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Abstract We consider a class of space-times given by a
stationary extension of the Zipoy–Voorhees metric that was
found by Halilsoy. We show that the solutions do not describe
rotating sources but must be interpreted, similarly to the NUT
case, as deformed sources endowed with a gravitomagnetic
charge. We show that the Halilsoy family is directly linked
to the NUT space-time, which can be obtained in the limit
of vanishing deformations. We investigate the motion of test
particles and photons in this class of space-times, in particular
the innermost stable circular orbits and photon capture radius.
Finally we show that this class of solutions possesses a sub-
manifold where closed time-like curves are allowed.

1 Introduction

Vacuum, exact solutions describing stationary space-times
are of great importance in General Relativity since they can
describe the field outside a rotating compact source. The most
famous of such solutions is the well known Kerr metric which
describes the field of a rotating black hole [1].

However other solutions do exist and investigating their
properties and to what extent they may describe the exte-
rior of physical sources, is important in order to establish
the extent to which a solution may be considered physically
viable and, as a consequence, whether astrophysical black
hole candidates are well described by mathematical black
hole solutions [2–5]. An important class of exact solutions
of Einstein’s equations that describes deviations from black
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hole space-times is the so-called Weyl class of static axi-
ally symmetric vacuum solutions [6,7]. Given the one-to-one
correspondence between metrics belonging to Weyl’s class
and solutions of Laplace equation in flat two-dimensional
space, all static axially symmetric solutions are in princi-
ple known [8,9]. For example in recent times some attention
has been given to the Zipoy–Voorhees (ZV) metric which
is a static generalization of the Schwarzschild solution to
include higher multipole moments and describes the field
outside prolate or oblate spheroids [10,11]. The properties
of the motion of test particles in the ZV space-time and
the possibility of testing the geometry from astrophysical
observations has been discussed in several articles [12–20].
However, astrophysical compact objects typically rotate and
therefore it would be more interesting to study the proper-
ties of stationary solutions. This has led many authors in
the past to consider ‘rotating’ generalization of static axially
symmetric solutions (see for example [21–26]). In particu-
lar, stationary generalizations of the ZV metric have been
studied in [27–30]. However, as it turns out, not all such gen-
eralizations describe rotating objects. There exist a number
of solution generating techniques that can be adopted in order
to obtain a stationary solution from a known static one [31–
33]. Such techniques have been employed in the past to derive
a large number of ‘rotating’ generalizations of known solu-
tions. However, the physical properties of these new solutions
have rarely been investigated. One notable exception, i.e. a
stationary solution that has been thoroughly investigated, is
the so-called Newman–Unti–Tamburino (NUT) space-time
[34], which, due to its peculiar properties, was at some point
referred to as a ‘counterexample to everything’ [35]. How-
ever, arguments exist in support to the fact that the NUT
solution could posses some physical validity and the NUT
parameter could in fact be related to angular momentum (see
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for example [36]). Similarly to Kerr, the NUT space-time is
fully characterized by two parameters, one related to the mass
of the source, and the other, the so-called NUT parameter,
related to the gravitomagnetic charge of the source. However,
and differently from the Kerr case, the NUT parameter does
not characterise the rotation of the source. In this respect, the
NUT solution constitutes the best example of a metric which
may not describe a viable source of the gravitational field
but which is still extremely useful to understand the physical
properties of exact solutions of Einstein’s equations.

In the present article we consider another stationary space-
time that was obtained by Halilsoy in [37] and investigate its
properties. The stationary solution was constructed using the
ZV space-time as the ‘seed’ metric. We show that, contrary
to what is claimed in the title of Halilsoy’s paper, the line
element does not describe a spinning massive source. On
the contrary, the ‘spin’ parameter in the solution behaves
similarly to the NUT parameter and we show explicitly that
the metric in question reduces to the NUT space-time in the
case of vanishing deformations.

The paper is organised as follows: In Sect. 2 we outline the
basic features of the stationary extension of the ZV space-
time, show its relation with the NUT space-time and discuss
its properties as the exterior of a gravitating compact source.
Section 3 is devoted to the study of the motion of test parti-
cles in the stationary ZV geometry, with particular emphasis
on its relation to the Schwarzschild, Kerr and NUT space-
times. Finally in Sect. 4 we briefly discuss the results and
their implications for astrophysical black holes and exotic
compact objects.

