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Abstract In this paper, we analyze static traversable worm-
holes via Noether symmetry technique in modified Gauss–
Bonnet f (G) theory of gravity (where G represents Gauss–
Bonnet term). We assume isotropic matter configuration and
spherically symmetric metric. We construct three f (G) mod-
els, i.e, linear, quadratic and exponential forms and examine
the consistency of these models. The traversable nature of
wormhole solutions is discussed via null energy bound of
the effective stress–energy tensor while physical behavior is
studied through standard energy bounds of isotropic fluid.
We also discuss the stability of these wormholes inside the
wormhole throat and conclude the presence of traversable
and physically stable wormholes for quadratic as well as
exponential f (G) models.

1 Introduction

The general theory of relativity (GR) not only incorporates
information about gravity and matter but also provides foun-
dation for the understanding of black holes and standard
big-bang model of cosmology. GR is the simplest relativis-
tic theory of gravity that is consistent with the experimental
data but still suffers from some unresolved issues like earlier
and current cosmic expansions. The favorable and optimistic
approach to unveil the salient features of these dark aspects
is to modify the gravity by introducing some extra degrees of
freedom in the Einstein–Hilbert action. These modifications
are formulated by replacing or adding curvature invariants
as well as their corresponding generic functions in Einstein–
Hilbert action referred as modified gravitational theories [1].

Recent observational facts of modern cosmology indicate
the current accelerated expansion of the universe. This expan-
sion occurs due to the strange force with fascinating anti-
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gravitational impacts, named as dark energy (DE). One of
the approaches to study the nature of DE is the modified the-
ories of gravity. Nojiri and Odintsov [2] proposed f (G) (G
represents Gauss–Bonnet (GB) invariant) gravity by includ-
ing higher-order correction terms. The inspiration of this the-
ory arises from the string theory at low energy scale which
efficiently helps to examine the late-time evolution of the cos-
mos. The GB invariant is quadratic in nature and is free from
spin-2 ghost instabilities acts as a four-dimensional topolog-
ical term which is the composition of the scalar curvature
(R), Ricci (Rαβ ) and Riemann tensors (Rαβμν) defined as
G = R2 − 4Rαβ Rαβ + RαβμνRαβμν .

This theory has a quite rich cosmological structure which
describes fascinating characteristics of early as well as late-
time cosmological evolution and is consistent with solar sys-
tem constraints. The GB invariant gives fascinating results
when either comprised of a scalar field or a general func-
tion f (G) is included in the Einstein–Hilbert action [3–5].
This theory provides a possibility to study the transformation
from non-phantom to phantom phase and from decelerated
to an accelerated region. It is observed that f (G) gravity well
describes the laws of thermodynamics and many other cos-
mological issues [6–9]. Sharif and Fatima [10] investigated
the spherical interior solutions of this gravity by applying
conformal Killing vectors corresponding to isotropic as well
as anisotropic fluid configurations and checked the physical
consistency via energy conditions.

Noether symmetry is recognized as the most efficient
method to investigate the analytic solutions that help to find
the conserved parameters of the field equations correspond-
ing to symmetry generators. Capozziello et al. [11] examined
the analytic solutions of static spherically symmetric space-
time for the power-law functional form of f (R) theory. The
same authors [12,13] extended this work for the non-static
case and obtained exact solutions for constant as well as vari-
able curvature scalar. Vakili [14] used this approach for flat
FRW model to discuss the current cosmic expansion through
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an effective equation of state (EoS) parameter in f (R) grav-
ity. Many researchers [15–20] investigated the current accel-
erated cosmic expansion through this approach in different
modified theories.

A wormhole (WH) is a hypothetical bridge or tunnel that
allows a smooth passing through different regions of space-
time. If hypothetical tunnel connects two regions of the same
spacetime then intra-universe WH is established whereas
inter-universe WH appears for two distinct spacetimes. The
existence of exotic matter (matter with negative energy den-
sity) encourages observer to move smoothly through tunnel
but its sufficient amount leads to controversial existence of a
realistic WH. Consequently, the only way to have a physically
viable WH model is to minimize the usage of exotic matter
in the tunnel. For any static configuration, the most crucial
problem is stability analysis which defines their behavior
against perturbations as well as enhances physical charac-
terization. A singularity free configuration identifies a stable
state which successfully prevents the WH to collapse while a
WH can also exist for quite a long time even if it is unstable
due to very slow decay.

The study of WH geometries has gained much atten-
tion in modified theories of gravity. In f (R) scenario, Lobo
and Oliveira [21] assumed distinct fluid distributions with
constant shape function to investigate the WH geometry.
Jamil et al. [22] examined feasible WH solutions with non-
commutative geometry by considering a specific shape func-
tion corresponding to power-law f (R) model. Bahamonde
et al. [23] used the same gravity for FRW universe model to
analyze the cosmological WH solutions with isotropic fluid.
Mazharimousavi and Halilsoy [24] discussed the conditions
of WH for vacuum/non-vacuum cases and obtained the sta-
ble WH geometry for f (R) model along with polynomial
evolution. Sharif and Fatima [25,26] explored the non-static
solutions of WH as well as static spherically symmetric WH
in galactic halo region in f (G) gravity. Bahamonde et al.
[27] found definite solutions of shape function and red-shift
parameter via Noether symmetry and examined the graphi-
cal behavior in the background of non-minimal coupling with
torsion scalar in scalar-tensor theory.

Recently, Sharif and Nawazish investigated the static WH
solutions using Noether symmetry technique in both f (R)

[28] as well as f (R, T ) gravity [29] and found stable struc-
ture for two different values of red-shift function. In this
paper, we study the physical presence of WH via Noether
symmetry technique in f (G) theory and explore WH prop-
erties associated with perfect fluid. The paper is arranged
in the following pattern. Section 2 represents the basic for-
malism of this gravity. We obtain point-like Lagrangian in
Sect. 3 which is used in Sect. 4 to estimate WH solutions
for variable red-shift function. Section 5 explores the stable
structure of developed WH geometries and summary of our
results is given in the last section.

