of the different cur-
vature invariants involved. The nontrivial contribution in four
dimensions along with other features have made this model
intriguing and important. The latter property allows us to see
the effects of higher-order curvature modifications on (2+1)-
dimensional holographic duals of gravity theory solutions.

The solutions in the context of ECG have been explored
from different points of view. In [5], by constructing per-
turbative five-dimensional black hole solutions of ECG, the
holographic entanglement Rényi entropy has been computed
in the dual field theory. The first examples of black hole
solutions in ECG have been obtained in [6], and thermal
behaviors of them have been explored. In [7], the static and
spherically symmetric generalizations of four-dimensional
linearly charged and uncharged black hole solutions in ECG
have been constructed and their thermodynamics has been
studied. The most general theory of gravity to cubic order
in curvature called Generalized Quasi-Topological Gravity
(GQTG) whose static spherically symmetric vacuum solu-
tions are fully described by a single field equation has been
constructed in [8]. In this theory, the ECG as well as Love-
lock and quasi-topological gravities have been recovered in
four dimensions as special cases. General results correspond-
ing to static and spherically symmetric black hole solutions
of general higher-derivative gravities including GQTG have
also been established [9]. It has been proved as well that the
four-dimensional black hole solutions corresponding to an
infinite family of ghost-free higher-order theories are univer-
sally stable below a certain mass [10]. In [11], by employ-
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ing the continued fraction approximation, some interesting
properties of ECG black hole solutions such as the inner-
most stable circular orbit of massive test bodies near a black
hole and the shadow of a black hole have been obtained.
Some properties of a nonsupersymmetric conformal field the-
ory in three dimensions which could be a holographic dual
to four-dimensional ECG model has been explored in [12].
Euclidean AdS-Taub-NUT and bolt solutions with various
base spaces in four- and six-dimensions constructed respec-
tively in the context of ECG and GQTG have been studied as
well and their thermodynamics features have been explored
[13].

In this paper, we study four-dimensional topological black
hole solutions of ECG in the presence of nonlinear Born–
Infeld (BI) electrodynamics and a bare cosmological con-
stant. To the best of our knowledge, this is the first consid-
eration of nonlinearly charged topological solutions in ECG.
The importance of considering nonlinear BI electrodynamics
is at least two fold. On the one hand, it resolves the singu-
larity problem of Maxwell electrodynamics at the place of
point charge [20]. On the other hand, it comes from the low
energy limit of open superstring theory [21–23]. In addi-
tion, photon-photon interaction experiments have suggested
that there is a nonlinear theory of electrodynamics in vac-
uum [24–28]. Black holes with different horizon’s topolo-
gies show drastically different thermodynamical properties
as well. For instance, whereas Schwarzschild black holes
with spherical horizon are not thermally stable, it has been
argued that Schwarzschild-AdS black holes whose horizons
have either planar or hyperbolic topologies are thermally sta-
ble and do not underlie Hawking-Page phase transition [29].
From holographic point of view, topological solutions are
described as duals to thermal states of conformal field theo-
ries as well [30].

This paper proceeds as follows. In the next section, we will
introduce the action of theory and its field equations. Then,
we will calculate conserved quantities in Sect. 3. In Sect. 4,
we will compute thermodynamical quantities and check the
satisfaction of thermodynamics first law. We will explore
thermal stability of our solutions in Sect. 5. Last section is
devoted to summary and concluding remarks.

2 Action and field equations

The Einsteinian cubic gravity (ECG), which is the most gen-
eral dimension-independent gravity theory that consists of
metric and Riemann tensor contractions for which linearized
spectrum coincides with Einstein gravity one, in the presence
of nonlinear electrodynamics could be written as [4,7]

S = 1

16π

∫
M

d4x
√−g

(
R +

3∑
i=2

αi Li − 2�0 − λP + L (F)

)
,

(1)

up to cubic order in curvature. We write action (1) in Planck
units where we set G = c = 1. In the action above, �0, λ

and αi ’s are bare cosmological constant, cubic coupling con-
stant and Lovelock coefficients, respectively. We will assume
λ ≥ 0 throughout this paper. Also, Li ’s stand for i th-order
Lovelock terms [2,3]. Note that L2 is topological and L3

vanishes identically in four dimensions. The additional cubic
contribution P is defined as [4]

P = 12R c d
a b R e f

c d R a b
e f + Rcd

ab R
ef
cd R

ab
e f

− 12Rabcd R
acRbd + 8Rb

a R
c
bR

a
c . (2)

In this paper, we intend to consider Born–Infeld (BI) nonlin-
ear electrodynamics for which

L (F) = b2

(
1 −

√
1 + F

2b2

)
, (3)

where b is a nonlinear parameter and F = FabFab in which
Fab = 2∂[a Ab] and Aa is the electromagnetic potential. As
b tends to infinity, L reduces to the linear Maxwell case i.e.
−F/4. Whereas the second- and third-order Lovelock terms
are respectively topological and trivial in four-dimensions,
the new cubic term P has contribution in field equations [7].

