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Abstract Considering Z(3930) and X (4160) as χc2(2P)

and χc2(3P) states, the semileptonic and nonleptonic of Bc

decays to Z(3930) and X (4160) are studied by the improved
Bethe–Salpeter (B–S) Method. The form factors of decay
are calculated through the overlap integrals of the meson
wave functions in the whole accessible kinematical range.
The influence of relativistic corrections are considered in
the exclusive decays. Branching ratios of Bc weak decays to
Z(3930) and X (4160) are predicted. Some of the branching
ratios are: Br(B+

c → Z(3930)e+νe) = (3.03+0.09
−0.16) × 10−4

and Br(B+
c → X (4160)e+νe) = (3.55+0.83

−0.35)×10−6. These
results may provide useful information to discover Z(3930)

and X (4160) and the necessary information for the phe-
nomenological study of Bc physics.

1 Introduction

During the past decade years, more and more charmonium
and charmonium-like states were discovered experimentally.
Such as the X (3915) was reported by Belle Collaboration in
γ γ → ωJ/ψ process [1]. Z(3930) was observed in the
process γ γ → DD̄ by Belle Collaboration in 2006, the
corresponding mass and width were M = 3929±5±2 MeV
and � = 29±10±2 MeV, respectively [2]. In 2010, BABAR
Collaboration also observed the Z(3930) in γ γ production
of the DD̄ system, with the mass and width being M =
3926.7 ± 2.7 ± 1.1 MeV and � = 21.3 ± 3.8 ± 3.6 MeV,
respectively [3]. Now Particle Data Group(PDG) give lists
the mass and width of Z(3930) as M = 3927.2 ± 2.6 MeV
and � = 24 ± 6 MeV [4]. And the properties of Z(3930) are
consistent with the expectations for the χc2(2P) state [5–

a e-mail: zhwang@nmu.edu.cn (corresponding author)

7]. Then Belle Collaboration reported a new charmonium-
like state X (4160) from the processes e+e− → J/ψD∗ D̄∗,
which has the mass and width M = (4156+25

−20 ± 15) MeV

and � = (139+111
−61 ± 21) MeV, respectively [8].

The quark structures were still not fully understood in
these charmonium-like states which are called XYZ states,
thus people studied the properties of XYZ states by differ-
ent methods [9–22]. In this work, we only consider two of
them: Z(3930) and X (4160). The structures of Z(3930)

and X (4160) were already studied by some theoretical
methods. Reference [9] studied Bc semileptonic decay to
Z(3930) and X (4160) which were assumed as χc2(2P) and
χc2(3P) states. According to study the vector-vector inter-
action within the framework of the hidden gauge formal-
ism, Ref. [10] found that three resonances Y (3940), Z(3930)

and X (4160) which can be assigned to the states with
J PC = 0++, 2++ and 2++, respectively. Taking Z(3915)

and Z(3930) as χ ′
c0(2P) and χ ′

c2(2P), respectively. Refer-
ence [11] investigated the X (3915) and Z(3930) decays into
J/ψω. Reference [12] studied the strong decay of Z(3930)

which was considered as χ ′
c2(2P). Reference [13] studied

the mass spectra of the hidden-charm tetraquark states in the
framework of QCD sum rules, and they got the X (4160) may
be classified as either the scalar or tensor qcq̄c̄ tetraquark
state. Using the NRQCD factorization approach, Ref. [18]
calculated the branching fractions of ϒ(nS) → J/ψ + X
with X = X (3940) or X = X (4160). In Ref. [19], they
also explored the properties and strong decays of X (3940)

and X (4160) as the ηc(3S) and ηc(4S), respectively. Ref-
erence [20] calculated the strong decay of X (4160) which
was assumed as χc0(3P), χc1(3P), ηc2(2D) or ηc(4S) by
the 3P0 model. Reference [23] studied the strong decays
of X (3940) and X (4160) as the ηc(3S) and ηc(4S) with
the 3P0 model, and the results showed that ηc(4S) was not
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good candidate of X (4160). According to the mass spectra
and the properties of Z(3930) and X (4160) in Refs. [9–13],
Z(3930) and X (4160) have the possibility to be χc2(2P) and
χc2(3P)(J PC = 2++), respectively.

