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Abstract Motivated by a recent report by Biwas and Bose
(Phys Rev D 99:104002, 2019) that the observations of
GW170817 to constrain the extent of pressure anisotropy
in neutron stars within Bower–Liang anisotropic model, we
systematically study the effects of anisotropic pressure on
properties of the neutron stars with hyperons. The equation
of state is calculated using the relativistic mean-field model
with a BSP parameter set to determine nucleonic coupling
constants and by using SU(6) and hyperon potential depths to
determine hyperonic coupling constants. We investigate three
models of anisotropic pressure known in literature namely
Bowers and Liang (Astrophys J 88:657, 1974), Horvat et
al. (Class Quant Grav 28:025009, 2011), and Cosenza et
al. (J Math Phys (NY) 22:118, 1981). The reliability of the
equation of state used is checked by comparing the param-
eters of the corresponding EOS to recent experimental data.
The mass–radius, moment of inertia, and tidal deformability
results of Bowers–Liang, Horvat et al., and Cosenza et al.
anisotropic models are compared to the corresponding recent
results extracted from the analysis of some NS observation
data. We have found that the radii predicted by anisotropic
NS are sensitive to the anisotropic model used and the results
obtained by using the model proposed by Horvat et al. with
anisotropic free parameter Υ ≈ − 1.15 are relative compat-
ible with all taken constraints.

1 Introduction

Neutron stars (NSs) are the perfect compact objects to study
the matter at high densities and strong-field gravity simulta-
neously. However, both of the matter and the gravity of NSs
still are not fully understood.
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There is tremendous progress related to NS properties
observations such as mass, radius, and tidal deformation have
been reported. Here we discuss shortly only some crucial
ones. The accurate measurements of massive pulsars [1–5]
provide maximum mass limit of NS around 2.0 M�. There
are also many studies reported the maximum mass of NSs
from analyzing data extracted from gravitational wave (GW)
events (see the recent review in Refs. [6,7], and the references
therein). Note that Lim and Holt [7] discussed the Bayesian
modeling of the nuclear equation of state (EOS) systemati-
cally, assuming a minimal model at high-density and neglect
the possibility of phase transition for NS tidal deforma-
bility and GW170817 by generating 300000 NS EOSs by
sampling from Bayesian posterior probability distributions.
The obtained tidal deformability and the radius range of the
canonical NS are consistent with observational constraints
from GW170817, but 30% of the EOS fail to generate 2.0 M�
maximum mass constraint. The results are also indicated that
improved microscopic constraints from chiral effective field
theory are necessary. The maximum mass of pulsar observed
provides an impact on the allowed stiffness of the EOS of an
NS. Other consequences of NS maximum mass have been
discussed in recent studies (see Ref. [6] and the references
therein). We also note that the authors of Ref. [6] concluded
that the predicted absolute maximum mass of NS is less than
2.4 M� independent to EOS. These results can pin down the
mass boundary between NSs and black holes. Accurately
measured NS radii are also important to constraint the EOS
of NSs. However, we still have challenges that come from
the systematic error to extract NS radii from observational
data [8]. However, it is interesting to note that the X-ray burst
from accreting NSs in low mass binary (LMXB) provides
possibilities to constrain the NS mass and radius simultane-
ously. It is shown in Ref. [6], several constraints of NSs radii
reported up to the recent years. If the radii constraint from
LMXB is compared to the one predicted by using EOS con-
strained by the nuclear laboratory data and the ones obtained
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by the majority of post-GW170817 analysis, the radius con-
straints of LMXB data are mostly smaller than those of the
nuclear laboratory data and from the post-GW170817 (Please
see the detail discussions in Ref. [6] and the references
therein).

The X-ray measurements of emission from the hot-
spots on the NS surface with NICER [9,10] can offer
information about the mass and radius of selected pulsars.
Recently, NICER reports mass and radius constraints for
its first target PSR J0030 + 0451 [11–13]. GW observa-
tions of coalescence NSs with LIGO and VIGO can mea-
sure the tidal deformability of NSs. This novel probe can
investigate a wide range of NS mass and the correspond-
ing central density [9,14–17]. Two GW signals from the
coalescence of binary NSs have been recently reported,
GW170817 [14,15], and GW190425 [17]. These results pro-
vide a stringent constraint to the NS EOS. Note also that
moment inertia is measured through pulsar timing as one
of the other future probes for NS properties. Moment iner-
tia measurements become crucial and attract much atten-
tion recently. Many works concerning the analysis of NS
moment of inertia and the NS crust properties have been
reported, e.g., [18–29]. Furthermore, some studies have
been performed by examining systematically the latest astro-
nomical measurements or and nuclear properties to extract
the accurate information of the properties of the EOS of
NSs [9,30,33,34].