2 Basic formalism of f (G) gravity

The action of f (G) gravity in 4-dimensions with matter
Lagrangian is presented by

S = 1

2k2

∫
[R + f (G)]

√−gd4x +
∫ √−gLmd

4x, (1)

where k is the coupling constant and Lm defines matter
Lagrangian. Varying this action with respect to metric tensor,
the corresponding field equations are

Gαβ = 1

2
gαβ f (G) − (2RRαβ − 4Rμ

α Rμβ − 4RαμβνR
μν

+2Rμνγ
α Rβμνγ ) fG

−(2R∇2gαβ − 2∇α∇β R − 4Rμνgαβ∇μ∇ν

−4∇2Rαβ + 4∇β∇μR
μ
α + 4∇α∇μR

μ
β

+4∇μ∇νRαμβν) fG + k2Tαβ, (2)

where ∇2 = ∇α∇α is d’Alembert operator, ∇α indicates the
covariant derivative and fG denotes differentiation of generic
function with respect to G. The stress–energy tensor is deter-
mined by the following form

Tαβ = −2√−g

δ
(√−gLm

)
δ
(
gαβ

) . (3)

Here the metric tensor depends only upon the distribution of
matter yielding

Tαβ = gαβLm − 2
δLm

δgαβ
. (4)

The energy–momentum tensor for perfect fluid configuration
is

T (m)
αβ = (ρm + pm)uαuβ + pmgαβ, (5)

where pm and ρm characterize pressure and energy density,
respectively and uα represents the four velocity of the fluid.

The static spherically symmetric line element [30] is given
by

ds2 = −ea(r)dt2 + eb(r)dr2 + M(r)(dθ2 + sin2 θdφ2), (6)

where the triplet (M, a, b) indicates generic radial functions.
For M(r) = r2 [31], the spherical symmetry (6) character-
izes Morris–Thorne WH in whicha(r) is identified as the red-
shift function as it determines gravitational red-shift of WH
whereas eb(r) = (1− h(r)

r )−1 with h(r) being the shape func-
tion as it specifies spacial shape of WH. The radial coordi-
nate r possesses non-monotonic behavior as it decreases from
infinity to minimum radius when a traveler moves from one
part of WH. The space occupying minimum radius is known
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as throat of WH. The radial coordinate starts increasing from
minimum radius to infinity as traveler comes out of the throat
and entered into another region of WH. The basic property
of WH is the flaring-out condition for which h(r)−h(r)′r

h(r)2 > 0.
At the throat or near the throat, the traversable WH demands
0 ≤ h′(r) < 1, where prime represents differentiation with
respect to r . The sufficient condition of traversable WH is the
finite red-shift function throughout the whole space of WH.
This condition ensures the absence of horizons and conse-
quently, allows a traveler to move into a WH as well as appre-
ciates a smooth exit.

For spherically symmetric spacetime (5) and perfect
fluid (6), we formulate the field equations corresponding to
Eqs. (1) and (2) as follows

ea(−4M ′′M + 2b′M ′M + M ′2 + 4Meb)

4ebM2

= ρme
ak2 − 1

2
ea f (G)

+ea−2b
[
a′4 − M ′a′b′

2M2 + M ′a′b′2

M
− 3M ′2a′b′

4M2

−2
M ′a′′b′

M
+ 4

M ′′a′′

M
− eba′2

M

+ eba′b′

M
− 3

eba′M ′

M2 − 2
eba′′

M

+2
M ′′a′2

M
− 2

M ′′a′b′

M
+ 3

M ′′a′M ′

M2 − 3b′a′3

4

−a′M ′3

2M3 − 3a′′M ′2

2M2 + 2a′′2

−a′2b′M ′

2M
+ 2a′′a′2 − 3a′′a′b′

2
+ a′2b′2

8

]
fG

−ea−2b
(

4a′′M ′

M
− b′M ′2

M2 + 4
M ′M ′′

M2 − M ′3

M3

−a′3

2
+ 3a′2b′

2
− a′a′′ + 2a′′b′

+a′b′M ′

M
− a′2M ′

M
+ 2

a′M ′2

M2 − a′b′
)

−ea−b
(
a′3 − b′a′2 + 2

M ′a′2

M
+ 2a′′a′

−e2a−2ba′b′2 − 2
M ′2

M2

)
f ′
G +

[
4

M
ea−b + ea−2b

(
M ′2

M2

+4
M ′′

M
+ 3a′2 − 4a′b′ + 5a′′

)]
f ′′
G , (7)

− (M ′2 + 2a′M ′M + M ′2 − 4Meb)

4M2

= k2 pme
b + 2pme

b + 1

2
eb f (G) − e−b

[(
a′b′2M ′

2M

+a′2M ′2

4M2 − 7
a′b′M ′2

M2 + a′3M ′

M
+ 2

a′M ′a′′

M
+ 2

a′M ′M ′′

M

−3a′M ′3

2M3 + 11b′M ′3

4M3 + a′′M ′2

2M2

−a′2eb

M
+ a′b′eb

M2 + 4b′M ′eb

M2 − 2a′′eb

M

−4M ′′eb

M2 + 4M ′2eb

M3

+4M ′′2

M2 − 4M ′′M ′2

M3 − M ′4

2M4 − a′b′2M ′

2M
− 2b′M ′3

M2

+4M ′3M ′′

M3 + a′4

4
− a′3b′

2

−a′b′a′′ + a′′2 + a′2b′2

4
+ b′2M ′2

M2 − 4b′M ′M ′′

M2

+a′M ′M ′′

M2 − 4M ′′eb

M2 − 2M ′′M ′2
)
fG

+a′3

2
+ a′2M + a′′a′M +

(
2M ′3

M3

−a′2M ′

M
− 5a′M ′2

2M2 + 3b′M ′2

2
+ 2a′eb

M
+ 4M ′eb

M2

−2M ′M ′′

M2 − 2b′M ′′

M
+ 4MM ′′

M2 − a′3

2
− a′a′′

)
f ′
G
]

, (8)

M ′M(a′ − b′) + 2M ′′M + M2a′2 − M2a′b′ − M ′2 + 2M2a′′

4Meb

= k2 pmM + 1

2
f (G) − e−2b

(
a′3M ′

2
− 3a′2b′M ′

4
− a′2eb

+a′2M ′′

2
+ a′b′2M ′

4
+ a′b′eb − a′b′M ′′

2
+ a′2M ′2

M

−3a′b′M ′2

4M
+ a′M ′a′′

M
+ b′2M ′2

2M
+ 2b′M ′eb

M
+ a′′M ′′

+a′M ′a′′ − a′′b′M ′

2
− 2a′′eb − 2b′M ′M ′′

M

−2a′M ′eb

M
+ 8e2b

M
− 4M ′′eb

M

+2M ′′2

M
+ b′M ′3

2M2 − M ′′M ′2

M2 + M ′4

2M3

−2M ′2eb

M2

)
fG − e−2b

[
a′3M2

2

+a′2M ′M − a′2b′M2

2
+ a′′a′M2

+
(

−a′3M
2

+ 3a′b′M ′

2
− a′M ′2

2M
+ 13b′M ′2

8M

−a′′a′M − a′′M ′ + 11M ′eb

2M
− a′M ′′ + 9a′2M ′

8
− a′2b′M

2

+5b′2M ′

8
− 4M ′

M
− 5b′M ′′

4
+ M ′3

8M2

)
f ′
G

+
(
a′M ′ + 5M ′2

4M
+ 5b′M ′

4
− 5M ′′

2

)
f ′′
G
]