The interpretations of Z(3930) and X (4160) are not the
major work in this paper, we only consider Z(3930) and
X (4160) as charmonium states with the possible quantum
numbers, then study their production in Bc decays. We will
consider Z(3930) and X (4160) as P-wave charmonium
states χc2(2P) and χc2(3P), respectively. Then we focus on
the productions of Z(3930) and X (4160) in exclusive weak
decays of Bc meson by the improved the Bethe–Salpeter (B–
S) Method. On the one hand, the χc2(2P) and χc2(3P) have
larger relativistic correction than that of χc2(1P), so a rela-
tivistic model is needed in a careful study; on the other hand,
this study can improve the knowledge of Bc meson, which
is an ideal particle to study the weak decays, since it decays
weakly only. The properties of Bc meson have been stud-
ied by different relativistic constituent quark models [24–
32], such as the covariant light-front quark model [33,34],
the perturbative QCD factorization approach [35] and so
on. We also have discussed the properties of Bc meson by
the improved B–S method, include Bc decays to P-wave
mesons, the rare weak decays and rare radiative decays of
Bc, the nonleptonic charmless decays of Bc, and so on [36–
42]. In previous work, we only studied Bc decays to χc2(1P)

state [36], because when the final states are χc2(2P) and
χc2(3P) states, the corresponding branching ratios are very
small, and there were only limited data of Bc available.
Now the large hadron collider (LHC) will produce as many
as 5 × 1010 Bc events per year [43,44]. The huge amount
of Bc events will provide us a chance to study Bc decay
to χc2(2P) and χc2(3P) states, and some channels also
provide an opportunities to discover new particles in Bc

decays.
The paper is organized as follows. In Sect. 2, we give the

formulations of the exclusive semileptonic and nonleptonic
decays. We show the hadronic weak-current matrix elements
in Sect. 3. The wave functions of initial and final mesons are
given in Sect. 4. The corresponding results and conclusions
are presented in Sect. 5. Finally in the Appendix, we present
the instantaneous Bethe–Salpeter equation.

2 The formulations of semileptonic decays and
nonleptonic decays of Bc

In this section we present the formulations of semileptonic
decays and nonleptonic decays of Bc meson to Z(3930)

and X (4160) which are considered as χc2(2P) and χc2(3P)

states, respectively.

Fig. 1 Feynman diagram of the semileptonic decay Bc → X
+ν
,
where X denotes Z(3930) or X (4160)

2.1 Semileptonic decays of Bc

The Feynman diagram of Bc semileptonic decay to Z(3930)

or X (4160) is shown in Fig. 1. The corresponding amplitude
for the decay can be written as

T = GF√
2
Vbcūν


γμ(1 − γ5)v
〈X (Pf , ε)|Jμ|Bc(P)〉, (1)

where Vbc is the CKM matrix element, GF is the Fermi con-
stant, Jμ = Vμ − Aμ is the charged weak current, P and Pf

are the momenta of the initial meson Bc and the final state,
respectively. ε is the polarization tensor for final meson. The
leptonic part ūν


γμ(1−γ5)v
 is model independent and easy
to calculate. The hadronic part 〈X (Pf , ε)|Jμ|Bc(P)〉 can be
written as,

〈X (Pf , ε)|Aμ|Bc(P)〉 = k(M + M f )ε
μα Pα

M

+εαβ

PαPβ

M2 (c1P
μ + c2P

μ
f ),

〈X (Pf , ε)|Vμ|Bc(P)〉 = 2h

M + M f
iεαβ

Pα

M
εμβρσ Pρ Pf σ

,

(2)

where k, c1, c2, h are the Lorentz invariant form factors, M
is the mass of Bc, M f is the mass of the charmonium in the
final state.

In the case without considering polarization, we have the
squared decay-amplitude with the polarizations in final states
being summed:

�sν ,sl ,SX |T |2 = G2
F

2
|Vbc|2lμνh

μν, (3)

where lμν is the leptonic tensor:

lμν = �sν ,sl ῡl(pl)γμ(1 − γ5)uνl (pν)ūνl (pν)γν(1 − γ5)υl(pl),

and the hadronic tensor relating to the weak-current in Eq.
(1) is

hμν ≡ �SX 〈Bc(P)|Jμ|X (Pf )〉〈X (Pf )|J ν |Bc(P)〉
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= −αgμν + β++(P + Pf )
μ(P + Pf )

ν

+β+−(P + Pf )
μ(P − Pf )

ν

+β−+(P − Pf )
μ(P + Pf )

ν

+β−−(P − Pf )
μ(P − Pf )

ν

+iγ εμνρσ (P + Pf )ρ(P − Pf )σ , (4)

where the functions α, β++, β+−, β−+, β−−, γ are related
to the form factors.