As of today, there is no comprehensive description of
NS matter. The matter in an NS is usually considered as
an isotropic fluid because astrophysical observations so far
favor this choice [35]. However, NSs as compact objects
with a density larger than twice nuclear saturation density
and composed with many interacting particles have indeed
quite complex structures. Therefore, one can expect that the
appearance of unequal pressures or known as anisotropic
pressure in NSs matter, is natural. Many factors can cause
the appearance of anisotropic pressure. Due to the novel
properties of matter such as the presences of strong mag-
netic and electric fields, different kinds of phase transition,
superfluidity, boson condensations, anisotropic momentum
distribution in matter [35–39] and or due to the impact
of modified gravity [40–44]. The anisotropic pressure has
impacts on NS properties such as mass–radius relation, a
moment of inertia, tidal deformability, universal relation,
instability due to cracking or overturning, energy condi-
tions [35,37,38,45–51]. Moreover, there are also some ana-
lytically models to study anisotropic stars for examples one
can see in Refs. [35,52].

To describe NS core EOS theoretically, one uses non-
relativistic or relativistic models. There are hundreds of EOS
models are already proposed up to now. The relativistic
mean-field (RMF) belongs to the relativistic models. Note
that the authors of Ref. [53] analyzed 263 RMF param-

eter sets with different kinds. They have found only 34
RMF parameter sets that satisfy nuclear matter constraints.
Furthermore, in the case of isotropic NS without hyper-
ons, from 35, only 15 parameter sets predict NS maximum
mass around 2.0 M�. However, if hyperons and other exotic
particles are included, none of them satisfy the later con-
straint (See Ref. [54] and the references therein for details.).
The later is known in the literature as “hyperons puzzle”.
Note that BKA22 [55] and BSR12 [56] RMF parameter
sets are the ones that belong to 15 well-tested parameter
sets. The recent reports on the role of hyperons and other
exotics and how to deal with the “hyperon puzzle” can be
found, e.g., in Refs. [57–68] and also see the references
therein.

It is also important to note that the LIGO/Virgo col-
laboration recently reported the GW190814 observation of
the merger of a black hole of mass (22.2–24.3) M� and a
secondary massive compact object with mass (2.50–2.67)
M� [17]. It is already much discussions exist about the nature
the corresponding secondary compact object whether it is
black hole, neutron star or other exotic objects [17,69–75].
For standard static isotropic NS the mass around 2.6 M� is
impossible to reach except the NS rotates very fast [17,74].
Therefore, it is also interesting to check the role anisotropic
pressure of NS for reaching this extreme maximum mass
limit.

In this work, we study the properties of NS with hyperons
systematically, such as mass-radius relation, a moment of
inertia, and tidal deformability of predicted by three mod-
els of anisotropic pressure proposed by Bowers–Liang,
Horvat et al., and Cosenza et al. [76–80]. We use BSP
parameter set of RMF model [60,81]. The hyperon cou-
pling constant is determined by using the standard SU(6)
prescription and hyperon potential depths [82]. For the inner
and outer crusts, we use the crust EOS that proposed by
Miyatsu et al. [83]. The compatibility of the nuclear mat-
ter properties predicted by the BSP parameter is tested
by comparing them to other calculations and experimen-
tal and observations data. The corresponding NS mass–
radius relation, moment of inertia, and tidal deformabil-
ity results are confronted with the corresponding recent
extracted results from the combination of some observation
data in Refs. [1–4,9,15,17,18,20–22,30–32]. The aim is to
check whether the anisotropic pressure NSs with hyperons
compatible with the recent experimental and observational
data.

We organize the paper as follows: In Sect. 2, we briefly
discuss the model used to calculate the EOS of NSs. In Sect.
3, we discuss the anisotropic pressure and the effect in NS
moment of Inertia is discussed in Sect. 4. In Sect. 5, we dis-
cuss the effect of anisotropic pressure on the tidal deformabil-
ity of NS. Section 6 is devoted to numerical details. Finally,
we conclude in Sect. 7.
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2 Model for neutron star matter

In this section we briefly review the EOS model used in this
work.

We use relativistic mean field (RMF) model to describe
homogeneous matter of the NS core. The RMF Lagrangian
density can be expressed as [60]:

L = LB + LBM + LM + LL , (1)

where the free Lagrangian density for baryons (B = N , �,
Σ , Ξ ) is

LB =
∑

B

Ψ B[iγ μ∂μ − MB]ΨB, (2)

with MB is baryon mass and the Lagrangian density for
meson–baryon couplings is given by

LBM =
∑

B

Ψ B[gσ Bσ − γμgωBωμ

−1

2
γμgρBτB · ρμ − γμgφBφμ]ΨB, (3)

where the non-strange mesons which are coupled to all
baryons are σ , ω, ρ. However, the hidden-strangeness meson
φ is only coupled to hyperons (H = �, Σ , Ξ ). The free and
self interaction meson Lagrangian density can be expressed
as

LM = 1

2
(∂μσ∂μσ − m2

σ σ 2) + 1

2
(∂μσ ∗∂μσ ∗ − m2

σ ∗σ ∗2)

−1

4
ωμνω

μν + 1

2
m2

ωωμωμ − 1

4
φμνφ

μν + 1

2
m2

φφμφμ

−1

4
ρμνρ

μν + 1

2
m2

ρρμρμ + LNL
M , (4)

the ωμν , φμν and ρμν are meson tensor fields of the ω, φ

and ρ mesons. They are be defined as ωμν = ∂μων − ∂νωμ,
φμν = ∂μφν −∂νφμ, and ρμν = ∂μρν −∂νρμ. The explicit
form of Lagrangian density for meson self interactions LNL