. (9)

The energy bounds indicate the nature of matter incor-
porated by astrophysical configurations. If the well-defined
bounds are preserved then the configurations are said to be
supported by an ordinary matter. In case of WH geometry, a
realistic WH configuration may exist if these energy bounds
violate. In order to define such energy bounds, Raychaud-
hari equations are considered to be the most fundamental
ingredients given as

dθ

dτ
= −1

3
θ2 − σμνσ

μν + �μν�
μν − Rμνl

μlν, (10)
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dθ

dτ
= −1

2
θ2 − σμνσ

μν + �μν�
μν − Rμνk

μkν, (11)

where θ, lμ, kμ, σ and � represent expansion scalar, time-
like vector, null vector, shear and rotation tensors. These
equations are defined for both timelike (first equation) and
null (second equation) congruence. In both equations, the
positivity of last term demands attractive gravity. For the
Einstein–Hilbert action, these energy bounds are split into
null (NEC) (ρm + pm ≥ 0), weak (WEC) (ρm ≥ 0, ρm +
pm ≥ 0), strong (SEC) (ρm + pm ≥ 0, ρm + 3pm ≥ 0)
and dominant (DEC) (ρm ≥ 0, ρm ± pm ≥ 0) energy condi-
tions [32]. These conditions originate from the Raychaudhari
equations purely on geometric arguments, hence are valid
for any modified theory implying that T (m)

μν kμkν ≥ 0 can be

replaced with T ef f
μν kμkν ≥ 0. For detailed study of energy

conditions in modified gravity, see the literature [33,34].
In modified Gauss–Bonnet gravity, these energy constraints
become

• NEC: ρe f f + pef f ≥ 0,
• SEC: ρe f f + pef f ≥ 0, ρ + 3pef f ≥ 0,
• DEC: ρe f f ≥ 0, ρe f f ± pef f ≥ 0,
• WEC: ρe f f + pef f ≥ 0, ρe f f ≥ 0.

where ρe f f = ρm + ρc and pef f = pm + pc. With the help
of Eqs. (7) and (8), we obtain

pm = −
(
M ′2 + 2a′M ′M − 4Meb

)
4M2eb(2 + k2)

− f (G)

2(2 + k2)

+ e−2b

2 + k2

[(
a′b′2M ′

2M
+ a′2M ′2

4M2 − 7a′b′M ′2

M2

+M ′a′3

M
+ 2a′a′′M ′

M
+ 2a′M ′′M ′

M

−3a′M ′3

2M3

11b′M ′3

4M3 + a′′M ′2

2M2 − a′2eb

M

+a′b′eb

M
+ 4b′M ′eb

M2 − 2a′′eb

M2

4M ′′eb

M2

+4M ′2eb

M3 + 4M ′′2

M2 − 4M ′′M ′2

M3

− M ′4

2M4 − a′b′2M ′

2M
− 2b′M ′3

M2

+a′4

4
+ 4M ′3M ′′

M3 − a′3b′

2
− a′b′a′′ + a′′2

+a′2b′2

4
+ b′2M ′2

M2 − 4b′M ′M ′′

M2

+a′M ′M ′′

M2 − 4M ′′eb

M2 − 2M ′′M ′2
)
fG

+a′3

2
+ a′2M + a′′a′M

+
(

2M ′3

M3 − a′2M ′

M
− 5a′M ′2

2M2 + 3b′M ′2

2

+ 2a′eb

M
+ 4M ′eb

M2 − 2M ′M ′′

M2

−2b′M ′′

M
+ 4MM ′′

M2 − a′3

2
− a′a′′

)
f ′
G
]

, (12)

ρm =
(−4M ′′M + 2b′M ′M + M ′2 + 4Meb

)
4k2ebM2 + fG

2k2

−e−2b

k2

(
a′4

2
− a′b′M ′

2M2

+M ′a′b′2

M
− M ′2a′b′

M2 − 2M ′a′′b′

M
+ 2a′′2 − eba′2

M

+eba′b′

M
− 3M ′a′eb

M2 − 2eba′′

M
+ 2M ′′a′2

M

−2M ′′a′b′

M
+ 3M ′′a′M ′

M2 + 4M ′′a′′

M

+M ′2a′b′

4M2 + a′4

2
− a′M ′3

2M3 − a′′M ′2

2M2 − 3a′3b′

4

−a′2b′M ′

2M
+ 2a′′a′2 − 3a′′a′b′

2
− a′′M ′2

M2

+b′2a′2

8

)
fG + e−2b

k2

(
2b′a′′ − a′a′′ + 4M ′a′′

M

−M ′2b′

M2 + 4M ′′M ′

M2 − M ′3

M3 + a′b′M ′

M

−a′3

2
+ 3a′2b′

2
− a′2M ′

M
+ 2a′M ′2

M2 − a′b′
)

+e−b

k2

(
2a′2M ′

M
+ a′3 − a′2b′ + 2a′a′′ − e2a−2bb′2a′

−2M ′2

M2

)
f ′
G +

[
4e−b

k2M
+ e−2b

k2

(
M ′2

M2 − 4a′b′

+4M ′′

M
+ 3a′2 + 5a′′

)]
f ′′
G . (13)

For the traversability of WH, the basic property is the vio-
lation of NEC in GR. This violation prevents the WH throat to
shrink and leads to the physically unrealistic WH solutions.
The modified theories of gravity provide T ef f

αβ as an alterna-
tive source to meet the violation of NEC. In this regard, these
theories may have an opportunity for usual matter configu-
ration to fulfill the energy constraints. Simplifying Eqs. (7)
and (8), we obtain NEC with respect to the effective stress–
energy tensor as follows

ρe f f +pef f = 1

2eb

(
M ′a′

M
− 2M ′′

M
+ M ′2

M2 + M ′b′

M

)
. (14)
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3 Point-like Lagrangian and Noether symmetry
approach

Here we use Lagrange multiplier technique to formulate the
Lagrangian for the action (1). We tak

A =
∫

dr
√−g[R + f (G) − μ1(G − Ḡ) + Lm], (15)

where
√−g = Me

a
2 e

b
2 and Lm = pm while curvature scalar

and GB invariant are

R = 1

eb

(
−a′2

2
+ a′b′

2
− a′M ′

M
− 2M ′′

M

+b′M ′

M
+ M ′2

2M2 − a′′ + 2eb

M

)

Ḡ = 2e−2b

M2

(
a′2M ′2 − 3b′a′M ′2 − eba′2

+eba′b′ + 2a′′M ′2 + 4a′M ′M ′′ − 2eba′′) .