Throughout the paper we make use of geometrized units
setting G = c = 1.

2 Stationary Zipoy–Voorhees metric

The most general stationary and axially symmetric vacuum
space-time in Weyl’s cylindrical coordinates {t, ρ, z, φ} has
the following form

ds2 = −e2ψ(dt−ωdφ)2 +e−2ψ [e2λ(dρ2 +dz2)+ρ2dφ2],
(1)

where ψ = ψ(ρ, z), λ = λ(ρ, z) and ω = ω(ρ, z) are
determined from Einstein’s equations [6,7].

Specific solutions of this class can be obtained from known
static axially-symmetric solutions through a variety of pro-
cedures [31–33]. However, it is well known that not all sta-
tionary solutions of the above class describe the exterior
gravitational field of a rotating object. The most famous of
such examples is the Newman–Unti–Tamburino (NUT) met-
ric [34].

The NUT space-time belongs to the above class and its
metric functions are given by

e2ψ = (r+ + r−)2 − 4(M2 + l2)

(r+ + r− + 2M)2 + 4l2
, (2)

e2λ = (r+ + r−)2 − 4(M2 + l2)

4r+r−
, (3)

ω = l(r+ − r−)√
M2 + l2

, (4)

where M and l are positive parameters and

r2± = ρ2 + (z ±
√
M2 + l2)2. (5)

In the case l = 0 the metric becomes static and it reduces to
the Schwarzschild geometry. From the asymptotic expansion
of the metric the parameter M is immediately interpreted as
the gravitational mass of the source. However, the interpreta-
tion of the NUT solution and of the NUT parameter l is less
trivial and it has attracted lots of attention over the years. In
[38] the solution was interpreted as representing the exterior
field of a mass located at the origin together with a semi-
infinite massless source of angular momentum. On the other
hand in [39] the metric was interpreted as describing the exte-
rior field of two counter-rotating semi infinite rods of negative
mass, separated by a static rod of finite length and positive
mass. In [40] the parameter was interpreted as a gravitomag-
netic charge bestowed upon the central mass. Conversely in
[41] the parameter was interpreted as a property of the sur-
rounding space-time. Another direction towards the interpre-
tation of the NUT space-time comes from the analysis of its
thermodynamic properties. In [36] it was shown that if the
NUT parameter is interpreted as possessing simultaneously
rotational and electromagnetic features then the thermody-
namic equivalent of Bekenstein–Smarr formula follows nat-
urally.

Another famous solution of the above class is the ZV
space-time describing the gravitational field outside a static
deformed object [10,11]. The metric functions are given by

e2ψ =
(
R+ + R− − 2m

R+ + R− + 2m

)γ

, (6)

e2λ =
(

(R+ + R− − 2m)(R+ + R− + 2m)

4R+R−

)γ 2

, (7)

ω = 0, (8)

where m and γ are positive parameters and

R2± = ρ2 + (z ± m)2. (9)

The space-time reduces to Schwarzschild for γ = 1 and the
parameter γ is easily interpreted as a deformation parame-
ter. The total gravitational mass of the source is M = mγ

and from the computation of the quadrupole moment Q =
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γm3(1 − γ 2)/3 one can see that values of γ < 1 (γ > 1)
correspond to prolate (oblate) deformations. The properties
of the ZV space-time were studied in [12–20], while interior
solutions for the ZV metric were obtained in [42,43].

A stationary generalization of the ZV metric was obtained
by Halilsoy in [37]. If we perform a change of coordinates
from cylindrical to prolate spheroidal coordinates {t, x, y, φ}
given by

ρ = κ
√
x2 − 1

√
1 − y2, (10)

z = κxy, (11)

with κ = m/γ , the line element (1) takes the form

ds2 = −e2ψdt2 + 2ωe2ψdtdφ

+m2(x2 − y2)e2λ−2ψ

γ 2

(
dx2

x2 − 1
+ dy2

1 − y2

)

+
(
m2

(
x2 − 1

) (
1 − y2

)
e−2ψ

γ 2 − ω2e2ψ

)

dφ2,

(12)

and the metric functions can be given as

e−2ψ = 1

2

(
x + 1

x − 1

)γ
[

1 + p + (1 − p)

(
x − 1

x + 1

)2γ
]

,

e2λ =
(

x2 − 1

x2 − y2

)γ 2

,

ω = −2mqy. (13)

The line element depends on three parameters m, γ and q
with p given by p2 + q2 = 1. For q = 0 one retrieves
the ZV space-time so that for q = 0 (i.e. p = 1) and γ = 1
one obtains the Schwarzschild metric. Similarly to the space-
times discussed above the parameterm is related to the gravi-
tational mass of the source, γ is related to the deformation of
the source while the parameter q describes the departure from
the static solution. However, one needs to be careful when
interpreting q as a rotation parameter similar to the angular
momentum in Kerr’s solution, since a stationary space-time
may be obtained also by means of introducing a NUT-like
parameter. Indeed, this turns out to be the case here.