We make the following ansatz for four-dimensional topo-
logical nonlinearly charged black solutions

ds2 = −N 2(r) f (r)dt2 + dr2

f (r)
+ r2d�2

k , (4)

A = h (r) dt, (5)

where

d�2
k =

⎧⎨
⎩
dθ2 + sin2(θ)dφ2 k = 1
dθ2 + dφ2 k = 0
dθ2 + sinh2(θ)dφ2 k = −1

, (6)

represents a 2-dimensional hypersurface with constant cur-
vature 2k and area Ak . k = 1, 0 and −1 represent two-sphere
S2, plane R

2 and hyperbolic H2 topologies for the event
horizon, respectively. Varying the action (1) with respect to
N (r), f (r) and h(r), we are left with three field equations.
One of these field equations which arises from variation with
respect to f (r), is satisfied by N (r) = const . Then, we have
two field equations

0 = −r4H − 2r2
(
k − �0r

2 − r f ′ − f
)

− 12λ

r
(r3 f f ′′2 + 2kr2 f f ′′′ − 4kr f f ′′

+ r3 f f ′ f ′′ f ′′′2 + 4k f f ′ + 4r f f ′2 − kr f ′2

− 4 f 2 f ′ − 2r f 2 (
r f ′′′ − 2 f ′′)), (7)

0 = 2h′3 − b2(2h′ + rh′′), (8)
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where H = b2 − b2
(
1 − h′2/b2

)−1/2
, which is reduced to

−h′2/2 for Maxwell case. Note that prime denotes the deriva-
tive with respect to r . One could immediately solve the elec-
trodynamic field equation (8) as

h(r) = −q

r
F

(
1

2
,

1

4
,

5

4
,− q2

b2r4

)
, (9)

where F (x, y, z, w) is the Gauss hypergeometric function
and q is an integration constant related to total electric
charge of black hole. Expanding h(r) about infinity b, the
potential of Maxwell electrodynamics can be reproduced as
h(r) = −q/r + O (

b−1
)
. Substituting h(r) from Eq. (9) to

Einstein field Eq. (7) and then dividing expressions by 2r2,
one can integrate Einstein field equation once. After some
manipulation, the result could be simplified as follows

kr − m − r3�0

3
− r f + 1

6
b2r3

×
[

1 − F
(

−1

2
,−3

4
,

1

4
,− q2

b2r4

)]

+ λ

r2

[
6r f f ′′ (2k + r f ′ − 2 f

)

− 2r f ′2 (
3k + r f ′) − 12 f ′ f (k − f )

]
= 0, (10)

where m is an integration constant related to total mass of
black hole. For BI-(A)dS gravity in four dimensions (λ = 0),
f (r) could be obtained from above equation as [31]

f (r) = k − m

r
− r2�0

3

+ 1

6
b2r2

[
1 − F

(
−1

2
,−3

4
,

1

4
,− q2

b2r4

)]
. (11)

In this case, the total mass per unit area Ak is [31–35]

ME = m

8π
. (12)

In the next section, we turn to calculate the conserved quan-
tities related to our solutions, namely total mass and total
charge.

3 Conserved quantities

In the present section, we intend to compute the total mass
and the total charge of our black solutions. In order to find the
total mass, we follow the Abbott–Deser–Tekin method [36–
38] of finding conserved quantities for higher-order curvature
gravities [39–41]. According to which, we have to find an
equivalent quadratic curvature action of the form

SEQCA =
∫

d4x
√−g [κ̃−1(R − 2�̃0) + α̃R2

+β̃RabR
ab + γ̃ L2], (13)

where L2 = Rabcd Rabcd − 4RabRab + R2 is the second-
order Lovelock term known as the Gauss-Bonnet term. Note
that equivalent quadratic curvature action has the same vac-
uum solution and the same linearized field equations as the
corresponding higher-order gravity theory. We can write the
gravity part of our action (1) which is cubic-order as