The total decay width � can be written as:

� = 1

2M(2π)9

∫
d3 	Pf

2E f

d3 	pl
2El

×d3 	pν

2Eν

(2π)4δ4(P − Pf − pl − pν)�sν ,sl ,SX |T |2,
(5)

where E f , El and Eν are the energies of the charmonium,
the charged lepton and the neutrino respectively. If we define
x ≡ El/M, y ≡ (P − Pf )

2/M2, the differential width of
the decay can be reduced to:

d2�

dxdy
= |Vbc|2 G

2
FM

5

64π3

{
2α

M2 (y − m2
l

M2 )

+β++

[
4

(
2x(1 − M2

f

M2 + y) − 4x2 − y

)

+ m2
l

M2

(
8x + 4

M2
f

M2 − 3y − m2
l

M2

)]

+(β+− + β−+)
m2

l

M2

(
2 − 4x + y − 2

M2
f

M2 + m2
l

M2

)

+β−−
m2

l

M2

(
y − m2

l

M2

)

−
[

2γ y

(
1 − M2

f

M2 − 4x + y + M2
l

M2

)

+2γ
M2

l

M2

(
1 − M2

f

M2

)]}
. (6)

The total width of the decay is just an integration of the
differential width i.e. � = ∫

dx
∫
dy d2�

dxdy .

2.2 Nonleptonic decays of Bc

For the nonleptonic decay Bc → X + M2 in Fig. 2, the
relevant effective Hamiltonian Hef f is [45,46]:

Hef f = GF√
2

{
Vbc[c1(μ)Obc

1 + c2(μ)Obc
2 ] + h.c.

}
, (7)

where ci (μ) are the scale-dependent Wilson coefficients. Oi

are the operators responsible for the decays constructed by
four quark fields and have the structure as follows:

Fig. 2 Feynman diagram of the nonleptonic decay Bc → XM2, X
denote Z(3930) or X (4160), M2 denote a light meson: π, K , ρ, or K ∗

Obc
1 = [Vud(d̄αuα)V−A + Vus(s̄αuα)V−A](c̄βbβ)V−A,

Obc
2 = [Vud(d̄αuβ)V−A + Vus(s̄αuβ)V−A](c̄βbα)V−A,

(8)

where (q̄1q2)V−A = q̄1γ
μ(1 − γ5)q2.

Here we apply the so-called naive factorization to Hef f

[47], the nonleptonic two-body decay amplitude T can be
reduced to a product of a transition matrix element of a weak
current 〈X |Jμ|Bc〉 and an annihilation matrix element of
another weak current 〈M2|Jμ|0〉:
T = 〈XM2|Hef f |Bc〉

≈ GF√
2
VbcVi j a1〈X |Jμ|Bc〉〈M2|Jμ|0〉, (9)

a1 = c1 + 1
Nc
c2 and Nc = 3 is the number of colors. The

annihilation matrix element 〈M2|Jμ|0〉 is related to the decay
constant of M2. When M2 is a pseudoscalar meson [48],

〈M2|Jμ|0〉 = i fM2 PM2μ,

where fM2 is the decay constant of meson M2, and PM2 is
the momentum of M2. When M2 is a vector meson [49],

〈M2|Jμ|0〉 = εμ fM2 MM2 ,

where MM2 , fM2 and ε are the mass, decay constant and
polarization vector of the vector meson M2, respectively. The
decay constant of the meson can be obtained either by theo-
retical model or by indirect experiment measurement.

In Eqs. (6) and (9), we find that the most important
things to get the decay width of the corresponding decay
are to calculate hadronic weak-current matrix elements
〈X (Pf )|Jμ|Bc(P)〉. We will give the detailed calculation
of the hadronic weak-current matrix elements in the Sect. 3.