M
can be written as

LNL
M = −κ3gσNm2

σ

6mN
σ 3 − κ4g2

σNm
2
σ

24m2
N

σ 4 + ζ0g2
ωN

24
(ωμωμ)

2

+η1gσNm2
ω

2mN
σωμωμ + η2g2

σNm
2
ω

4m2
N

σ 2ωμωμ

+ηρgσNm2
ρ

2mN
σρμ · ρμ + η1ρg2

σNm
2
ρ

4m2
N

σ 2ρμ · ρμ

+η2ρg2
ωNm

2
ρ

4m2
N

ωμωμρμ · ρμ. (5)

Eq. (5) includes contribution from the standard RMF non-
linear self-interaction for σ and ω mesons as well as addi-
tional cross interaction terms for σ , ω, and ρ mesons. For

the nucleon sector, we use the BSP parameter set. The value
of nucleon–meson coupling constants and the parameters of
the Lagrangian density for mesons self-interactions of the
BSP parameter set can be seen in Refs. [60,81]. Note that
the finite nuclei, pure neutron matter (PNM), and symmet-
ric nuclear matter (SNM) properties predicted by the BSP
parameter set quite compatible with experimental and other
theoretical results (See more details about the BSP predic-
tions in Refs. [60,81]). Here we show the nuclear-matter and
core-crust transition properties predicted by BSP parameter
set due to their relations to NS properties in Table 1, Figs. 1,
and 2. We also compare the results with those from other
works. Note that the most crucial SNM property is the bind-
ing energy at saturation density (E/N ). Other nuclear-matter
isoscalar properties at saturation density can be derived from
the binding energy E(ρ) as follows:

K0 = 9ρ2
0
d2E(ρ)

dρ2 |ρ=ρ0 ,

J0 = 27ρ3
0
d3E(ρ)

dρ3 |ρ=ρ0 , (6)

in the isovector sector, the role of symmetry energy at satura-
tion density J is similar to that of the binding energy. Other
nuclear-matter isovector properties at saturation density can
be derived from Esym(ρ) and are given by the following:

L = 3ρ0
dEsym(ρ)

dρ
|ρ=ρ0 ,

Ksym = 9ρ2
0
d2Esym(ρ)

d2ρ
|ρ=ρ0 , (7)

Table 1 shows the parameters of nuclear matter at satu-
ration predicted by the BSP parameter set. The results are
quite compatible with the ones predicted by BKA22 [55]
and BSR12 [56] as well as from the latest constraints of
nuclear matter. We need to note that constraining nuclear
matter parameters with GW 170817 [93] yields the incom-
pressibility K0, its slope M0 which is defined as J0 + 12K0,
and the curvature of symmetry energy Ksym at nuclear satu-
ration density to be (81 ≤ K0 ≤ 362) MeV, (1556 ≤ M0 ≤
4971) MeV, and (− 259 ≤ Ksym ≤ 32) MeV. Here we use
a relativistic random phase approximation to calculate the
core-crust transition density ρt and the corresponding pres-
sure Pt [94,95]. It is known that ρt and Pt are the key factors
determining the core-crust properties of NSs. The core-crust
transition properties significantly affected by the slope of
symmetry energy L . The consistent or unified treatment of
the EOS of crust and core, and the method used to calcu-
late ρt also affect core-crust properties [21,23–28]. The most
recent comprehensive study about the relation of nuclear mat-
ter properties with ρt and Pt can be found in Ref. [21].

Furthermore, it can be seen in Figs. 1 and 2 that the BSP
parameter set yields compatible SNM and PNM EOSs with
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Table 1 Nuclear-matter
properties at the saturation
density ρ0 and NS core-crust
transition properties predicted
by BSP [60,81], BKA22 [55],
and BSR12 [56] parameter sets,
respectively. The binding energy
E , incompressibility coefficient
for SNM K0, symmetry energy
Esym, and other quantities are
defined in Eqs. (6) and (7)

BSP BKA22 BSR12 Other works References

E/N (MeV) −16.0 −15.9 −16.1 − 15.9 ± 0.4 [84]

K0 (MeV) 230.97 228.2 235.1 230 ± 40 [85]

Esym (MeV) 28.86 33.4 34.0 31.7 ± 3.2 [86–88]

L (MeV) 50.14 79.4 78.3 58.7 ± 28.1 [86–88]

J0 (MeV) −341.38 −273.7 −292.8 − 800 ≤ J0 ≤ 400 [89–91]

Ksym (MeV) 9.4 −8.6 −43.4 − 400 ≤ Ksym ≤ 100 [89–91]

Pt (MeV fm−3) 0.29 0.22 0.33 0.339 ± 0.115 [92]