SG =
∫
M

d4x
√−g f

(
Rab
cd

)
,

f
(
Rab
cd

)
= κ−1 [R + α2L2 − 2�0 − λP] , (14)

in which additional cubic contribution P defined in Eq. (2)
can be re-written as

P = 12Rab
cd R

ce
a f R

d f
be + 4Rab

cd R
ef
ab R

cd
e f

− 12Rab
cd R

c
a R

d
b + 8Ra

b R
c
a R

b
c . (15)

In Appendix A, we show how one can obtain Eq. (15). We
suppose that action (14) has an asymptotically (A)dS solution
around ḡab for which

R̄ab
cd = �

3

(
δac δ

b
d − δadδ

b
c

)
, (16)

where � is the effective cosmological constant. Indeed, for
� = 0, we have an asymptotically flat solution. Compar-
ing Eq. (14), with the most general cubic curvature action
constructed from Riemann tensor contractions [42]

SGCCA =
∫

d4x
√−g

[
κ−1 (R − 2�0) + αR2 + βRabR

ab

+γ L2 + F
(
Rab
cd

)]
,

(17)

in which

F
(
Rab
cd

)
≡ a1R

ab
cd R

ce
a f R

d f
be + a2R

ab
cd R

ef
ab R

cd
e f + a3R

a
b R

cd
ea R

eb
cd

+a4RR
ab
cd R

cd
ab + a5R

a
b R

c
d R

bd
ac + a6R

a
b R

c
a R

b
c

+a7RR
a
b R

b
a + a8R

3,

one can find that

γ = α2

κ
, a1 = −12λ

κ
,

a2 = −4λ

κ
, a5 = 12λ

κ
, a6 = −8λ

κ
,

α = β = a3 = a4 = a7 = a8 = 0. (18)

In addition, parameters in actions (13) and (17) are related
to each other, so that, in four dimensions [39–41]
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1

κ̃
≡ 1

κ
− �2

3
[a1 + 4a2 + 6 (a3 + 4a4)

+9 (a5 + a6 + 4a7 + 16a8)] , (19)

�̃0 ≡ κ̃

κ
�0 + 2�

3

(
1 − κ̃

κ

)
, (20)

α̃ ≡ α + �

3
[3a1 − 6a2 − 8a4 + a5

+3 (−a3 + 2a7 + 12a8)] , (21)

β̃ ≡ β + �

3
[−9a1 + 24a2 + 16a3 + 5a5

+3 (16a4 + 3a6 + 4a7)] , (22)

γ̃ ≡ γ + �

3
[−3a1 + 6a2 + 3 (a3 + 4a4)] . (23)

Using Eq. (18), one obtains

κ

κ̃
= 1 − 8λ�2

3
, (24)

�0 = �̃0

(
1 − 8λ�2

3

)
+ 16λ�3

9
, (25)

κγ̃ = (α2 + 4λ�) , (26)

α̃ = β̃ = 0. (27)

Moreover, in four dimensions, we have � = �̃0 [39–41].
Therefore, Eq. (25) leads to

8λ

9
�3 − � + �0 = 0, (28)

whose solution is the effective cosmological constant �. As
Eq. (28) shows, � = �0 for BI-(A)dS gravity (λ = 0).
One also needs to calculate the equivalent effective Newton’s
constant as

1

κ̃e
≡ 1

κ̃
+ 8�α̃ + 4�

3
β̃. (29)

Putting α̃ = β̃ = 0 from Eq. (27) to above relation, we find

κ̃e = κ̃ . (30)

The total mass per unit area Ak is given by [39–41]

M = κ

κ̃e
ME , (31)

where ME is the total mass in Einstein gravity which can be
found as ME = m/8π in four dimensions (see Eq. (12)).
Thus, using Eqs. (24) and (30), we have

κ

κ̃e
= κ

κ̃
= 1 − 8λ�2

3
, (32)

which leads to

M =
(

1 − 8λ�2

3

)
m

8π
. (33)

For model to be unitary and free of ghost, it is necessary
to have κ/κ̃e > 0 [39–41]. Here, it is remarkable to discuss

about the restricts imposed by Eq. (28) as well. This equation
is cubic in � and its discriminant � is

� = 32λ

9

(
1 − 6λ�2

0

)
.

So, it has three real roots if

� ≥ 0 → λ
(

1 − 6λ�2
0

)
≥ 0.

One of the possibilities is �0 = 0 for which

� = 0 and � = ± 3

2
√

2λ
.