3 The hadronic weak-current matrix elements

The calculation of the hadronic weak-current matrix ele-
ment are different for different models. In this paper, we

123



791 Page 4 of 9 Eur. Phys. J. C (2020) 80 :791

combine the B–S method which is based on relativistic B–
S equation with Mandelstam formalism [50] and relativistic
wave functions to calculate the hadronic matrix element. The
numerical values of wave functions have been obtained by
solving the full Salpeter equation which we will introduce
in Appendix. As an example, we consider the semileptonic
decay Bc → X
+ν
 in Fig. 1. In this way, at the leading order
the hadronic matrix element can be written as an overlap inte-
gral over the wave functions of initial and final mesons [51],

〈X (Pf , ε)|Jμ|Bc(P)〉 =
∫

d 	q
(2π)3 Tr

×
[
ϕ̄++

P f
(	q f )

� P
M

ϕ++
P

(	q)γ μ(1 − γ5)

]
, (10)

where 	q (	q f ) is the relative three-momentum between the
quark and anti-quark in the initial (final) meson and 	q f =
	q − m′

1
m′

1+m′
2

	Pf . 	Pf is the three dimensional momentum of X ,

ϕ++
P (	q) is the positive Salpeter wave function of Bc meson

and ϕ++
Pf

(	q f ) is the positive Salpeter wave function of X

meson, ϕ̄++
P f

= γ0(ϕ
++
P f

)†γ0. The detailed calculation of

the hadronic matrix element Eq. (10) which is a function
of final meson momentum Pf were discussed by Ref. [51],
so the Eq. (10) is suitable for the whole kinetic region. We
have calculated Bc weak decays to S-wave and P-wave
mesons [36,37,42] with this hadronic matrix element in pre-
vious work, and the results were consistent with the results
of some other different models. So the Bc weak decays to
Z(3930) and X (4160) are calculated by the same metnod in
this work. The corresponding Salpeter wave functions for the
different mesons are shown in the next section.

4 The relativistic wave functions of meson

4.1 For Bc meson with quantum number J P = 0−

The general form for the relativistic wave function of pseu-
doscalar meson Bc can be written as [52]:

ϕ0− (	q) =
[
f1(	q)� P + f2(	q)M + f3(	q) �q⊥ + f4(	q)

� P �q⊥
M

]
γ5,

(11)

where M is the mass of the pseudoscalar meson, and fi (	q) are
functions of |	q|2. Due to the last two equations of Eq. (A7):
ϕ+−

0− = ϕ−+
0− = 0, we have:

f3(	q) = f2(	q)M(−ω1 + ω2)

m2ω1 + m1ω2
,

f4(	q) = − f1(	q)M(ω1 + ω2)

m2ω1 + m1ω2
, (12)

where m1,m2 and ω1 =
√
m2

1 + 	q2, ω2 =
√
m2

2 + 	q2 are
the masses and the energies of quark and anti-quark in Bc

mesons, q⊥ = q − (q · P/M2)P , and q2⊥ = −|	q|2.
The numerical values of radial wave functions f1, f2

and eigenvalue M can be obtained by solving the first two
Salpeter equations in Eq. (A7). According to the Eq. (A6) the
relativistic positive wave function of pseudoscalar meson Bc

in C.M.S can be written as [52]:

ϕ++
0− (	q) = b1

[
b2 + � P

M
+ b3 �q⊥ + b4

�q⊥ � P
M

]
γ5, (13)

where the bi s (i = 1, 2, 3, 4) are related to the original
radial wave functions f1, f2, quark masses m1, m2, quark
energy w1, w2, and meson mass M :

b1 = M

2

(
f1(	q) + f2(	q)

m1 + m2

ω1 + ω2

)
, b2 = ω1 + ω2

m1 + m2
,

b3 = − (m1 − m2)

m1ω2 + m2ω1
, b4 = (ω1 + ω2)

(m1ω2 + m2ω1)
.