Varying the action (15) relative to G, we obtain μ1 = fG(G)

whereas the conservation of energy–momentum tensor rel-

ative to perfect fluid gives pm(r) = ρ0e
−a(1+w)

2w , (ρo is inte-
gration constant while w denotes EoS parameter). Putting all
these values in Eq. (15), it follows that

A =
∫ [

Me
b+a

2

{
R + f (G) − G fG + ρ0e

−a(1+w)
2w

+2e−2b fG
M2

(
a′2M ′2 − 3b′a′M ′2

−eba′2 + eba′b′ + 2a′′M ′2

+4a′M ′M ′′ − 2eba′′)}]
dr. (16)

In order to eliminate second order derivative, we integrate
these terms by parts and neglect boundary terms which leads
to

L (
r, a, b, M,G, a′, b′, M ′,G′)

= e
a+b

2 M
(
R + f − G fG + ρ0e

−a(1+w)
2w

)

+2e
a−3b

2

M

×
(
(4a′b′ + 2a′M ′)(M ′2 − eb) + 2a′b′eb

)
fG

−4e
a−3b

2

M

(
M ′2 − eb

)
a′G′ fGG . (17)

For static spherically symmetric metric, Hamiltonian of the
dynamical system and the Euler–Lagrange equation corre-
sponding to point-like Lagrangian are characterized as

H =
∑
i

q ′
i p

i − L,
∂L
∂qi

− d

dr

(
∂L
∂q ′

i

)
= 0, (18)

where qi are generalized coordinates. The differential of
Lagrangian with respect to the configuration space (a, b, M,G)

gives

e
a
2 e

b
2

2
(−GM fG + RM + M fG − Mp)

+1

2

(
4a′b′e

a−b
2 + a′M ′3

M2 e
a−3b

2

−a′2M ′2

M
e
a−3b

2 + 3a′b′M ′2

M
e
a−3b

2

)
fG

+1

2
fGG

(−3G′a′M ′2

M
e
a−3b

2 − 4a′G′

×e
a−b

2

)
− 1

2
a′ fG

(
4b′e

a−b
2

+M ′3e a−3b
2

M2 − 2a′M ′2e a−3b
2

M
+ 3b′M ′2e a−3b

2

M

)

−1

2
b′

(
4b′e

a−b
2 + M ′3e a−3b

2

M2

−2a′M ′2e a−3b
2

M
+ 3b′M ′2e a−3b

2

M

)
fG −

(
−4b′2

×e
a−b

2 − 2M ′4e a−3b
2

M3

−2M ′3b′e a−3b
2

M2 + 3M ′2M ′′e a−3b
2

M2 − 2a′′M ′2e a−3b
2

M
+ 4

×b′′e
a−b

2 + 2a′M ′3e a−3b
2

M2

−4a′M ′M ′′e a−3b
2

M
+ 4a′b′M ′2e a−3b

2

M

+3b′′M ′2e a−3b
2

M
+ 6b′M ′′M ′e a−3b

2

M

−6M ′2b′2e a−3b
2

M
− 3M ′3b′e a−3b

2

M2

)
fG − 1

2
a′

(
− 3G′e

a−b
2

−4G′M ′2e a−3b
2

M

)
fGG − 1

2
b′

(
−3G′M ′2e a−3b

2

M
− 4G′e

a−b
2

)

fGG − G′
(

− 4G′e
a−b

2 − 3G′M ′2e a−3b
2

M

)
fGGG

−
(

−3G′′M ′2e a−3b
2

M
− 6G′M ′M ′′e a−3b

2

M
− 4

×G′′e
a−b

2 + 3G′M ′3e a−3b
2

M2

+6G′b′M ′2e a−3b
2

M
+ 4G′b′e

a−b
2

)
fGG = 0, (19)

1

2M4

[
−

(
12a′M ′M ′′M3e

a−3b
2
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+9a′b′M ′2M3e
a−3b

2 − 9a′b′M ′2M3e
a−3b

2

−M5e
a+b

2 + 4a′2M4e
a−b

2 + 8a′′M4e
a−b

2

+GM5e
a+b

2 + 3a′M ′3M2e
a−3b

2

+pM5e
a+b

2 − RM5e
a+b

2 − 6a′M ′3M2e
a−3b

2

+6a′′M ′2M3e
a−3b

2

)
fG +

(

+4a′G′M4e
a−b

2 − 9a′M ′2M3e
a−3b

2

+6a′G′M ′2M3e
a−3b

2

)
fGG

]
= 0, (20)

e
a
2 e

b
2
(−G fG + R + fG − p

)

+e
a−3b

2

[(
4M ′3a′

M3 − 5M ′2a′2

2M2 + 15M ′2a′b′

2M2

+a′3M ′

M
− 3M ′a′b′

M

−3M ′a′2b′

M
− 9M ′a′b′2

M
− 3M ′2a′′

M2 − 6M ′′M ′a′

M2

+4M ′a′′a′

M
+ 2M ′′a′2

M
− 6M ′b′a′′

M

−6M ′b′′a′

M
− 6M ′′b′a′

M

)
fG +

(
3G′a′2M ′

M

−9a′G′b′M ′

M
+ 6a′G′′M ′

M
+ 6a′′G′M ′

M
+ 6a′G′M ′′

M

−6a′M ′2G′

M2

)
fGG + 6G′2a′M ′

M
fGGG

]
= 0, (21)

1

2M2

[
−2M3e

a
2 e

b
2 fG

−
(

− 3a′2M ′2Me
a−3b

2 − 4a′2M2e
a−b

2 + 6a′M ′3e
a−3b

2

+4a′b′M2e
a−b

2 + 9a′b′M ′3e
a−3b

2 − 12a′M ′M ′′Me
a−3b

2

−6a′′M ′2Me
a−3b

2

−8a′′M2e
a−b

2

)
fGG

+
(

6a′M ′2G′Me
a−3b

2 + 8a′G′M2e
a−b

2

)
fGGG

]
= 0. (22)

In order to solve the system of non-linear differential
equations, Noether symmetry is recognized as a significant
tool. The physical properties of any dynamical structure can
be illustrated by the respective Lagrangian which narrates
the energy density as well as the presence of symmetries
of the system. Noether theorem can be stated as a group
generator that provides conserved quantity only if point-
like Lagrangian shows constant behavior under a continu-
ous group. To analyze the associated conserved quantity as
well as the existence of Noether symmetry for the spherical
system, we take a vector field K [35,36]

K = τ
(
r, qi

) ∂

∂r
+ ζ i

(
r, qi

) ∂

∂qi
, (23)

where τ and ζ i are unknown coefficients while r acts as an
affine parameter of K . This leads to uniqueness of the vector
field in the tangent space.