In order to relate the above line element to the Schwarzs-
child and NUT space-times it is useful to make use of Erez–
Rosen coordinates {t, r, θ, φ} using the transformations

ρ2 = r2
(

1 − 2m

r

)
sin2 θ, (14)

z = (r − m)cosθ, (15)

or equivalently

x = r

m
− 1, (16)

y = cosθ, (17)

so that the line element (1) takes the form

ds2 = −e2ψdt2 + e2λ−2ψ


�
dr2 + e2λ−2ψ
r2dθ2

+
(
e−2ψ�r2 sin2 θ − ω2e2ψ

)
dφ2 + 2ωe2ψdtdφ,

(18)

and the metric functions become

e−2ψ = 1

2

[
�γ + 1

�γ

]
− p

2

[
�γ − 1

�γ

]
, (19)

e2λ = �γ 2


γ 2 , (20)

ω = −2mγ q cosθ, (21)

with

� = 1 − 2m

r
, (22)


 = 1 − 2m

r
+ m2

r2 sin2θ, (23)

p =
√

1 − q2. (24)

From the above changes of coordinates we see that in
general the coordinates have range r ∈ (2m,+∞), θ ∈
(0, π) for Erez–Rosen coordinates and x ∈ [1,+∞) and
y ∈ [−1, 1] in prolate spheroidal coordinates. It can be eas-
ily checked that setting q = 0 one recovers the ZV metric
in the usual form given by Erez–Rosen coordinates. How-
ever, as mentioned before, for q �= 0 and γ = 1 one does
not retrieve the Kerr solution. In fact the line element for the
case γ = 1 becomes

ds2 = −�

F
(dt − ωdφ)2 + F

(
dr2

�
+ r2d
2

)
, (25)

with

F = 1 + (1 − p)
2m

r

(m
r

− 1
)

. (26)

It is not difficult to see that for p = 1 (i.e. q = 0) we
retrieve the Schwarzschild solution in Schwarzschild coor-
dinates. However, to retrieve the NUT solution in the usual
form when γ = 1 and q �= 0 one needs to perform the change
of coordinates

r̄ = r − m(1 − p), (27)

and identify the parameters from

l = mq, (28)

M = mp. (29)

Then the line element (25) takes the familiar form

ds2 = − δ

σ
(dt − ωdφ)2 + σ

(
dr̄2

δ
+ d
2

)
, (30)
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with

δ = r̄2 − 2Mr̄ − l2, (31)

σ = r̄2 + l2, (32)

ω = −2l cos θ. (33)

This re-interpretation of the NUT parameter l is consistent
with the ideas put forward in [36,39]. In fact, the transforma-
tion (27) shifts the inner and outer horizons to r̃− = 0 and
r̃+ = 2m, respectively. A detailed analysis of the thermody-
namical properties of the NUT solution is beyond the scope of
this work. However it is worth mentioning that from the above
identification of the parameters one find the formula for the
surface gravity κ at the outer horizon as κ = 1/(2m(p+1)).
Similarly, the area formula for the outer horizon becomes
A = 8πm2(p+1) which in turn allows to formulate the first
law.

It is easy to see that the metric (18) reduces to Minkowski
space-time for any value of γ when m = 0. This also shows
that Minkowski can be obtained as the zero mass limit for the
NUT metric, if we setm = 0, instead of the usually discussed
limit

ds2 = −H(r)dt2 + H(r)−1dr2 + (l2 + r2)dθ2

+
[(
l2 + r2

)
sin2 θ − 4l2H(r) cos2 θ

]
dφ2

−4lH(r) cos θdtdφ, (34)

with H(r) = (r2−l2)/(r2+l2), which is obtained by setting
M = 0 while keeping l �= 0. Also it is worth noticing that
the coordinate transformation (27) maps the horizons of the
NUT line element r̄h = M ± √

M2 + l2 into ri = 0 and
ro = 2m.