4.2 For Z(3930) and X (4160) mesons with quantum
number J P = 2++

Considering Z(3930) and X (4160) as χc2(2P) and χc2(3P),
the general expression of the relativistic wave function can
be written as [53]

ϕ2++(	q f ) = εμνq
ν
f⊥

{
qμ
f ⊥

[
f ′
1(	q f )

+ � Pf

M f
f ′
2(	q f ) + �q f ⊥

M f
f ′
3(	q f ⊥) + � Pf �q f ⊥

M2
f

f ′
4(	q f )

]

+γ μ[M f f
′
5(	q f )+ � Pf f

′
6(	q f )+ �q f⊥ f ′

7(	q f )]
+ i

M f
f ′
8(	q f )ε

μαβδPf αq f ⊥βγδγ5

}
, (14)

with the constraint on the components of the wave func-
tion:

f ′
1(	q f ) = [q2

f⊥ f ′
3(	q f ) + M2

f f
′
5(	q f )]

M f m′
1

,

f ′
2(	q f ) = 0, f ′

7(	q f ) = 0, f ′
8 = f ′

6(	q f )M f

m′
1

.

Then we have the reduced wave function ϕ2++(	q f ) as:

ϕ++
χc2

(	q f ) = εμνq
ν
f ⊥

{
qμ
f ⊥

[
a1 + a2

� Pf

M f
+ a3

�q f ⊥
M f

+a4
�q f ⊥ � Pf

M2
f

]
+ γ μ

[
a5 + a6

� Pf

M f
+ a7

�q f ⊥
M f

+ a8
� Pf �q f ⊥

M2
f

]}
,

(15)

with

a1 = q2
f ⊥

2M f m′
1
n1 + ( f ′

5(	q f )w
′
2 − f ′

6(	q f )m′
2)M f

2m′
1w

′
2

,
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Fig. 3 The wave functions of Z(3930) and X (4160)

Fig. 4 The form factor of semileptonic decay Bc to Z(3930) and X (4160)

a2 = ( f ′
6(	q f )w

′
2 − f ′

5(	q f )m′
2)M f

2m′
1w

′
2

,

a3 = 1

2
n1 + f ′

6(	q f )M2
f

2m′
1w

′
2

, a4 = 1

2

(
− w′

1

m′
1

)
n1 + f ′

5(	q f )M2
f

2m′
1w

′
2

,

a5 = M f

2
n2, a6 = M f m′

1

2w′
1

n2, a7 = 0, a8 = M2
f

2w′
1
n2,

n1 = 1

2

(
f ′
3(	q f ) + f ′

4(	q f )
m′

1

w′
1

)
,

n2 = 1

2

(
f ′
5(	q f ) − f ′

6(	q f )
w′

1

m′
1

)
,

where M f , Pf , f ′
i (	q f ) are the mass, momentum and the

radial wave functions of Z(3930) and X (4160), respectively.

m′
1,m

′
2 and ω′

1 =
√
m′2

1 + 	q2
f , ω

′
2 =

√
m′2

2 + 	q2
f are the

masses and the energies of quark and anti-quark in Z(3930)

and X (4160). To show the numerical results of wave func-

tions explicitly, we plot the wave functions of Z(3930) and
X (4160) states in Fig. 3.

5 Number results and discussions

In order to fix Cornell potential in Eq. (A11) and masses of
quarks, we take these parameters: a = e = 2.7183, λ = 0.21
GeV2, �QCD = 0.27 GeV, α = 0.06 GeV, mb = 4.96 GeV,
mc = 1.62 GeV, etc. [53], which are best to fit the mass
spectra of Bc and other heavy meson states. Taking these
parameters to B–S equation, and solving the B–S equation
numerically, we get the masses of Z(3930), X (4160) and Bc

as: MZ(3930) = (3.926 ± 0.167) GeV, MX (4160) = (4.156 ±
0.170) GeV, MBc = (6.276 ± 0.303) GeV, varying all the
input parameters (λ, �QCD , α, etc) simultaneously within
±5% of the central values, we also obtain the uncertainties of
masses, and the corresponding wave functions were obtained
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Fig. 5 The leptonic energy spectra of semileptonic decay Bc to Z(3930) and X (4160)

in Sect. 4. Then we can calculate the semileptonic decays and
nonleptonic decays of Bc to Z(3930) and X (4160).