The corresponding invariance condition is characterized
by

K [1]L + (Dτ)L = DB(r, qi ). (24)

Here B signifies the boundary term, K [1] and D represent the
first order expansion and total derivative, respectively given
by

K [1] = K +
(
Dζ i − q ′i Dτ

) ∂

∂q ′i , D = q ′i ∂

∂qi
+ ∂

∂r
.

(25)

Invariance condition (24) leads to the Noether symmetries
which represent the related conserved parameters in terms
of first integral. Under translation with respect to time as
well as position, if the Lagrangian shows constant behavior,
then the first integral describes conservation of energy as
well as the linear momentum whereas rotationally symmetric
Lagrangian provides angular momentum conservation [37].
The first integral for invariance condition (24) is expressed
in the form

� = B − τL −
(
ζ i − q ′iτ

) ∂L
∂q ′i . (26)

The vector field and first order expansion for the configu-
ration space become

K = τ
∂

∂r
+ α

∂

∂a
+ β

∂

∂b
+ γ

∂

∂M
+ δ

∂

∂G ,

K [1] = τ
∂

∂r
+ α

∂

∂a
+ β

∂

∂b
+ γ

∂

∂M
+ δ

∂

∂G
+α′ ∂

∂a′ + β ′ ∂

∂b′ + γ ′ ∂

∂M ′ + δ′ ∂

∂G′ , (27)

where the unknown parameters of vector field having the
radial derivative are given by

σ ′
j = Dσ j − q ′i Dτ, j = 1, . . . , 4, (28)

where σ j ( j = 1, 2, 3, 4) denote α, β, γ and δ, respectively.
Comparing the coefficients of a′2b′, a′b′2M ′2, a′b′M ′3 and
M ′2G′2a′, we obtain

τ,a fG = 0, τ,b fG = 0, τ,M fG = 0, τ,G fGG = 0,

(29)

This leads to a trivial solution for fG = 0. For non-trivial
solution, we assume fG �= 0 and compare the coefficients of
a′, b′, M ′,G′, b′2, M ′2,G′2,G′M ′2, a′b′M ′, a′2M ′G′, a′M ′b′2
and a′M ′G′2 leading to following equations
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4ea−b/2[ fG(−β,r − γ,r ) + δ,r fGG] = MB,a,

−4ea−b/2α,r fG = MB,b, (30)

−4ea−b/2α,r fG = MB,M ,

4ea−b/2α,r fGG = MB,G, (31)

α,b fG = 0, α,M fG = 0,

α,G fGG = 0, α,r fGG = 0, (32)

4γ,r fG = 0, 4γ,a fGG = 0,

8γ,b fG = 0, 4γ,G fGG = 0. (33)

For fG �= 0, we compare remaining coefficients and obtain
over determined system of equations as follows

τ,a = 0, τ,b = 0, τ,M = 0, τ,G = 0,

γ,a = 0, γ,G = 0 (34)

B,b = 0, B,M = 0, B,G = 0,

γ,r = 0, γ,b = 0 (35)

α,r = 0, α,b = 0, α,M = 0,

α,G = 0, (36)

4ea−b/2[− fGβ,r + δ,r fGG] = MB,a, (37)

β,r fG − δ,r fGG = 0,

β,a fG − δ,a fGG = 0, (38)

(−α + β + M−1γ − δ − α,a −β,b +τ,r ) fG
+δ,b fGG = 0, (39)

(−α + β + M−1γ − α,a −β,M −γ,M +τ,r ) fG
−(δ − δ,M ) fGG = 0, (40)

2(α − 3β − M−1γ + α,a +β,b +2γ,M −2τ,r ) fG
+(2δ − δ,b) fGG = 0, (41)

(α − 3β − M−1γ + α,a +2β,M +3γ,M −3τ,r ) fG
+(δ − δ,M ) fGG = 0, (42)

−β,G fG + fGG(α − β − M−1γ + α,a +δ,G −τ,r )

+δ fGGG = 0, (43)

2β,G fG
+ fGG(α + 3β + M−1γ − α,a −2γ,M −δ,G +2τ,r )

+2δ fGGG = 0, (44)

ea+b/2M

[
(R + f − G fG)

(
α

2
+ β

2
+ γ

M
+ τ,r

)

+ρ0e
−a(1+w)

2w

(
α

2w
+ β

2

γ

M
+ τ,r

)
− δG fGG

]
= B,r .

(45)

Here we solve Eqs. (34)–(45) for three different choices
of parameters given by

• β(r, a, b, M,G) = 0, δ(r, a, b, M,G) = 0,
• β(r, a, b, M,G) = 0, δ(r, a, b, M,G) �= 0 or vice

versa.
• β(r, a, b, M,G) �= 0, δ(r, a, b, M,G) �= 0.

4 f (G) models and wormhole solutions

In order to evaluate unknown parameters of symmetry gener-
ators and explicit solution of f , we consider above mentioned
possibilities of β and δ.

Case I: β = δ = 0

In this case, we obtain

α = ξ1 + ξ2e
−a, γ = M(ξ3 − ξ4), τ = ξ5r + ξ6,

f (G) = ξ1G + ξ2, B(r, a),a = 0, (46)

where ξi ′s denotes integration constants and explicit form
of f corresponds to linear model which is compatible with
Gauss–Bonnet gravity. The coefficient of boundary term,
symmetry generator and f (G) solution satisfy Eqs. (34)-(44).
Consequently, the symmetry generator and the first integral
yield

K = ξ1
∂

∂r
+ ξ2

(
∂

∂a
+ ∂

∂b

)
,

� = ξ3 + ξ4r
3 − ξ0[

e
a
2 e

b
2

(
r2R + r2 fG − r2G fG − r2 p

)

+e
a
2 e

b
2

(
4a′b′

eb
+ 8a′

re2b − 4a′2

e2b + 12a′b′

e2b

)
fG

+
(−12a′G′

e2b − 4a′G′

eb

)
fGG

]
− ξ2e

a
2 e

b
2

×
[(

4b′

eb
+ 8

re2b − 8a′

e2b + 12b′

e2b

)
fG

+
(−12G′

e2b − 4G′

eb

)
fGG

]
.