ρt (fm−3) 0.087 0.058 0.063 0.072 ± 0.011 [92]
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Fig. 1 a Pressure as a function of the ratio of the nucleon to nuclear
saturation densities. b Energy per particle as a function of the density
around the saturation density for SNM using BSP, BSR12, and BKA22
parameter sets. The Grey shaded areas on a is the results extracted
from heavy-ion experimental data [96], whereas the yellow shaded area
in b is the constraint imposed by the SNM binding energy near twice
the saturation density extracted from the FOPI experimental data [97]
and the boxed area around saturation density in b is the acceptable
range of the SNM binding energy around the saturation density which
is extracted from the Bethe–Weizäcker mass formula. For comparison,
we also show the SNM binding energy at the saturation density of
Refs. [84,98]

heavy-ion experimental data [96] and by the SNM binding
energy near twice the saturation density extracted from the
FOPI experimental data [97]. Moreover, if we compare them
with the ones predicted by BKA22 [55] and BSR12 [56]
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Fig. 2 Similar to Fig. 1 but for PNM. The shaded areas in a are the
results extracted from heavy-ion experimental data [96], while the yel-
low shaded area in b is the theoretical binding energy for PNM at
low densities obtained from the chiral effective field theory calcula-
tions [102,103]

parameter sets, the SNM and PNM EOS stiffnesses predicted
by BSP parameter set are relatively similar. Only at relatively
high density (ρN > 4ρ0), SNM EOS of BSP becomes stiffer
than those of BKA22 and BSR12. We also compare the bind-
ing energy predicted by the BSP parameter with the recent
results obtained by the authors of Refs. [84,98]. It is also evi-
dent that the BSP result is also compatible with their results.
Furthermore, in SNM binding energy constraint in Fig. 1 we
also use SNM binding energy around the saturation density
data, which is extracted from simple Bethe–Weizäcker mass
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formula. This constraint can also be extracted from a bet-
ter model, such as a droplet or liquid-drop model [99,100].
The recent discussion of the relation between the droplet
parameter with EOS can be found in Ref. [101]. The binding
energy for PNM predicted by BSP at low and intermediate
densities is shown in the lower panel of Fig. 2. It can be
seen that the BSP result is more compatible with the ones
predicted by the current chiral many-body results [102,103]
than those predicted by BKA22 and BSR12 parameter sets.
Detail discussions about the progress and current state of the
art of chiral many-body perturbation theory (MBPT) can be
found e.g., in Refs. [98,103–106]. It is important to note that
theoretical uncertainties of nuclear matter are significantly
reduced when going to higher order in chiral MBPT, and up
to next-to-next-to-leading order, the uncertainties are already
small [106]. Therefore, chiral MBPT can be used to improve
the isovector sector predictions of RMF models by fitting the
isovector parameters of RMF models using PNS EOS pre-
dicted by chiral MBPT results. Note that BSR12 and BKA22
parameter sets are ones of the small number of RMF param-
eter sets that satisfy all adapted nuclear matter experimental
constraints performed in Ref. [53]. Therefore, both param-
eter sets have relatively acceptable finite nuclei and nuclear
matter predictions. It can be seen here that the quality of
nuclear matter prediction of the BSP parameter set [60,81]
is not too far from those parameter sets. Therefore, we use
the BSP parameter set as a representative RMF parameter
set for our study here. Note that a recent review of nuclear
matter properties related to NS properties can be found in
Ref. [6] and see also a nice discussion of more consistent
nuclear matter calculations in Ref. [7].

Even though many progress up to now, in the strange sec-
tors, the corresponding EOS is still not too certain due to the
uncertainty in hyperons and other exotic particle coupling
constants. In general, hyperons and other exotic particles
tend to soften the corresponding EOS of NS core. There-
fore, in the case NS with hyperons and other exotics, the
predicted maximum mass is always smaller than that with-
out hyperons and other exotics. This situation is known in
litterateur as “Hyperon puzzle”. Here, we do not go deep
into the hyperon puzzle discussion. We take the most con-
servative or standard way to determine the hyperon coupling
constants, i.e., by using SU(6) prescription and experimental
value of potential depths at nuclear matter saturation density
and neglect the contribution of the exotics. Other novel pre-
scriptions to determine hyperon coupling constants tend to
stiffer the corresponding EOS or milder the role of hyperons.

Here to determine the vector part of hyperons coupling
constant gωH and gφH , we consider standard prescription
based on SU(6) symmetry [82]. The hyperon coupling con-
stant relations are

1

3
gωN = 1

2
gω� = 1

2
gωΣ = gωΞ ,

gρN = 1

2
gρΣ = gρΞ , gρ� = 0,

2gφ� = 2gφΣ = gφΞ = 2
√

2

3
gωN , gφN = 0. (8)

For the given values of gωH , the scalar hyperons cou-
pling constants gσH are obtained using the potential depth
of hyperons in the symmetric nuclear matter which is evalu-
ated at the symmetric nuclear matter saturation density ρ0 as,

U (N )
H (ρ0) = −gσHσ(ρ0) + gωHω(ρ0). (9)

The values of the experimentally potential depth U (N )
H at ρ0

are taken from Ref. [82] :

U (N )
� = −28 MeV, U (N )

Σ = +30 MeV

and U (N )
Ξ = −18 MeV, (10)

For lepton (L=e and μ), the free Lagrangian density is
employed. The corresponding Lagrangian density takes fol-
lowing form