In the case of small deviation from spherical symmetry
(δ = γ − 1 << 1) and small deviations from staticity (q �
0), the components of the metric (18) can be expanded as

gtt = −�
[
1 + δ log �

]
,

grr = 1

�

[
1 + δ log

(
�


2

)]
,

gθθ = r2
[

1 + δ log

(
�


2

)]
,

gφφ = r2(1 − δ log �) sin2 θ

gtφ = −2�mq(1 + δ + δ log �) cos θ. (35)

If we look at the asymptotic properties of the metric (18)
we find the following expressions

gtt = −
(

1 − 2γmp

r

)
+ O

(
1

r2

)
, (36)

gtφ = −2γmq

(
1 − 2γmp

r

)
cosθ + O

(
1

r2

)
. (37)

From Eq. (36) one can see that the gravitational mass of the
source is given by M = γmp. However, from the expansion

of gtφ we see how the parameter q is not related to the angu-
lar momentum of the central object, as, otherwise, it should
appear as q/r at the leading order in gtφ .

The above statement can be made more precise by eval-
uating the Komar integrals in the NUT limit, i.e. in the case
γ = 1. The Komar angular momentum JK is given by (see
[44]):

JK = −1

4

∫ π

0
(φα;βn[αrβ]

√
gθθgφφ)|r→∞dθ = 0, (38)

where φα is a space-like Killing vector, while nα and rα
are the unit vectors normal to the t = const and r =
const hypersurfaces, respectively. In the Kerr space-time
the Komar angular momentum is J = ma. On the other
hand, in the NUT space-time the Komar angular momentum
is equal to zero. The fact that the integral above for the metric
(25) vanishes supports the idea that the parameter q does not
describe rotation but is better interpreted as some NUT-like
charge that we shall call for simplicity ‘quasi-NUT’ param-
eter, which is directly related to the NUT parameter in the
case γ = 1 from Eq. (28). However it must be noted that the
vanishing of the Komar angular momentum may be inter-
preted in different ways. In fact, it has been argued that an
alternative interpretation of the NUT solution may be given
as the exterior field of two counter-rotating semi infinite rods
of negative mass, separated by a static rod of finite length and
positive mass, all placed along the symmetry axis [38]. This
argument supports the interpretation of the NUT parameter
as physically valid and related to angular momentum.

Similarly one can calculate the Komar mass MK of the
source for the metric (25). This is given by

MK = 1

4

∫ π

0
(tα;βn[αrβ]

√
gθθgφφ)|r→∞dθ = mp. (39)

As expected we see that the result coincides with the NUT
mass parameter. Also, the Komar mass evaluated in the gen-
eral case gives MK = mγ p in agreement with the result
obtained from the asymptotic expansion in Eq. (36). Simi-
larly to the ZV metric the Halilsoy’s metric exhibits a cur-
vature singularity for r = 2m for all values of γ �= 1,
as can be seen from evaluation of the Kretschmann scalar
K = Rαβγσ Rαβγσ , which characterizes the space-time cur-
vature. On the other hand, one can check that for γ = 1,
similarly to Schwarzschild, gtt changes sign at r = 2m while
grr diverges, as can be seen from Fig. 1. Evaluation of the
Kretschmann scalar in this case shows that r = 2m is regular
and coincides with the horizon of the NUT space-time. It is
easy to check that for γ = 1 the Kretschmann scalar K does
not diverge for any value of q �= 0, thus showing that the
singularity given by the divergence of grr at r = 0 is also a
coordinate singularity and the space-time can be extended to
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Fig. 1 The radial dependence of the metric components gtt (left panel) and grr (right panel) for fixed value of the mass parameter m, in the NUT
space-time (i.e. for γ = 1) with line element (25) and different values of the ‘quasi-NUT’ parameter q

the range r ∈ (−∞,+∞). In this case K is given by

K = 48m2h(r)
[−2m2(p − 1) + 2m(p − 1)r + r2

]6 , (40)

with

h(r) = 8m6(p − 1)3 p + 24m5(p − 1)3r +
(

2p2 − 1
)
r6

+60m4(p − 1)2r2 − 40m3(p − 1)2r3

+30m2(p − 1)pr4 + 6m
(
−2p2 + p + 1

)
r5.