We insert symmetry generators, f (G) model in Eq. (45) with
B,r = ξ7, M = r2, eb = (1 − h(r)/r)−1 and a(r) = −k/r
(where k is positive constant) leading to
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Fig. 1 Evolution of fG and fGG versus r for k = 0.005, ξ1 = 0.01, ξ2 = 0.85, ξ3 = 0.1, ξ7 = 0.5, w = −1 and ρ0 = 0.5
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Fig. 2 Variation of the shape function versus r

Fig. 3 Evolution of energy bounds versus r for w = −1

1

2w

(
−

√
r

r − h(r)
e
k(2w+1)

2rw ξ2ρ0r
2 + 2ρ0

√
r

r − h(r)
r2

(
w − 1

2

)
ξ3e

k
2rw + 3

× w

((
r2(k + 8r)h′(r) + (

k2 + 3kr + 24r2
)
h(r) − k2r − 4kr2 − 32r3 + 4r

2r3

+ r2ξ1

) (
e− k

2r ξ3 + e
k
2r ξ2

3

) √
r

r − h(r)
− 2ξ7

3

))
= 0. (47)
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In order to study the geometry, traversability and physi-
cal viability of WH in the presence of phantom energy, we
consider w = −1 and solve this non-linear equation numer-
ically to construct graphical analysis of the shape function.
This analysis leads to measure compatibility of linear f (G)

model with viable models under the condition of regular and
positive derivatives of f (G) function [38]. Furthermore, we
explore the possibility of traversable WHs through graphi-
cal interpretation of effective NEC. The graphical analysis
of energy bounds, i.e., NEC, WEC, SEC and DEC help to
explore the presence/absence of ordinary matter.

In both plots of Fig. 1, the positively evolving curves rep-
resent that f (G) satisfies viability constraints as fG > 0
and fGG > 0. For linear modified GB function, the WH
geometry is analyzed in the context of accelerated expansions
(w = −1) in Fig. 2. The left plot indicates WH geometry to
be asymptotically flat in a very short interval of r as h/r → 0
as r → 1. In the right plot, the trajectory identifies throat of
WH at r0 = 0.34 and the derivative of the shape function at
this point remains positive, i.e., dh(r0)

dr < 1. In the presence
of accelerated expansion of cosmos, the graphical analysis
of WH geometry shows that the configuration is compatible
with Morris–Thorne WH proposal.

The WH configuration is more significant if it is supported
by ordinary matter, i.e., the normal matter that satisfies energy
bounds. The criteria of energy bounds indicates that NEC
is the weakest condition as the violation of NEC leads to
inconsistent behavior of WEC, SEC and DEC. If a matter
distribution follows DEC then WEC and NEC holds trivially
while SEC needs to be checked separately. In order to exam-
ine realistic nature of WH, we discuss the evolution of energy
density and pressure of normal matter in Fig. 3. The graph-
ical interpretation indicates that ρm ≥ 0 and ρm + pm ≥ 0.
This behavior of matter variables indicates that the WH is
physically viable inside the throat (r0 = 0.34). To study
traversable behavior of WH, we substitute a(r) = −k/r and
Eq. (47) in (14) leading to

pef f + ρe f f = −h(r)

r3 + h′(r)
r2 + k(r − h(r))

r4 .

For traversable WH, the violation of effective NEC (ρe f f +
pef f < 0) is required which also fulfills the flaring-out condi-
tion. Figure 4 shows negatively increasing curve which indi-
cates that pef f +ρe f f < 0 implying existence of traversable
WH solution. For linear f (G) model, the WH is found to
be traversable as well as physically viable in the presence of
accelerating phases of cosmos.

Case II: β = 0, δ �= 0

For β = 0, we solve the Eqs. (38)–(44) and obtain

α = χ1 + χ2e
−a, γ = M(χ3Y (M) − χ4),

0.2 0.3 0.4 0.5
r

8

6

4

2

pef effρ

Fig. 4 Evolution of effective NEC versus r for w = −1

τ = χ5r + χ6,

f (G) = χ7G2 + χ8G + ξ1, δ = χ3Y (M), (48)

where χi ′s are constants of integration while the explicit form
of f corresponds to quadratic model. Solving Eq. (37) for
above solutions, we get

B,a = 0, Y (M) = χ4

χ3
.

Now, we insert symmetry generators, quadratic form of
f (G) model in Eq. (45) with B = χ1r

χ3
+ χ8, M = r2,

eb = (1 − h(r)/r)−1, a(r) = −k/r and obtain a non-linear
equation given by

2h(r)4χ7w({k(r(4r + k(−1 + 4r2))

+h(r)(k − 5r − 8kr2 + 12r3 + 4rh(r)

×(k − 3r)) + r2(1 − 12r2 + 12rh(r))h′(r))}
{r3(r − h(r))2}−1)2 − 8rh(r)3

×χ7w({k(r(4r + k(−1 + 4r2))

+h(r)(k − 5r − 8kr2 + 12r3 + 4(k − 3r)

×rh(r)) + r2(1 − 12r2 + 12rh(r))h′(r))}
{r3(r − h(r))2}−1)2 + 12r2h(r)2

×χ7w({k(r(4r + k(−1 + 4r2))

+h(r)(k − 5r − 8kr2 + 12r3 + 4(k − 3r)

×rh(r)) + r2(1 − 12r2 + 12rh(r))h′(r))}
{r3(r − h(r))2}−1)2 − 8r3h(r)

×χ7w({k(r(4r + k(−1 + 4r2))

+h(r)(k − 5r − 8kr2 + 12r3 + 4(k − 3r)

×rh(r)) + r2(1 − 12r2 + 12rh(r))h′(r))}
{r3(r − h(r))2}−1)2 + 2r4χ7w

({k(r(4r + k(−1 + 4r2))

+h(r)(k − 5r − 8kr2 + 12r3 + 4(k − 3r)rh(r))

+r2(1 − 12r2 + 12rh(r))h′(r))}{r3(r − h(r))2}−1)2
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Fig. 5 Evolution of quadratic f (G) model versus r for χ7 = −0.1, ρ0 = −1.5, k = 0.05 and w = −1

Fig. 6 Variation of the shape function versus r

Fig. 7 Evolution of energy bounds versus r for w = −1

+{−(k2 + 3kr

+24r2)h(r) + r(−4 + k2 + 4kr

+32r2 − r(k + 8r)h′(r))}{2r5}−1

+ρ0e
k(1+w)/2rwr12 = 0. (49)

The numerical solution of this equation leads to analyze
the behavior of viability of quadratic f (G) model, geometri-
cal properties of shape function, presence/absence of ordi-
nary and exotic matter graphically. In Fig. 5, we explore
the consistency of quadratic model with standard models of

modified GB gravity. In both plots, the positively decreas-
ing (left) and increasing (right) curves preserve the viability
constraints as fG > 0 and fGG > 0. In Fig. 6, we study the
geometry of WH constructed by quadratic f (G) model and
corresponding shape function. The left plot demonstrates the
asymptotically flat shape of WH as h/r → 0 when r → ∞.
In the right plot, the trajectory of h(r)− r locates WH throat
at r0 = 7 and at this point, the derivative of the shape func-
tion is found to be positive but greater than 1. This analysis
defines a horizon-free asymptotically flat WH whose throat
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Fig. 8 Evolution of effective NEC versus r for w = −1

is located at r0 = 7 and h(r0) = r0 in the background of
phantom energy (w = −1).