Note that we have assumed λ to be positive throughout the
paper. For � = ±3/2

√
2λ, κ/κ̃e given by Eq. (32) is neg-

ative. As a result, for vanishing bare cosmological constant
�0, we have just a unitary model with asymptotically flat
solution (� = 0). Another possibility is �2

0 = 1/6λ for
which � = 0. In this case, we have

For �0 = + 1√
6λ

: � = −
√

3

2λ
and � = +1

2

√
3

2λ
,

For �0 = − 1√
6λ

: � = +
√

3

2λ
and � = −1

2

√
3

2λ
,

where the second one in both cases is a double root. One
could check that for all these roots κ/κ̃e ≤ 0 and therefore
the model is not unitary. For some other values of param-
eters including ones for which � < 0, one can find some
vacuum solutions within a unitary model as well. Note that
for � < 0 (1 − 6λ�2

0 < 0), the cubic equation (28) has two
imaginary complex conjugate roots and just one real root for
�. In our thermodynamical studies which will be presented
in next sections, we focus on vanishing bare cosmological
constant case (�0 = 0). As discussed above, in this case, an
asymptotically flat solution (� = 0) is just allowed. So, the
mass per unit area reads

M = m

8π
, (34)

according to Eq. (33).
Here, we turn to calculate the total charge of our black

solutions via Gauss law. Using (9), one can show that Frt =
h′(r) is

Frt = q

r2
√

1 + q2/b2r4
. (35)

Then, using Gauss law, the total charge is given by

Q = 1

4π

∫
r2LF Fμνn

μuνd�k, (36)

whereLF = ∂L/∂F andL is the Lagrangian of BI nonlinear
electrodynamics expressed in Eq. (3). Also, nμ and uν are
the unit spacelike and timelike normals to the hypersurface
of radius r given as nμ = (√−gtt

)−1
dt = (√

f (r)
)−1

dt

and uν = (√
grr

)−1
dr = √

f (r)dr . Using Eqs. (35) and

123



Eur. Phys. J. C (2020) 80 :794 Page 5 of 12 794

(36), we can obtain the total charge of black solutions per
unit area as

Q = q

16π
. (37)

In the next section, we will obtain thermodynamical quanti-
ties corresponding to our solutions and check the first law of
thermodynamics for them.

4 Thermodynamical quantities and Thermodynamics
first law

In this section, we intend to calculate thermodynamical quan-
tities and check the first law of thermodynamics. For this pur-
pose, we first have to compute field equations near the black
hole horizon. Taylor expansion of metric function f (r) near
the black hole horizon rh is

f (r) =
∞∑
n=0

an(r − rh)
n , (38)

in which an = f (n)(rh)/n!. Note that a0 = f (rh) = 0 and
a1 = f ′(rh) = 2κg where κg is surface gravity on the horizon
and f ′(rh) ≥ 0. Plugging above expansion into field equation
(10), one receives the following equation up to quadratic
order of r − rh :

krh − m − 8λκ2
g

(
2κg + 3k

rh

)
− �0

3
r3
h

+ 1

6
r3
hb

2

[
1 − F

(
−1

2
, −3

4
,

1

4
, − q2

b2r4
h

)]
+

[
k − �0r

2
h

−2κgrh − 24λk
κ2
g

r2
h

+ 1

2
r2
h b

2

(
1 −

√
1 + q2

b2r4
h

)]
(r − rh)

+
[

72a3λκg(κg + k

rh
) + 24a2

2λκg − a2rh − 2κg − �0rh

− 24a2λκg

rh

(
4κg + 3k

rh

)
+ 1

2
rhb

2

⎡
⎣1 −

(
1 + q2

b2r4
h

)− 1
2
⎤
⎦

+72λκ2
g

r3
h

k + 96λκ3
g

r2
h

]
(r − rh)

2 + O((r − rh)
3) = 0. (39)

Solving the above equation order by order in terms of r − rh
powers, up to second term, we get:

krh − m − 8λκ2
g

(
2κg + 3k

rh

)
− �0

3
r3
h

+ 1

6
b2r3

h

[
1 − F

(
−1

2
,−3

4
,

1

4
,− q2

b2r4
h

)]
= 0, (40)

k + 1

2
r2
hb

2

(
1 −

√
1 + q2

b2r4
h

)
− �0r

2
h

− 2κgrh − 24λ
κ2
g

r2
h

k = 0. (41)

As expected, these relations reproduce the following ECG-
Maxwell results if b → ∞ [7]

krh − m − 8λκ2
g

(
2κg + 3k

rh

)
− �0

3
r3
h + q2

4rh
= 0 , (42)

k − q2

4r2
h

− �0r
2
h − 2κgrh − 24λ

κ2
g

r2
h

k = 0. (43)

It is notable to mention that since the third term in (39) is lin-
ear in terms of a3, we can compute that in terms of a2. Also,
other higher order terms are linear with respect to other coeffi-
cients and therefore, all of them could finally be determined
in terms of a2. Consequently, the family of solutions have
only one free parameter, a2. This fact shows that the present
model allows black solutions which have regular horizons
where the regularity condition reduces the number of solu-
tions from a two-parameter family to a one-parameter one.