LL =
∑

L

Ψ L [iγ μ∂μ − ML ]ΨL , (11)

where ML is lepton mass.
To describe the NS crusts’ inhomogeneous matter, we

use the inner and outer crust EOSs based on the Hartree–
Fock Thomas–Fermi model used by Miyatsu et al. [83]. The
NS matter is assumed in β-stability. Therefore, the poten-
tial chemical balance, charge neutrality, and baryon density
conservation conditions can be used to determine the compo-
sition of the constituents in NS. Note that the main impacts
of crust EOSs are in the radius of low mass NS and the crust
properties. It is reported that the uncertainties in NS radii and
crust properties due to the uncertainties of EOS used can be
as large as 30 % for the NS crust thickness and 4 % for the
NS radius [26]. Consequently, the unified description of core
and inner crust is essential to pin down the uncertainties in
crust properties. Baym, Bethe, and Pethick (BBP) [107] and
by Baym, Pethick, and Sutherland (BPS) [108], respectively
did the benchmark works on the calculation of inner and
outer crust EOSs. Both EOSs based on the droplet model
to generate the corresponding nuclear properties. The sys-
tematic study of outer crust for updating BPS EOS by using
current nuclear data and relativistic and non-relativistic the-
oretical nuclear models and also considering nuclear pairing
and deformation can be found in Ref. [109]. Please see also
the references therein for detailed developments. Compared
to the BPS, the impacts of using more recent data and the
different theoretical models are the order of a few percent for
the outer crust thicknesses [110]. Furthermore, it is reported
that the location of the drip line and the sequence of nuclei
in the outer crust of cold nonaccreting neutron stars seem
to be rather robust predictions, being nearly insensitive to
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the parameter set, to the approximation scheme, and even
to the triaxial deformations for most of the state-of-the-art
nuclear models [111]. Note that the recent report of the sta-
tistical uncertainties impact on the composition of NS outer
crust has been discussed in Ref. [112] while the new ana-
lytical determination of the structure of the outer crust of a
cold nonaccreted neutron star can be found in Ref. [113].
The inner crust EOS is less certain than the outer crust EOS.
The inner EOS is rather sensitive to the nuclear model and
the method to calculate the EOS while it is shown that the
crucial role of inner crust EOS on the crust thickness. Please
see the detail discussions in Refs. [26,114–117]. For exam-
ples, in the case of 1. M� NS, the unified core-crust EOS
for RMF NL3 parameter set yield R=14.547 and ΔRcrust

1.956, while if we use NL3 for core and BBP for inner crust
EOS, R=14.870 and ΔRcrust 2.230, It means the difference
in R is about 2 % while ΔRcrust is about 12 %. The differ-
ences of radius and crust thickness results for other RMF
parameter sets are not exactly the same compared to those
of NL3, but the values are around the same order as those of
NL3. Note, in general, a unified core-crust model predicts a
smaller radius and crust thickness than those with BBP inner
crust EOS (See table. IV in Ref. [115] for details). It can be
seen in Fig. 7 of Ref. [83] the outer crust EOS of Miyatsu is
coincide with the one of BPS and has a tiny difference with
the one of BBP in the region of near the core-crust transition
region. Consequently, the difference in radius between the
mass–radius results calculated using the same core EOS but
different crust EOSs, i.e., Miyatsu EOS and BSP+BBP EOS,
appears at low mass. In general, for each NS mass, Miyatsu
EOS yields a smaller radius than that of BSP+BBP with a
difference of around 1 % (see Fig. 8 of Ref. [83] and the
corresponding discussions). For crust thickness, the trend is
similar, Miyatsu EOS yields smaller crust thickness than that
of BSP+BBP with the difference around 10 % (see Fig. 10
of Ref. [83] and the corresponding discussions). Therefore,
we could estimate roughly that for a particular model of core
EOS, the differences in radius and crust thickness between
the EOS predicted by the unified core-crust model and the
one used in this work in average could be less than 1 % and
10 %, respectively.

The NS EOS is presented by (a) pressure as a function of
the ratio of density to nuclear matter saturation density and
(b) energy density as a function of pressure for the cases with
and without hyperons predicted by BSP, is depicted in Fig.
3. For comparison, we also show NS EOS without hyperon
predicted by the BKA22 parameter set. It can be seen that the
Hyperons start to appear in P ≈ 48 MeVfm−3 i.e. P > P(3
ρnuc). It can be seen in panel (a) of Fig. 3 that the uncertainty
due to the role of hyperons are larger in the region P > 48
MeVfm−3 or ρ > 3ρnuc than that due to the difference RMF
model used as long as the corresponding RMF parameter sets
compatible with nuclear matter experimental data. Note that
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Fig. 3 EOS of NSs with and without hyperons. a Pressure as a func-
tion of the ratio of density to saturation density and b energy density
as a function of pressure. For comparison, some NS pressures con-
straints are given. First, from GW170817 [15], second, from recent non-
parametric analysis [9] while the third is the constraint from the joint
of PSR J0030+0451, GW170817, and the nuclear data analysis [30].
The horizontal line in a and the vertical line in b are a marker P ≈ 48
MeVfm−3 when the hyperons start to appear