Now, we examine physical and traversable behavior of
WH via energy conditions for ordinary matter and effective
NEC, respectively. Figure 7 explores the nature of matter
variables. In both plots, the matter variables are found to be
increasing positively ensuring that the presence of ordinary
matter is confirmed as ρm ≥ 0 and ρm + pm ≥ 0. The behav-
ior of effective NEC versus r is shown in Fig. 8. The trajectory
of effective matter variables is found to be negative increas-
ing as r increases. This behavior indicates that at the throat,
the effective NEC is violated ensuring the presence of exotic
matter leading to traversable WH solution. In this regard, the
realistic horizon-free asymptotically flat WH solution admits
traversable behavior for quadratic f (G) model.

Case III: β = δ �= 0

In this case, we solve the system of over determined equations
(38)–(44) and get

α = φ1 + φ2e
−a, γ = M(φ3 − φ4), τ = φ5r + φ6,

f (G) = φ7e
φ7G+φ8 + φ9,

δ = φ3e
bT1(M)T2(G), β = φ3e

b/φ7T1(M)T2(G),

where φi ′s are arbitrary constants and the explicit form of
f defines exponential model of modifies GB gravity. Using
above solutions in Eq. (37), we have

B,a = 0, T1(M) = φ7e
φ9M , T2(G) = φ7e

−φ10G .

Now, we insert symmetry generators, exponential f (G)

model, B = φ1r+
φ8
φ3

, M = r2, eb = (1 − h(r)/r)−1 and
a(r) = −k/r in Eq. (45) which leads to the following non-
linear equation

e− k
2r + √

r/(r − h(r))

(
e
k(1+w)

2rw ρ0

(
− φ3ek/r

2w

+1

2
φ7φ9φ10 exp

{
r2 −

(
(r − h(r))2

×2

[(
k

(
r(4r + k(−1 + 4r2))

+h(r)(k − 5r − 8kr2 + 12r3 + 4(k − 3r)rh(r))

+r2(1 − 12r2 + 12rh(r))h′(r)
))

{r3(r − h(r))2}−1
])

r−6
}
(r − h(r)/r)

)

+
{

2r−5φ7φ9φ10e
φ1+r2

(−r + h(r))

[{
k

(
r(4r + k(−1 + 4r2)) + h(r)

(
k − 5r

−8kr2 + 12r3 + 4(k − 3r)rh(r)

)

+r2(1 − 12r2 + 12rh(r))h′(r)
)}

{r3

×(r − h(r))2}−1
]}

+
(

φ3e
k/r/2 −

{
φ7φ9φ10

exp

{
r2 −

(
2(r − h(r))2

[{
k

(
r

(
4r

+k(−1 + 4r2)

)

+h(r)(k − 5r − 8kr2 + 12r3 + 4(k − 3r)rh(r))

+r2
(

12rh

−12r2 − 1

)
h′(r)

)}
{r3(r − h(r))2}−1

])

r−6
}
r

}
{2(−r + h(r))}−1

)(
exp

{
φ1

+
(

2(r − h(r))2
[{

k(r(4r + k(−1 + 4r2)) + h(r)

(
k − 5r − 8kr2 + 12r3 + 4r

×(k − 3r)h(r)

)
+ r2(1 − 12r2 + 12rh(r))h′(r))

}

{r3(r − h(r))2}−1
])

r−6
}

−
{

2 exp

{
φ1

+
(

2(r − h(r))2
[{

k

(
r(4r + k(−1 + 4r2))

+h(r)

(
k − 5r − 8kr2

+12r3 + 4(k − 3r)rh(r)

)
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Fig. 9 Evolution of f (G) model versus r for φ1 = 0.01, φ7 = −1.25, φ9 = 1, φ10 = 1.5, k = 0.5, w = −1, and ρ0 = −1.5

Fig. 10 Variation of the shape function versus r

Fig. 11 Evolution of energy bounds versus r for w = −1

+r2(1 − 12r2 + 12rh(r))h′(r)
)}

(r3(r − h(r))2)−1
])

×r−6
}
(−r + h(r))2

[{
k

(
r(4r + k(−1 + 4r2))

+h(r)

(
k − 5r − 8kr2 + 12r3 + 4(k − 3r)rh(r)

)

+r2(1 − 12r2 + 12rh(r))h′(r)
)}

(r3(r − h(r))2)−1
]}

r−6 +
(

(k2 + 3kr + 24r2)h(r)

+r(4 − k2 − 4kr − 32r2 + r(k + 8r)h′(r))
)

×{2r5}−1
))

r2 = 0. (50)

The numerical solution of this equation leads to study via-
bility of exponential f (G) model and geometry of WH con-
figuration. We also establish graphical analysis to explore
the exotic/ordinary nature of matter that defines physically
acceptable and traversable WH configuration. In Fig. 9, we
discuss the viable behavior of exponential model of modi-
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Fig. 12 Evolution of effective NEC versus r for w = −1

fied GB gravity. In both plots, the positively decreasing (left)
and increasing (right) curves show that fG > 0 and fGG > 0
implying consistency with viable GB models. Figure 10 elab-
orates the geometry of numerically constructed WH. In the
left plot, positively decreasing curve follows asymptotically
flat shape as r → ∞. The right plot locates WH throat at
r0 = 12 and at this point, the derivative of the shape function
remains greater than 1. This analysis defines horizon-free
asymptotically flat WH that possesses a throat at r0 = 12
such that h(r0) = r0.