From Eqs. (40) and (41), we could determine m and sur-
face gravity κg as functions of model parameters:

κg = r3
h

24λk

[
1 + 12kλb2

r2
h

(
1 −

√
1 + q2

b2r4
h

)

−24kλ�0

r2
h

+ 24k2λ

r4
h

] 1
2

− r3
h

24λk
, (44)

m

rh
= k − 24λκ2

g

r2
h

k − �0r2
h

3
− 16λκ3

g

rh

+ b2r2
h

6

[
1 − F

(
−1

2
,−3

4
,

1

4
,− q2

b2r4
h

)]
. (45)

It is notable to point out that m is related to total mass M via
Eq. ( 33). If λ and b tends to zero and infinity, respectively,
the above equations reduce to RN-(A)ds black hole ones:

κg = k

2rh
− q2

8r3
h

− �0rh
2

, (46)

m

rh
= k − �0r2

h

3
+ q2

4r2
h

. (47)

The Hawking temperature of our solution can be written in
terms of surface gravity [43]

T = κg

2π
, (48)
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where κg has been given in Eq. (44). Using (44) and (48),
one could find the temperature as

T = r3
h

48πλk

[
1 + 12kλb2

r2
h

(
1 −

√
1 + q2

b2r4
h

)
+ 24k2λ

r4
h

] 1
2

− r3
h

48πλk
, (49)

where we set �0 = 0. Note that, according to discussions
presented in Sect. 3, we study thermodynamics of asymptoti-
cally flat solutions (� = 0) with vanishing bare cosmological
constant �0.

Here, it is worthwhile to discuss about the allowed val-
ues of k for asymptotically flat solutions. We know that
for Einstein–Maxwell gravity case, the metric function of
asymptotically flat topological solution is f (r) = k−m/r+
q2/r2, which obviously does not present viable black holes
if k = 0 and k = −1 since that would imply a wrong sign for
the metric for large values of radial coordinate r where −m/r
or −1 would dominate. It is exactly the case for bare ECG
because the contributions from the cubic piece are very small,
asymptotically (for large r ) as well. For the BI charged black
holes in ECG, this reasoning holds since the term related
to nonlinear electrodynamics in metric function (as appears
in Eq. (11)) is asymptotically proportional to r−2. So, we
focus on spherically symmetric black hole solutions (k = 1)
because those are the only ones which could exist in asymp-
totically flat space. One also could check that in hyperbolic
and planar cases, the temperature given by Eq. (49) is nega-
tive and from this point of view, as well, these cases are not
physically meaningful. Therefore, we study the thermody-
namics of asymptotically flat solutions with spherical topol-
ogy on horizon.

Now, we are going to discuss the effects of each model
parameter λ , b and q on the temperature of spherical asymp-
totically flat solutions. From Eq. (49), one can see that for
k = 1, the first term of temperature formula is positive while
the second term is negative. Increasing parameters b and q
enhances the magnitude of

12kλb2

r2
h

(
1 −

√
1 + q2

b2r4
h

)
,

in Eq. (49). This term is negative for k = 1, so, as b or q
increases, the temperature T of spherical asymptotically flat
solutions decreases. In order to exhibit these effects, we have
plotted T versus rh for different values of b, q and λ in Fig.
1. This figure shows that as each one of parameters b, q or λ

grows, the temperature value becomes lower. This means that
as the effect of the cubic term grows (or equivalently, as the
nonlinearity of electrodynamics weakens), the temperature
of spherical black holes decreases. Figure 1 shows that for
spherical asymptotically flat solutions, there is a maximum
temperature Tmax. The behavior of Tmax in terms of model
parameters is exhibited in Table 1 as well. One can find that
the value of Tmax decreases as each of the parameters λ, b
and q increases.