5.1 The semileptonic decays

In order to calculate the semileptonic decays of Bc to
Z(3930) and X (4160), we use the central values of the
CKM matrix elements: Vcb = 0.0406, and other constants:
GF = 1.166×10−5 GeV−2, which are taken from PDG [4].
Taking the masses and the corresponding wave functions to
Eq. (10), we represent the hadronic transition weak-current
matrix elements as proper integrations of the components
of the B–S wave functions. And the hadronic weak-current
matrix element can be written as the form factors k, c1, c2,
h. The form factors are related to four-momentum transfer
squared t = (P−Pf )

2 = M2+M2
f −2ME f which provides

the kinematic range for the semileptonic decay of Bc. It varies
from t = 0 to t = 5.52 GeV2 for the decays to Z(3930) and
from t = 0 to t = 4.48 GeV2 for the decays to X (4160). In
Fig. 4 we give the relations of (tm−t)(tm = (M−M f )

2 is the
maximum of t) and the form factors. Taking the form factor
to the Eq. (6), then we will get the leptonic energy spectra
d�

�dPe
for semileptonic Bc decay to Z(3930) and X (4160),

the leptonic energy spectra are plotted in Fig. 5 which are
related to the momentum of the final mesons.

Using the leptonic energy spectra, we calculate the decay
widths of the semileptonic Bc → X
+ν
 (X = Z(3930) or
X (4160), 
 = e, μ, τ ) and give the results in Table 1. Since
mτ is very large and me 
 mμ is quite a good approximation
for the Bc meson decays, thus only the cases where the lepton
is an electron or τ are given in Table 1. Because of the larger
kinematic ranges and the different wave functions in Fig. 3,
the corresponding decay widths of B+

c → Z(3930) are larger
than these of B+

c → X (4160).

Table 1 The decay widths of exclusive semileptonic decays of Bc to
Z(3930), X (4160) (in 10−15GeV)

Mode Ours

B+
c → Z(3930) e+ν̄e (4.39+0.13

−0.24) × 10−1

B+
c → Z(3930) τ+ν̄τ (0.78+0.31

−0.42) × 10−3

B+
c → X (4160) e+ν̄e (5.14+0.83

−0.49) × 10−3

B+
c → X (4160) τ+ν̄τ (3.80+0.45

−0.38) × 10−6

Table 2 The decay widths of exclusive nonleptonic decays of Bc to
Z(3930), X (4160) (in 10−15 GeV)

Mode Ours

B+
c → Z(3930) + π (1.88+0.49

−0.66) × 10−3a2
1

B+
c → Z(3930) + K (1.38+0.37

−0.51) × 10−4a2
1

B+
c → Z(3930) + ρ (6.26+1.42

−1.48) × 10−3a2
1

B+
c → Z(3930) + K ∗ (3.82+0.61

−0.86) × 10−4a2
1

B+
c → X (4160) + π (6.89+1.50

−1.15) × 10−5a2
1

B+
c → X (4160) + K (4.71+0.82

−0.79) × 10−6a2
1

B+
c → X (4160) + ρ (2.37+0.56

−0.42) × 10−3a2
1

B+
c → X (4160) + K ∗ (1.64+0.45

−0.33) × 10−4a2
1

5.2 The nonleptonic decays

We only consider two-body nonleptonic decays of B+
c to

Z(3930) and X (4160), and another meson is light meson.
Thus, the hadronic transition matrix elements of weak cur-
rents have a fixed momentum transfer. To calculate the decay
widths basis on Eq. 9, we only need to calculate the anni-
hilation matrix element 〈M2|Jμ|0〉 which is related to the
decay constant of M2. The masses and decay constants are:
Mπ = 0.140 GeV, fπ = 0.130 GeV, Mρ = 0.775 GeV,
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Table 3 The branching ratio(in
%) of exclusive semileptonic
decay Bc to Z(3930), X (4160)

with the lifetime of
Bc:τBc = 0.453 ps

Mode Results Mode Results

B+
c → Z(3930)e+ν̄e (3.03+0.09

−0.16) × 10−2 B+
c → X (4160) e+ν̄e (3.55+0.83

−0.35) × 10−4

B+
c → Z(3930)τ+ν̄τ (0.55+0.22

−0.30) × 10−4 B+
c → X (4160) τ+ν̄τ (2.62+0.31

−0.26) × 10−7

B+
c → Z(3930) + π (1.68+0.44

−0.58) × 10−4 B+
c → X (4160) + π (6.17+1.35

−1.02) × 10−6

B+
c → Z(3930) + K (1.24+0.33

−0.46) × 10−5 B+
c → X (4160) + K (4.21+0.75

−0.70) × 10−7

B+
c → Z(3930) + ρ (5.61+1.28

−1.33) × 10−4 B+
c → X (4160) + ρ (2.12+0.42

−0.37) × 10−4

B+
c → Z(3930) + K ∗ (3.43+0.54

−0.78) × 10−5 B+
c → X (4160) + K ∗ (1.47+0.41

−0.29) × 10−5

fρ = 0.205 GeV, MK = 0.494 GeV, fK = 0.156 GeV,
MK ∗ = 0.892 GeV, fK ∗ = 0.217 GeV [4,54], respec-
tively. And the corresponding CKM matrix elements are:
Vud = 0.974 and Vus = 0.2252. Using the form factors of Bc