To explore the existence of physically viable and traversable
WH, we establish graphical analysis of ordinary as well as
exotic matter variables in Figs. 11 and 12. In plots of Fig. 11,
the trajectories are found to be positively increasing justify-
ing the existence of realistic WH supported by ordinary mat-
ter inside the throat. Figure 12 shows the traversable behav-
ior of WH due to violation of effective NEC that introduces
repulsive effects into the WH throat. In case of exponential
f (G) model, the realistic as well as traversable WH exists in
the background of accelerating cosmos.

5 Stability analysis

Here, we examine the stability of WH solutions through
Tolman–Oppenheimer–Volkoff (TOV) equation for linear,
quadratic and exponential f (G) models in the context of
accelerated (w = −1) as well as decelerated (w = 0.3)
expanding cosmos. For perfect fluid configuration, the radial
function of Bianchi identity (∇αT αβ = 0) characterizes TOV
equation as

a′

2
(pm + ρm) + dpm

dr
= 0. (51)

The divergence of stress–energy tensor with respect to modi-
fied terms and Eq. (51) leads to define modified TOV equation

given by

p′
e f f +Me f f (pef f +ρe f f )+ M ′

M

(
T c

11 − T c
22e

b

M

)
= 0, (52)

where pef f = T (c)
11 + pm , ρe f f = T (c)

00 + ρm and Me f f =
a′eb−a

2 defines effective gravitational mass. The expressions
for gravitational Fg and hydrostatic Fh forces can be written
as

Fh = d

dr
(T (c)

11 + pm),

Fg = Me f f
(
pef f + ρe f f

) + M ′

M

(
T c

11 − T c
22e

b

M

)
.

These dynamical forces significantly explore the sta-
ble/unstable state of static configuration. Here, we discuss
the stability/instability of static traversable and physically
viable WH solutions corresponding to linear, quadratic and
exponential f (G) models. The stable WH may exists if
these dynamical forces counterbalance each other effect, i.e.,
Fh + Fg = 0 or Fg=-Fh .

Figure 13 shows the behavior of gravitational and hydro-
static forces for both linear (left plot) as well as exponen-
tial (right plot) models in the context of accelerated cosmos
(w = −1). In the left plot, the trajectories corresponding to
hydrostatic and gravitational forces are found to be positively
decreasing leading to stable state of WH solution due to null
effect of these forces. The analysis of right plot indicates that
the stable state of WH solution can be achieved as gravita-
tional and hydrostatic forces are evolving positively but in
opposite direction and consequently, canceling the effects of
each other. In Fig. 14, we study the stable state of WHs for
quadratic GB model when universe experiences accelerated
phase of expansion (w = −1). This analysis indicates that
the horizon-free asymptotically flat traversable and physi-
cally viable WHs are stable against accelerated expanding
cosmos for both quadratic as well as exponential models of
f (G) gravity.

6 Final remarks

In Einstein’s gravity, the violation of NEC is the basic require-
ment for the existence of traversable WH. The violation of
NEC defines exotic nature of matter that should be mini-
mized for a physically viable WH. For modified theories, the
stress–energy tensor relative to ordinary matter fulfills energy
bounds ensuring the presence of a viable WH while the exis-
tence of exotic matter is confirmed by the effective matter
variables which do not obey energy bounds like effective
NEC. In this paper, we have used Noether symmetry tech-
nique to evaluate some exact solutions that helps to construct
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Fig. 13 Plots of Fh (blue) and Fg (red) versus r for f (G) = ξ1G + ξ2 (left) and f (G) = φ7eφ7G+φ8 + φ9 (right), w = −1

Fig. 14 Plots of Fg and Fh versus r for f (G) = χ7G2 + χ8G + χ1 with w = −1

static WHs in f (G) theory. We have discussed the presence of
exotic and normal matter in WHs through effective and ordi-
nary energy bounds. We have also examined stable/unstable
state of constructed WHs via modified TOV equation.

We have used the invariance condition to solve over deter-
mined system of equations and evaluated symmetry gener-
ator, related conserved quantities and three different f (G)

models such as linear, quadratic and exponential models.
In the context of these models, we have formulated WH
solutions in the background of accelerated expanding cos-
mos (w = −1) and analyzed the WH geometry for variable
red-shift function a(r) = −k/r . For linear f (G) model, we
have found horizon-free WH which is found to be asymptot-
ically flat in a very short interval of r . The throat of this
WH is located at r0 = 0.34 with h′(r0) < 1 implying
flaring-out condition is preserved. For both quadratic and
exponential models, the WH geometry is compatible with
Morris–Thorne’s suggested geometry, i.e., the finite red-shift
function introduces horizon-free (h(r) < r), asymptotically
flat WH as r → ∞ while flaring-out condition violates
(h(r0) = r0 but h′(r0) > 1) for both models. Using numer-
ical solution of shape function, the viability of new f (G)

models is examined graphically. The graphical interpreta-

tion indicates that the derivative of f (G) models are positive
ensuring viable state of these models.

A WH is traversable if there exists strong repulsive effects
or exotic matter near WH throat while physically viable
WH is defined by ordinary matter. The violation of effec-
tive NEC (pef f + ρe f f ≤ 0) confirms the presence of repul-
sive force inside the throat. The positivity of matter vari-
ables like ρm ≥ 0, ρm + pm ≥ 0, ρm − pm ≥ 0 and
ρm + 3pm ≥ 0 preserve consistency with energy conditions,
i.e., NEC, WEC, DEC and SEC relative to ordinary matter
and consequently, supports physically viable WH. For all for-
mulated f (G) models, the violation of effective NEC inside
WH throat confirms the presence of traversable WH while
fulfillment of ordinary bounds leads to physically viable WHs
in the background of accelerated expansion.

The stability/instability of these traversable and physi-
cally viable WHs is examined via modified TOV equation.
For linear f (G) model, the WH configuration surrounded by
accelerated expanding cosmos is found to be unstable due to
unbalanced state of hydrostatic and gravitational forces. In
case of quadratic and exponential models with w = −1, the
WH solutions preserves equilibrium state as the dynamical
forces counterbalance each other effect. Sharif and Nawazish
[28] have constructed traversable and realistic WH solution
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in f (R) gravity for constant as well as variable forms of red-
shift function. They have formulated exponential form of
f (R) and also considered a standard power-law f (R) mod-
els. The stability analysis of both models indicates that WH
solutions are stable when universe experiences decelerated
rate of expansion while in the presence of accelerated expan-
sion, these configurations become unstable. In the present
work, we have evaluated three viable f (G) models, i.e., lin-
ear, quadratic and exponential models that yield traversable
and physically viable WHs. For quadratic and exponential
models, these configurations are stable whereas in case of
linear model, this stability is disturbed in the presence of
phantom energy.
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