NS pressure constraint P(2 ρnuc) is taken from GW170817
data analysis from Ref. [15]. Recent non-parametric analy-
sis [9] provides constraints for P(ρnuc), P(2 ρnuc), and P(6
ρnuc). We also take P(2 ρnuc) constraint from the joint of
PSR J0030+0451, GW170817, and the nuclear data analysis
from Ref. [30]. Rather detailed discussion of the constraints
obtained of non-parametric analysis will provide in Sect. 6.
It can be seen that the constraints from Refs. [9,15,30] at
P(2 ρnuc) are consistent each other. It can be seen in Fig. 3
that the corresponding EOS is quite compatible to the ones
of Refs. [9,15,30] and it seems that the P(6 ρnuc) results of
Ref. [9] tends to favor EOS without hyperons or at least with
hyperons but only with a small number of hyperons existed
in NSs.

3 Anisotropic pressure models

The local pressure anisotropy means that the radial pressure
differs from the tangential pressure. Note that the difference

123



Eur. Phys. J. C (2020) 80 :769 Page 7 of 17 769

between radial and tangential pressure σ generates an addi-
tional force in a standard isotropic Tolman–Oppenheimer–
Volkoff (TOV) equation. This force can be directed outward
or inward of the star center, depending on the sign of σ . The
strength and the distribution of this force depend on the σ

model used [37]. The discussion-based on anisotropic pres-
sure and the physical conditions for anisotropic stars can be
consulted in Refs. [37,38], and further details can be seen
in an anisotropic pressure review paper [36]. In this work,
we will examine the impacts on NS properties of the three
forms of the local anisotropic pressure parameter σ model
existed in literature. The anisotropic term σ of Bowers and
Liang [76] denoted here by σBL , while the σ of Horvat et al.
[77] denoted here by σDY , and the σ of Cosenza et al. [78]
denoted here by σHB . The explicit forms of the σ of these
models are [76–80]

σBL ≡ −λBLGεr2

3
(1 + 3p

ε
)

(1 + p
ε
)

(1 − 2MG
r )

, (12)

σDY ≡ Υ (
2MG

r
)p, (13)

σHB ≡ − r

2

(1 − h)

h
(
dp

dr
), (14)

respectively. Free parameters λBL , Υ , and h are defined as
the strength of anisotropic terms of the Bowers and Liang
(BL), Horvat (DY), and Cosenza (HB) models, respectively.

We need to note that the BH model was constructed by
using the following assumptions: the σBL should vanish
quadratically at the center, depend non-linearly on p. There-
fore, the σBL is gravitationally induced. Furthermore, it was
explicitly constructed to solve the modified TOV equation
analytically for an incompressible anisotropic star with ε con-
stant [76]. The σBL becomes discontinuous at the surface if
the energy density is also discontinuous. The DY model [77]
is constructed, such that the σDY vanishes in the center.

Furthermore, σDY is continuous at the surface even if
the tangential pressure vanishes at low energy densities.
The heuristic procedure obtains the HB model [78]. The
heuristic procedure has the purpose of obtaining solutions
for anisotropic matter from known solutions for isotropic
matter. More detailed discussions about the heuristic pro-
cedure to obtain the HB model can be seen in Ref. [78].
Different from the cases of BL and DY models, σHB of
HB is not zero in the non-relativistic limit of the hydro-
static equilibrium equation. We also need to note that the
slow rotating NS within anisotropic pressure using BL and
DY models of pressure anisotropy also discuss in Ref. [45].
Note that it is reported [46] that the gravitational wave (GW)
and electromagnetic observations of GW can constrain the
extent of pressure anisotropy in neutron star without hyper-
ons within BL model. The study suggested that certain EOSs
that are ruled out by GW 170817 data, under isotropic pres-

sure assumption, becomes viable, and the inference radius
by GW 170817 data can rule out certain EOSs even for high
anisotropic pressure.

In Figs. 4 and 5, we show the profiles of the constituent
composition in NS with M=1.4 M� and M=2.0 M� for a cer-
tain free parameter value of each anisotropic pressure model.
Here we can see the impact of pressure anisotropy on the
composition of particles in NSs. The free parameter value
of each model is chosen in order, and the corresponding can
reproduce a similar value of maximum mass. It is obvious
for M=1.4 M� that all anisotropic models the hyperons have
not yet appeared in that NS. The latter fact is quite contrast-
ing to what happens in the isotropic model. For all models,
the fractions of protons, neutrons, electrons, and muons d
not show significant differences. While in the case of M=2.0
M�, �, Σ−, and Ξ− have already appeared in the core of
NS with anisotropic pressure. The hyperons are existed up
around R=8 km. The fractions of all constituents in M=2.0
M� case also does not significantly affect by the difference
in the anisotropic model used.