nonleptonic decays and the decay corresponding constants,
we show the nonleptonic decay widths which are related to
the parameter a1 in Table 2. The results of Bc nonleptonic
decay are affected by the CKM matrix elements, so the results
of light mesons π, ρ are larger than the ones of light mesons
K , K ∗ in Table 2, respectively.

In order to compare the numerical values with experimen-
tal measurements in the future, Taking the values a1 = 1.14
for nonleptonic decays [45,46], combining the life time of Bc

meson, we calculate the branching ratios of the decays and
list them in Table 3. Because of Bc → Z(3930), X (4160)

have small kinematic ranges and the wave functions have
some minus parts in Z(3930), and X (4160), comparing our
results with Bc decays to χc2(1P) in Ref. [36], the results
are smaller than the results of Bc decay to χc2(1P). The
uncertainties of decay widths and branching ratios shown in
Tables 1, 2 and 3, which are very large. The large uncer-
tainties not only come from the phase spaces, but also from
the variation of the node of the 2P and 3P wave functions,
which means that a small change of node location will result
in large uncertainties.

In summary, considering Z(3930) and X (4160) asχc2(2P)

and χc2(3P) states, respectively, we study the semileptonic
and nonleptonic Bc decays to Z(3930) and X (4160) by the
improved B–S method which consider the relativistic correc-
tion. According to the Mandelstam formalism and the rela-
tivistic wave functions of heavy mesons, we get the corre-
sponding decay form factors, and obtain the corresponding
decay widths and branching ratios. Because of the minus
value in the wave functions of Z(3930) and X (4160) and
the small CKM Vbc, the decay widths and branching ratios
are very small. But now the large hadron collider (LHC) will
produce as many as 5 × 1010 Bc events per year [43,44]. If
sufficient events can be observed, some channels will provide
us a sizable ratios, such as the branching ratios of the order of
(10−6) could be measured precisely at the LHC, and maybe
they will detect the productions of Z(3930) and X (4160) in
Bc exclusive weak semileptonic and nonleptonic decay. Then

our results will provide a new way to observe the Z(3930)

and X (4160) and the necessary information for the study of
Bc meson.
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Appendix A: Instantaneous Bethe–Salpeter equation

In this section, we briefly review the Bethe-Salpeter (B–S)
equation and its instantaneous one, the Salpeter equation.

The B–S equation is read as [55]:

( � p1 − m1)χ(q)( � p2 + m2) = i
∫

d4k

(2π)4 V (P, k, q)χ(k),

(A1)

where χ(q) is the B–S wave function, V (P, k, q) is the inter-
action kernel between the quark and antiquark, and p1, p2

are the momentum of the quark 1 and anti-quark 2.
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We divide the relative momentum q into two parts, q‖ and
q⊥,

qμ = qμ
‖ + qμ

⊥,

qμ
‖ ≡ (P · q/M2)Pμ, qμ

⊥ ≡ qμ − qμ
‖ .

B–S equation Eq. (A1) is a four dimension covariant equa-
tion, in order to solve the Eq. (A1), we will take the instan-
taneous approximation in the interaction kernel V (P, k, q),
then the B–S equation will lose the covariance. The effect
of instantaneous approximation in V (P, k, q) could be cor-
rected by the retardation effects in V (P, k, q). But the retar-
dation effects in V (P, k, q) are very small for the heavy
mesons [56–58], this means that the influence of the instanta-
neous approximation on the covariance of B–S equation are
very small for the heavy mesons. The instantaneous approx-
imation in V (P, k, q) almost don’t influence the wave func-
tions, and the decay matrix elements which involve the heavy
mesons mostly unchanged [56]. Our model mostly keeps the
covariance in the calculation, and the weak decay results also
satisfy the Lorentz-covariance.