Also, it is easy to notice that in the coordinates used in (25)
for p �= 1 we have K (0) = −192m6 p(p − 1)2 < 0, thus
suggesting that repulsive effects appear in the vicinity of the
center of the space-time.

Further we can investigate the departure from spherical
symmetry of the source of the metric (25) by calculating the
area of the surfaces with constant r surrounding the source.
Therefore we must use the three-dimensional line element
given by [45]

dl2 = γi j dx
i dx j , (41)

where

γi j = gi j − gti gt j
gtt

. (42)

Then the surface becomes

S(r) = 4πr2
[

1 + 2m

r
(p − 1) − 2m2

r2 (p − 1)

]
. (43)

It is clear that in the static case (i.e. p = 1) we recover the
revolution surfaces in the Schwarzschild geometry, SSch =
4πr2, while for p �= 1 we obtain S < SSch. Also for p �= 1
there is a limiting radius given by

r0 = m(

√
(p − 1)2 − 2(p − 1) − p + 1), (44)

at which S(r0) = 0.

Finally, when thinking about the physical validity of the
line element (25) it is worth checking whether pathologies
such as closed time-like curves do appear. One simple way
to do so is to study the properties of geodesics with constant
values of the coordinates t , r and θ . The interval reduces to

ds2 = gφφdφ2, (45)

and it is space-like for gφφ > 0. It is easy to see that for
γ �= 1 and p �= 1 there exist regions where gφφ turns from
space-like to time-like thus showing that closed time-like
curves can appear in those cases. For any fixed value of r
one may find the regions where closed time-like curve are
allowed by finding the zeroes of gφφ as a function of p and θ

(see Fig. 2). On the other hand, for q = 0, i.e. the ZV metric,
and for γ = 1, i.e. the NUT metric, we see that gφφ remains
positive everywhere for positive values of r .

3 Particle motion

In order to investigate the viability of the line element as a
possible exterior gravitational field of a physical source it
is worth looking at the motion of test particles. Therefore
we shall now outline the formalism to describe test particle
motion in the metric given by Eq. (18). Since the metric does
not depend on the coordinates t and φ we have the two usual
time-like and space-like Killing vector fields associated with
time translations and rotations. Therefore the action S for the
particle can be written in the usual form

S = −εt + Lφ + S(r, θ), (46)

where ε and L are the constants of motion associated with
the two Killing vectors and representing the energy and
angular momentum per unit mass of the test particle. Using
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Fig. 2 The line for which gφφ is equal to zero for the stationary ZV
space-time. In the outer part of the line gφφ is positive and geodesics
with constant t , r and θ are space-like. In the inner part of the line
gφφ becomes negative corresponding to appearance of closed time-like
curves. The closed time-like curves of the NUT metric, q = 0, in the
coordinates of line element (25) are shifted to negative values of r

Hamilton–Jacobi equation

gαβ ∂S

∂xα

∂S

∂xβ
= −1, (47)

we find the effective potential Vef f (r) for test particles in
the equatorial plane (θ = π/2). The radial component of the

four velocity of the particle reads

ṙ2 = f (r) = ε2 − 1 − 2Vef f (r), (48)

and the effective potential takes the form

Vef f (r) = 1

2

[
r
(
ε2e−2ψ − 1

)
(2m − r) + 4L2

e2(λ−ψ)
(
m2 + r(r − 2m)

)

]

+1

2
(ε2 − 1), (49)

where eψ is evaluated at θ = π/2. The radial dependence
of the effective potential for various values of γ and various
values of the ‘quasi-NUT’ parameter p is shown in Fig. 3. In
the case γ = 1 the effective potential takes the simple form

V γ=1
e f f (r) = − 1

Fr2

[
m(pr − (1 − p)m) − 1

2
�L2

]
, (50)

and particle motion in the NUT space-time was studied in
[46,47].