Let us now calculate the entropy of our black holes. The
entropy of black solutions in higher-order gravities could be
computed by Wald’s formula given by [44–46]

S = −2π

∫
H
d2x

√
h

δLG

δRabcd
εabεcd , (50)

where h is the determinant of the induced metric on the hori-
zon, δLG/δRabcd is the Euler–Lagrange derivative of grav-
itational Lagrangian and εab is the binormal of the horizon
normalized as εabε

ab = −2. Applying the above formula on
our theory introduced by action (1), we receive

(c)(b)(a)

Fig. 1 The behavior of T versus rh for spherical asymptotically flat solutions with various values of λ, b and q. Note that the solid (dashed) curves
show the temperature in the presence (absence) of cubic terms. In the right panel, dot-dashed curves show the temperature for Einstein–Maxwell
regime
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Table 1 The behavior of
maximum temperature Tmax for
various values of model
parameters

λ b q Tmax

0.01 0.10

0.02 0.2 0.5 0.08

0.05 0.06

0.01 0.10

0.01 0.50 1 0.08

0.95 0.07

0.8 0.08

0.01 0.6 1.2 0.07

1.6 0.06

S = 1

4

∫
H
d2x

√
h[1 + 2α2R(2) + λ(36R e f

b d Raec f

+ 3R ef
ab Rcde f − 12RacRdb − 24Ref Rebf cgbd

+ 24gbd RceR
e
a)ε

abεcd ], (51)

in which R(2) is the Ricci scalar of the induced metric on
the horizon. This term comes from the Gauss–Bonnet term
L2 = R2 − 4RabRab + Rabcd Rabcd in the action (1). As we
have pointed out before, this term is topological and hence has
no effect in our calculations so far. However, it contributes to
the entropy. Using the metric (4) with N = 1, one determines
the entropy per unit area as

S = r2
h

4

[
1 − 24λ

κ2
g

r2
h

(
2k

κgrh
+ 1

)]
+ kα2, (52)

in which κg could be replaced by Eq. (44). It is remarkable
to mention that, the above relation reduces to r2

h/4 [31] if the
higher-order terms disappear (λ = α2 = 0).

Now, we turn to calculate the electric potential. The elec-
tric potential U , measured at infinity with respect to horizon
is defined by

U = Aμχμ
∣∣r→∞ − Aμχμ

∣∣
r=rh

, (53)

where χ = ∂t is the null generator of the horizon. Using (9)
and (53), one finds

U = q

rh
F

(
1

2
,

1

4
,

5

4
,− q2

b2r4
h

)
. (54)

In order to check the first law of thermodynamics, we first
write a Smarr-type formula. Using Eqs. (34), (37) and (45),
the Smarr-type formula M (rh, Q) can be written as

M (rh, Q) = 1

8π

[
krh − 4λκ2

g

rh

(
6k + 4κgrh

)

+ 1

6
b2r3

h

(
1 − F

(
−1

2
,−3

4
,

1

4
,− (16πQ)2

b2A2
kr

4
h

)) ]
. (55)

According to Eq. (52), rh = rh(S, Q) and in general M =
M(S, Q). We can then consider S and Q as a complete set
of extensive quantities for mass. Therefore, temperature T
and electric potential U are defined as conjugate intensive
quantities for S and Q, respectively and

T =
(

∂M

∂S

)
Q

, U =
(

∂M

∂Q

)
S
.

These intensive quantities can be calculated using Eqs. (37),
(52) and (55) where1

T =
(

∂M

∂S

)
Q

=
(

∂M

∂rh

)
Q

(
∂S

∂rh

)−1

Q
, (56)

U =
(

∂M

∂Q

)
S

=
(

∂M

∂Q

)
rh

+
(

∂M

∂rh

)
Q

(
∂rh
∂Q

)
S

=
(

∂M

∂Q

)
rh

−

(
∂S
∂Q

)
rh

(
∂M
∂rh

)
Q(

∂S
∂rh

)
Q

=
(

∂M

∂Q

)
rh

− T

(
∂S

∂Q

)
rh

. (57)

Our calculations show that T and U computed by Eqs. (56)
and (57) coincide with ones obtained from Eqs. (49) and (54)
for nonlinearly charged spherical (k = 1) asymptotically flat
solutions. Thus, the first law of thermodynamics

dM = TdS +UdQ, (58)

is satisfied by these quantities.
In next section, we will study the thermal stability of spher-

ical solutions in both canonical and grand canonical ensem-
bles.