In instantaneous approach, the kernel V (P, k, q) takes the
simple form [59]:

V (P, k, q) ⇒ V (|	k − 	q|).
Let us introduce the notations ϕp(q

μ
⊥) and η(qμ

⊥) for three
dimensional wave function as follows:

ϕp(q
μ
⊥) ≡ i

∫
dqp
2π

χ(qμ
‖ , qμ

⊥),

η(qμ
⊥) ≡

∫
dk⊥

(2π)3 V (k⊥, q⊥)ϕp(k
μ
⊥). (A2)

Then the BS equation can be rewritten as:

χ(q‖, q⊥) = S1(p1)η(q⊥)S2(p2). (A3)

The propagators of the two constituents can be decomposed
as:

Si (pi ) = �+
i p(q⊥)

J (i)qp + αi M − ωi + iε

+ �−
i p(q⊥)

J (i)qp + αi M + ωi − iε
, (A4)

with

ωi =
√
m2

i + q2
T
, �±

i p(q⊥)

= 1

2ωi p

[ � P
M

ωi ± J (i)(mi + �q⊥)

]
, (A5)

where i = 1, 2 for quark and anti-quark, respectively, and
J (i) = (−1)i+1.

Introducing the notations ϕ±±
p (q⊥) as:

ϕ±±
p (q⊥) ≡ �±

1p(q⊥)
� P
M

ϕp(q⊥)
� P
M

�±
2p(q⊥). (A6)

With contour integration overqp on both sides of Eq. (A3),
we obtain:

ϕp(q⊥) = �+
1p(q⊥)ηp(q⊥)�+

2p(q⊥)

(M − ω1 − ω2)

−�−
1p(q⊥)ηp(q⊥)�−

2p(q⊥)

(M + ω1 + ω2)
,

and the full Salpeter equation:

(M − ω1 − ω2)ϕ
++
p (q⊥) = �+

1p(q⊥)ηp(q⊥)�+
2p(q⊥),

(M + ω1 + ω2)ϕ
−−
p (q⊥) = −�−

1p(q⊥)ηp(q⊥)�−
2p(q⊥),

ϕ+−
p (q⊥) = ϕ−+

p (q⊥) = 0. (A7)

For the different J PC (or J P ) states, we give the general
form of wave functions. Reducing the wave functions by the
last equation of Eq. (A7), then solving the first and second
equations in Eq. (A7) to get the wave functions and mass
spectrum. We have discussed the solution of the Salpeter
equation in detail in Refs. [52,53].

The normalization condition for BS wave function is:

∫
q2
T
dqT

2π2 Tr

[
ϕ++ /P

M
ϕ++ /P

M
− ϕ−− /P

M
ϕ−− /P

M

]
= 2P0.

(A8)

In our model, the instantaneous interaction kernel V is
Cornell potential, which is the sum of a linear scalar interac-
tion and a vector interaction:

V (r) = Vs(r)+V0+γ0 ⊗γ 0Vv(r) = λr+V0−γ0 ⊗γ 0 4

3

αs

r
,

(A9)

where λ is the string constant and αs(	q) is the running cou-
pling constant. In order to fit the data of heavy quarkonia,
a constant V0 is often added to confine potential. We intro-
duce a factor e−αr to avoid the infrared divergence in the
momentum space:

Vs(r) = λ

α
(1 − e−αr ), Vv(r) = −4

3

αs

r
e−αr . (A10)

It is easy to know that when αr � 1, the potential becomes
to Eq. (A9). In the momentum space and the C.M.S of the
bound state, the potential reads :

V (	q) = Vs(	q) + γ0 ⊗ γ 0Vv(	q),

Vs(	q) = −
(

λ

α
+ V0

)
δ3(	q) + λ

π2

1

(	q2 + α2)2
,

Vv(	q) = − 2

3π2

αs(	q)

(	q2 + α2)
, (A11)
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where the running coupling constant αs(	q) is:

αs(	q) = 12π

33 − 2N f

1

log

(
a + 	q2

�2
QCD

) .

We introduce a small parameter a to avoid the divergence in
the denominator. The constants λ, α, V0 and �QCD are the
parameters that characterize the potential. N f = 3 for b̄q
(and c̄q) system.
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