The innermost stable circular orbit (ISCO) of test particles
in the equatorial plane can be calculated using the following
standard conditions obtained from Eq. (48) [48]:

f (r) = 0, (51)

f ′(r) = 0, (52)

f ′′(r) = 0. (53)

Numerical values for the ISCO radius depending on γ and p
are presented in Table 1. From the table one can see that in
the cases when γ = 1 and γ = 1.5 the ISCO has a minimum
for a value of p ∈ (0, 1) (see right panel in Fig. 4). One can
also compare the stationary ZV metric with Kerr and NUT
in the usual coordinates (see Fig. 4). It is worth noticing that,
even though the ISCO location is coordinate independent, its
numerical value depends on the radial coordinate in use. In

Fig. 3 The radial dependence of the effective potential Vef f (r) for
massive test particles in the equatorial plane of the stationary ZV space-
time as compared to the effective potential for Schwarzschild. In the
left panel Vef f (r) is plotted for p = 0.8 and various values of γ . In the

right panel Vef f (r) is plotted for γ = 0.8 and various values of p. As
expected, notable departures from the Schwarzschild case appear for
γ < 1 and p � 0
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Table 1 The innermost stable circular orbits for test particles moving
in the stationary ZV metric

p 1 0.8 0.6 0.3 0.1

γ = 0.5 3 3.0055 3.0291 3.1632 3.6186

γ = 0.8 4.888 4.859 4.887 5.119 5.981

γ = 1 6 5.9696 5.9858 6.2694 7.4137

γ = 1.2 7.097 7.059 7.081 7.425 8.811

γ = 1.5 8.7016 8.6505 8.6714 9.105 10.8755

fact the case γ = 1 and the NUT metric represent the same
space-time in different coordinates and the two plots can be
made to coincide making use of the change of coordinates
(27).

It is worth remembering that the NUT space-time posses
circular time-like geodesics outside the equatorial plane [49].
This can be seen also in the newly introduced coordinates for
the NUT space-time given in Eq. (25). In fact the components
of the four velocity of a particle moving in the space-time
described by the line element (25) are

ṫ = b(r)ε

r(r − 2m)
− 4εm2q2 cot2 θ − 2Lmq cot θ csc θ

b(r)
,

(54)

φ̇ = csc2 θ(2εmq cos θ + L)

b(r)
, (55)

ṙ = r(r − 2m)

b(r)

√
a(r)ε2 + b(r) + K

2mr − r2 , (56)

θ̇ =
√
K − csc2 θ(2εmq cos θ + L)2

b(r)
, (57)

where K is a Carter’s constant, b(r) = r2 − 2m(1 − p) +
2m2(1 − p), and a(r) = −b(r)2/(r2 − 2mr). From Eq. (57)
one can show that there is off equatorial motion on a plane
parallel to the equatorial one when

cos θ = ±√
4ε2Km2q2 + K2 − KL2 − 2εLmq

4ε2m2q2 + K . (58)

Since we know that in the absence of parameter q the metric
must reduce to Schwarzschild we are led to choose Carter’s
constant as K = L2. Then the above expression reduces to

cos θ = −2εLmq(1 ± 1)

4ε2m2q2 + L2 , (59)

where the minus (−) sign gives us the motion on equatorial
plane while the plus (+) sign gives the orbit confined to a
cone with the opening angle θ given by

cos θ = −4εLmq

4ε2m2q2 + L2 . (60)

Let us now investigate the photon motion in the space-
time characterized by the line element (18). Using Hamilton–
Jacobi equation of motion for massless particle one may

Fig. 4 The dependence of the ISCO radius of test particles on γ and
q. Left panel: The ISCO as a function of γ for different values of
p = √

1 − q2. Right panel: The ISCO radius as a function of q for

different values of γ . For comparison we include the ISCO for Kerr
and NUT. The parameter a corresponds to the rotation parameter of
the Kerr metric and l corresponds to the gravitomagnetic charge of the
NUT metric in the usual coordinates
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Fig. 5 The radial dependence of the effective potential Vef f (r) for
photons in the equatorial plane of the stationary ZV space-time as com-
pared to the effective potential for Schwarzschild. Left panel: Vef f (r)
is plotted for p = 0.8 and various values of γ . Right panel: Vef f (r) is

plotted for γ = 1.2 and various values of p. The effective potential for
Schwarzschild (i.e. γ = 1 and p = 1) is included for reference. RI SCO
is given in units of m

(a) (b)

Fig. 6 Photon capture orbits in the stationary ZV space-time. Left
panel: The dependence of the photon sphere radius on the deforma-
tion parameter γ for different values of q. Right panel: The dependence
of the photon sphere radius on the ‘quasi-NUT’ parameter q for differ-

ent values of γ . For comparison we include the photon sphere for the
Kerr. The parameter a corresponds to the rotation parameter of the Kerr
metric. Rph is given in units of m

derive the effective potential for photons as

Vef f =
[

ε2

2
+ e−4ψrε2(2m − r)+csc2 θ (L − ωε)2

2e−4ψe2λ
(
m2+r csc2 θ (r − 2m)

)
sin2 θ

]

,

(61)

where ε andL again define the conserved energy and angular
momentum of photons. The radial dependence of this effec-
tive potential is plotted in Fig. 5. One may check that for the
effective potential of photons the sign of V ′′

e f f (r) is negative

at points near the photon sphere showing that, as expected,
photon orbits are unstable.