5 Thermal stability

In this section, we intend to study thermal stability of the four-
dimensional nonlinearly charged asymptotically flat solu-
tions of ECG with spherical horizon in both canonical and
grand canonical ensembles. In canonical ensemble where the
charge is a fixed parameter, the positivity of heat capac-
ity C = T/(∂T/∂S)Q = T/(∂2M/∂S2)Q guarantees the
local stability [47–49]. Therefore, it is sufficient to check that
(∂2M/∂S2)Q is positive in order to explore the stability of
solutions in the ranges where temperature is positive as well.
Charge Q is no longer fixed in the grand canonical ensemble.
In this ensemble, the system is locally stable provided that
the determinant of Hessian matrix HM

S,Q = [
∂2M/∂S∂Q

]
is positive, in positive temperature ranges. Since the explicit
forms of (∂2M/∂S2)Q and HM

S,Q are complicated, we avoid

1 To obtain Eq. (57), we use cyclic rule as
(

∂rh
∂Q

)
S

= − (∂S/∂Q)rh
(∂S/∂rh )Q

.
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(a) (b)

Fig. 2 The behaviors of (∂2M/∂S2)Q and T (dashed) versus b for different values of λ with q = 1 and rh = 0.5

2

(a) (b)

Fig. 3 The behavior of HM
S,Q and T (dashed) versus b for different values of λ with q = 1 and rh = 0.5

writing them here. However, the main results are depicted in
Figs. 2, 3 and 4.

Let us now turn to study the stability of black hole solu-
tions in canonical and grand canonical ensembles. Our inves-
tigations show that the values of charge q and horizon radius
rh determine how thermal stability is influenced by the other
parameters. We study thermal stability in canonical ensem-
ble for two different types of solutions (Figs. 2, 4a). Let us
focus on the first type exhibited in Fig. 2. As Fig. 2a shows, in
highly nonlinear electrodynamics regime (small nonlinearity
parameter b values), there is a minimum value for cubic cou-

pling λ (λmin) that for values greater than it, the system is
stable up to bmax (Fig. 2b). For λ values a bit smaller than
λmin, the system is stable except for b values between b0 and
b1 (Fig. 2a). As λ becomes smaller, b0 tends to zero and b1

becomes greater. So, the instability interval becomes larger.
In this case, the system is stable for b values between b2 and
bmax (Fig. 2b). b2 and bmax increase as λ decreases. Also, for
b values greater than bmax (including linear Maxwell case),
the system is unstable. Note that we plot the curves in Fig.
2b just for two λ values in order not to have a messy plot.
For other λ values, the qualitative behavior is the same. In
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(a)
(b)

Fig. 4 The behaviors of (∂2M/∂S2)Q , HM
S,Q and T (dashed) versus b for different values of λ with q = 1 and rh = 1

addition, we plot the temperature in Figs. 2, 3 and 4 as well,
to ensure it is positive in the regions under study. One could
see that the behavior of temperature in terms of λ and b coin-
cides with what we have discussed before i.e. temperature
decreases as each of the latter parameters increases. In sec-
ond type displayed in Fig. 4a, we again have a minimum
value for λ. However, in this case, there is no upper bound
for b and the system is stable for all b values if λ ≥ λmin. For
λ values a bit smaller than λmin, there is a minimum value for
b (bmin) as well, that for b > bmin, we have a stable system.
As λ becomes smaller, we have a critical value λc that for
λ < λc, the system is unstable for all b values.

We continue by discussing the thermal stability in grand
canonical ensemble. For the first type represented in Fig. 3, in
highly nonlinear electrodynamics regime (Fig. 3a), the sys-
tem is unstable for some cubic couplings, however for some
greater ones, the system becomes stable up to a specific value
of b (b′

1). For b values greater than b′
1, we have an unstable

system between b′
1 and b′

2 (Fig. 3b). For b > b′
2 (including

linear Maxwell case), the system becomes thermally stable.
b′

1 (b′
2) is greater (smaller) for greater values of λ. In second

type displayed in Fig. 4b, whereas the system is unstable for
some values of λ, it becomes totally stable as λ grows.

6 Summary and concluding remarks

In the present paper, we studied four-dimensional topological
Born–Infeld (BI) charged black hole solutions in the context
of Einsteinian cubic gravity (ECG) in the presence of a bare
cosmological constant. ECG is the most general gravity up to

cubic order in curvature which is independent of dimension
and its linearized spectrum coincides with general relativ-
ity one. Also, both theoretical (open superstring theory) and
experimental (photon-photon interaction experiments) evi-
dences suggest nonlinear theories of electrodynamics such
as BI model. On the other hand, topological black hole solu-
tions are known to be dual to some thermal states in the
holographic settings, with quite different thermodynamical
features depending on the specific topology. To the best of
our knowledge, this is the first study of topological black hole
solutions in ECG with nonlinear electrodynamics.