From the symmetry of the space-time one may calculate
the radius of circular photon orbits on the equatorial plane
(θ = π/2) from either of the following geodesic equations

ds2 = gμνdx
μdxν = 0, (62)

ẍμ + �
μ
αβ ẋ

α ẋβ = 0. (63)
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Fig. 7 Shadow of stationary ZV metric for γ = 1 (NUT) and γ = 0.5
at different inclination angles α for the observer and for different values
of q. It can be seen that in the case γ = 1 the introduction of the ‘quasi-
NUT’ parameter does not alter the shape of the shadow, thus showing

again that q must not be interpreted as a rotation parameter but is instead
related to the NUT charge. On the other hand, departures from the NUT
case, i.e. γ �= 1 significantly alter the shape of the shadow, as expected

Setting r̈ = ṙ = θ̇ = 0 we obtain following set of equations

gtt + 2gtφ
dφ

dt
+ gφφ

(
dφ

dt

)2

= 0, (64)

�r
tt + 2�r

tφ
dφ

dt
+ �r

φφ

(
dφ

dt

)2

= 0. (65)

Solving the above equations analytically in the general
case is complicated, however, some insights can be obtained
from the plot of the photon capture radius in the equatorial
plane as a function of γ and q, as shown in Fig. 6. It can be
seen that the location of the photon capture radius increases

with γ similarly to what happens in the static case. Also the
dependence of the photon sphere on the ‘quasi-NUT’ param-
eter shows how the space-time differs from Kerr. However,
one needs to be careful with the interpretation of the radial
coordinate as a radial distance, since a simple change of coor-
dinate like the one in Eq. (27) and a redefinition of the param-
eters like the ones given in Eqs. (28) and (29) may completely
change the behaviour of the photon sphere.

Finally one may consider the appearance of the source for
far away observers by evaluating the shape of the shadow of
the line element (18). The shadow of the Kerr–Taub–NUT
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black hole was considered in [50] and the shadow of the static
ZV metric was studied in [51]. The shadow of the station-
ary ZV metric may be related to the shadow of the static
ZV metric and that of the Kerr–NUT metric once the ‘quasi-
NUT’ parameter and the deformation parameter vanish. The
shadow of the stationary ZV metric has been obtained using
the ray tracing code that was developed in [52–55] and it is
shown in Fig. 7. It is clearly seen how the deformation param-
eter γ and the ‘quasi-NUT’ parameter affect the appearance
of the source, thus suggesting that the nature geometry could
in principle be tested via observations.

4 Conclusion

We considered a stationary extension of the Zipoy–Voorhees
space-time that was originally found by Halilsoy in [37] in
order to investigate if it could be taken as a suitable candi-
date to describe the field in the exterior of an astrophysical
compact object or a black hole mimicker.

We found that the line element does not describe a rotating
source but rather a deformed NUT space-time that reduces
to the NUT metric in the limit of vanishing deformations, i.e.
γ = 1. Therefore the presence of the ‘quasi-NUT’ param-
eter q does not affect the motion of test particles in a way
comparable to the Kerr parameter. In fact, in terms of the
appearance of the source for far away observers the behaviour
remains qualitatively similar to the ZV case, for all values of
the ‘quasi-NUT’ parameter. Furthermore, for γ �= 1, the
metric exhibits the presence of closed time-like curves in a
finite region of the space-time thus suggesting that the field
may not represent the exterior of a viable source.

The effective potentials describing the motion of massive
test particles and photons in the equatorial plane have been
used to determine the location of the innermost stable cir-
cular orbit and the photon sphere. The dependence of these
two radii on the deformation parameter and the ‘quasi-NUT’
parameter shows that it would be in principle possible to
observationally distinguish the Halilsoy geometry from Kerr
and Schwarzschild.
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