We first introduced the action of the theory and obtained its
corresponding field equations. Integrating these field equa-
tions, we obtained the electromagnetic potential as well as
a second order differential equation for the metric function.
Then, we presented the total mass M formula by employing
Abbott–Deser–Tekin method and showed that the total mass
depends on cubic coupling in general. We obtain the total
charge Q via Gauss formula as well. Moreover, we discussed
the conditions under which the model is unitary and pertur-
batively ghost-free and explored different possible cases. We
found that if the bare cosmological constant vanishes, then
the model is unitary only if the solution is asymptotically
flat. Therefore, we focused on studying the thermodynam-
ics of asymptotically flat solutions. These are necessarily of
spherical topology. Expanding the metric function at the near
horizon region up to second order in the field equations, we
obtained the temperature T and the total mass as functions of
horizon radius rh and charge q. Next, we revealed the influ-
ences of cubic coupling λ, nonlinearity parameter b and black
hole charge on the behavior of the temperature. We found that
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the temperature decreases as the values of these parameters
increase. It is remarkable to mention that, as b grows, the lin-
ear Maxwell electrodynamics is reproduced. In addition, the
temperature of spherical asymptotically flat solutions have a
maximum value as horizon radius changes. This maximum
temperature is smaller for greater values of λ, b and q. In
order to check the satisfaction of thermodynamics first law,
we turned to compute the entropy and the electric potential.
We used the Wald formula in order to obtain the entropy of
our solutions. We showed that the first law of thermodynam-
ics is satisfied for spherical BI charged asymptotically flat
solutions of ECG.

Finally, we analysed thermal stability of our solutions in
both canonical and grand canonical ensembles. We showed
that the values of q and rh specify how the stability is affected
by other parameters, in both ensembles. For one type of solu-
tions, the system is unstable for b values larger than a maxi-
mum value bmax (including linear Maxwell case) in canonical
ensemble. In the small b regime (highly nonlinear electrody-
namics), there is also a minimum λ value. The system is stable
if λ ≥ λmin for b in the range 0 to bmax. There exists another
type of solution with λmin defined as before, but in which,
black solutions are stable if λ ≥ λmin with no upper bound
for b. Furthermore, for λ values a bit smaller than λmin, the
system is stable for b > bmin. There is also a critical value
for λ that if λ < λc, the black hole solutions are thermally
unstable for all b values. In grand canonical ensemble, the
first type system is stable for large b values (including linear
Maxwell case). Nevertheless, in small b regime, it is unstable
for some λ values. In this regime, the system becomes stable
for b values between 0 and an upper bound, as λ grows. The
second type system, in grand canonical ensemble, is totally
unstable for some λ values. However, it becomes totally sta-
ble, as λ increases.

In the present work, we focused on asymptotically flat
solutions with vanishing bare cosmological constant accord-
ing to discussions given in Sect. 3. In such a scenario, the
higher curvature terms have no contribution in the total mass
formula. However, if one considers possible (A)dS vacuum
solutions in a unitary model, a correction due to cubic curva-
ture terms appears in the total mass formula (see Eq. (33)).
This fact may affect the thermdoynamical studies, drastically.
It is fascinating to explore these kinds of charged solutions in
future works. In addition, here, we considered Born–Infeld
model as nonlinear electrodynamics. It is interesting to study
the effects of other known nonlinear models of electrodynam-
ics on ECG solutions. Moreover, it is worthwhile to explore
the critical behavior of nonlinearly charged solutions of ECG
in both extended [50] and non-extended [51] thermodynam-
ics phase spaces. Some of these issues are under investigation
and the results will appear elsewhere.
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Appendix A: Calculation of P

Here, we present the detailed calculations for obtaining P in
Eq. (15). From Eq. (2), we have

P = 12R c d
a b R e f

c d R a b
e f + Rcd

ab R
ef
cd R

ab
e f

− 12Rabcd R
acRbd + 8Rb

a R
c
bR

a
c . (A1)

The above equation, can be re-written as

P = 12Racbd Rced f R
e f
a b + Rcd

ab R
ef
cd R

ab
e f

− 12Rab
cd R

c
a R

d
b + 8Rb

a R
c
bR

a
c . (A2)

Then, using

Racbd Rced f R
e f
a b = Racbd R e f

a b Rcf de + 1

4
Racbd R ef

ac Rbde f ,

Eq. (A2) can be expressed as

P = 12Racbd R e f
a b Rcf de + 3Racbd R ef

ac Rbde f

+ Rcd
ab R

ef
cd R

ab
e f

− 12Rab
cd R

c
a R

d
b + 8Rb

a R
c
bR

a
c . (A3)

Rearranging the above equation yields

P = 12Rab
cd R

ce
a f R

d f
be + 4Rab

cd R
ef
ab R

cd
e f

− 12Rab
cd R

c
a R

d
b + 8Ra

b R
c
a R

b
c , (A4)

which is what we expressed in Eq. (15).
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