Figure 6 shows the NS mass and radius as a function cen-
ter pressure of NS for all anisotropic pressure models used.
In general, the role of anisotropic pressure is for increasing
or decreasing NS mass and radius. However, the increas-
ing radius depends significantly on the anisotropic model,
while the trend of increasing mass is almost independent of
the anisotropic model used. We can see that the DY model
can yield a more easily relatively short NS radius com-
pared to ones of other anisotropic models. In all models that
anisotropic NSs with the mass around M � (1.6–1.7) M�,
hyperons do not yet play a role. It means that in the region
P � 48 MeVfm−3, the trend of the mass and radius pro-
files is purely determined by the role of anisotropic pressure.
However, for the ones in the region P � 48 MeVfm−3, it is
also influenced by hyperons’ role. In consequence that the
trend of radius profiles in both regions are different and the
role of NS EOS for region with M � (1.6–1.7) M� is relative
more certain than that of M � (1.6–1.7) M�.

4 Slow rotating neutron stars

In this section, the main properties for slow rotating NS with
anisotropic matter pressure are briefly discussed.

The equilibrium solution for a rotating star is obtained by
solving Einstein equationGμν = 8πGTμν . The explicit form
of the components of Gμν is derived from the line element
as follow

ds2 = −e2νdt2 + e2λdr + r2(dθ2 + sin2θ dφ2)

−2ω(r) r2 sin2 θ dt dφ. (15)
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Fig. 4 Impact of anisotropic
pressure on constituent
composition profiles for 1.4 M�
NS with hyperons. a For DY
anisotropic model, b for the
isotropic case, c for BL
anisotropic model, and d for HB
anisotropic model
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ω(r) ≡ (dφ/dt)Z AMO , is the Lenze–Thirring angular veloc-
ity of a zero momentum angular momentum (ZAMO). It
means ω(r) accounts for the frame-dragging effect. Note that
if � is the angular velocity of a uniform rotating NS, and if �k

is Kepler angular velocity, the slow rotating approximation
means �/�k << 1. Therefore, the line element in Eq. (15)
is only correct up to first order �, and the NS retains its
spherical geometry since the centrifugal deformation is con-
sidered in order �2 [118]. The matter stress–energy tensor
with anisotropic pressure can be written as [76,79,80]:

Tμν = εuμuν + pkμkν + q[gμν + uμuν − kμkν], (16)

where gμν is the space–time metric used, uμ is the fluid 4-
velocity, ε is the total energy density, kμ is the unit radial
vector orthogonal to uμ. Therefore, uμkμ is equal to zero. At
the center of symmetry, the anisotropic pressure must vanish
since here, kμ is no longer defined. Note that gμν + uμuν −
kμkν is the projection tensor onto the 2-surface orthogonal to
kμ and uμ. The anisotropic pressure parameter is defined as
σ ≡ p−q. If we set σ=0, all expressions below correspond to
one of the isotropic stars. Following the standard procedure,
we can obtain three first-order ordinary differential equations
from the diagonal componets of Einstein field equation as:

dM

dr
= 4πεr2,

dp

dr
= −G

εM

r2

(
1 + p

ε

) (1 + 4πr3 p
M )

(1 − 2GM
r )

− 2σ

r
, (17)

and

dν

dr
= G

M + 4πr3 p

r(r − 2GM)
. (18)

Given pressure of the NS center pc and the corresponding
energy density εc, as well as center mass Mc ≈ 0 and radius
rc ≈ 0. Both equations in Eq. (17) are integrated numeri-
cally outwards using Runge–Kutta method from the center
rc until the integration reaches the surface of NS defined by
p(R)=0. The mass of NS is simply m(R)=M . Different from
the ones of Eq. (17) where the mass and pressure values at rc
are given, for the differential equation in Eq. (18), the given
boundary condition is ν value at R i.e., eν(R) = 1

2 (1− 2GM
R ).

Therefore, to solve this differential equation we simply guess
some particular value of ν at rc and repeat the integration sev-
eral times until the ν value at R fulfills the required boundary
value of ν at R. And we also have one second order ordinary
differential equation for ω̄ from tφ component of Einstein
field equation for the matric in Eq. 15 as

1

r4

d

dr
(r4 J ω̄) + 4

r4

d J

dr
(1 + σ

ε + p
)ω̄ = 0, (19)

where

J ≡ e−ν

(
1 − 2GM

r

)1/2

, (20)
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Fig. 5 Impact of anisotropic pressure on constituent composition pro-
files for 2 M� NS with hyperons. a For HB anisotropic model, b for
DY anisotropic model, and c for BL anisotropic model

with

ω̄(r) ≡ � − ω(r). (21)

Note that by using Eq. (19) and the fact that around R, J ≈ 1
and dω̄

dr ≈ 6GI�
R4 , where I is inertia moment than we can

write the inertia moment in an integral representation as

I = 8π

3

∫ R

rc

r5 J ω̃

r − 2GM
(ε + p)

[
1 + σ

ε + p

]
dr, (22)
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Fig. 6 Impact of anisotropic pressure for all models used on a radius
and b mass profiles of NS with hyperons as a function of NS central
pressure. The Vertical line in Pc=48 MeV fm−3 is a marker when the
hyperons start to appear

where ω̃ = ω̄/�. Instead, solve integral equation Eq. (22),
we also can obtain the inertia moment directly from Eq. (19)
by transforming this second-order differential into two first-
order differential equations such as

dω̃

dr
= 6

r4 e
ν

(
1 − 2GM

r

)−1/2

κ̃

d κ̃

dr
= 8πG

3

r4e−ν(ε + p)
(
1 − 2GM

r

)1/2

(
1 + σ

ε + p

)
ω̃, (23)

with boundary conditions:

ω̃(R) = 1 − 2GR

R3 ,

κ̃(R) = GI. (24)

To solve equations in Eq. (23), we start by defining trial
boundary conditions in the center ω̃T (rc) and κ̃T (rc) and inte-
grate both equations outwards using Runge–Kutta method
from the center of NS until R, respectively. Then we obtain
ω̃T (r) and κ̃T (r). Because the Eq. (19) is scale invari-
ant then we can define that ω̃(r) = ζ ω̃T (r) and κ̃(r) =
ζ κ̃T (r), respectively. Therefore, form Eq. (24), we can obtain

ζ = 1/(ω̃T (R) + 2 κ̃T (R)

R3 ) and the inertia moment is simply

123



769 Page 10 of 17 Eur. Phys. J. C (2020) 80 :769

I = κ̃(r)
G . The differential equation form is more efficient in

calculation than that of integration. Therefore, we use it in
this work. Note that for NS with the masses greater than 1M�
the moment of inertia can be approximated very well [18,19]
as

I ≈ (0.237 ± 0.008)MR2

×
[

1 + 4.2
M km

M� R
+ 90(

M km

M� R
)
4]

. (25)

We have checked that our moment inertia numerical calcu-
lation results are entirely consistent with that of the approx-
imation in Eq. (25).

5 Tidal deformability

In this section, the tidal deformability for NS with an-
isotropic matter pressure is briefly discussed.

The presence of external gravitation tidal field
(
εi j

)
causes

NS deformed. The deformability of NS can be observed from
gravitation quadrupole moment

(
Qi j

)
. The relation between

the external gravitational tidal field with the quadrupole
is [119]

Qi j = −λεi j , (26)

where the “inertia of deformation” λ is known as tidal
deformability parameter. λ can be expressed as

λ = 2

3
k2R

5, (27)

where k2 is electric-tidal Love number. A valuable property
which can be extracted from GW170817 data is dimension-
less tidal deformability � which is defined as [120]

� = 2k2

3C5
, (28)

where C = 2GM
R is a compactness of NS.

To calculate k2, we start from the perturbed line ele-
ment. The corresponding line element to induce the tidal
deformability[121]. The perturbed metric can be expressed
as

ds2 = −e2ν [1 + H (r)Y20 (θ, φ)] dt2

+e2λ [1 − H (r) Y20 (θ, φ)] dr2

+r2 [1 + K (r) Y20 (θ, φ)] dθ2

+r2 sin2 θ [1 + K (r)Y20 (θ, φ)] dφ2, (29)

where Y20 (θ, φ) is spherical harmonics function with l = 2
and m = 0. From perturbed stress–energy–momentum ten-
sor, we obtain the following relations: δT t

t = −δε = − dε
dp δp,

δT r
r = δp, and δT θ

θ = δT φ
φ = δq =

(
1 − dσ

dp

)
δp.

From Eq. (29), we obtain perturbed Einstein equation(
δGμ

ν = 8πδTμ
ν

)
. From δGr

θ = 0, we obtain equations

K ′ (r) = −H ′ (r) − H (r) ν′ (r) , (30)

K ′′ (r) = −H ′′ (r) − H ′ (r) ν′ (r) − H (r) ν′′ (r) . (31)

By inserting Eq. (30) and Eq. (31) into δGt
t − δGr

r =
8π

(
δT t

t − δT r
r

)
, we obtain

H ′′ (r) + AH ′ (r) + BH (r) = 0, (32)

where

A = 2

r
+ e2λ

(
2M

r2 + 4πr (p − ε)

)
, (33)

B = e2λ

⎛

⎝− 6

r2 +
4π (p + ε)

(
1 + dε

dp

)

1 − dσ
dp

+ 4π (4ε + 8p)

⎞

⎠

+16πσe2λ − (
ν′)2

. (34)

Note that we obtain almost exactly the same result as the
one of Ref. [46] except the term 16πσe2λ in Eq. (34) is not
present in their result. However, we agree well with the one
obtained in Ref. [122]. If we set y ≡ r H ′(r)

H(r) , then we obtain
a first order differential equation that is

r y′ + y2 + yF + r2Q = 0, (35)

where

F = r − 4πr3 (ε − p)

r − 2M
, (36)

Q =
4πr

[
4ε + 8P + (ε+P)

[
1+ dε

dP

]

1− dσ
dP

+ 4σ

]

r − 2m

−4

[
m + 4πr3P

r2
(
1 − 2m

r

)
]2

. (37)

After solving Eq. (35) and TOV equations simultaneously
with Runge Kutta method where the initial value of y is y(0)

= 2. We can calculate k2 using the following equation

k2 = 8

5
(1 − 2C)2 C5 [2C (y − 1) − y + 2] /X (38)

with

X = 2C
[
4 (y + 1)C4 + (6y − 4)C3

]

+2C
[
(26 − 22y)C2 + 3 (5y − 8)C − 3y + 6

]

−3 (1 − 2C)2 (2C (y − 1) − y + 2) log

(
1

1 − 2C

)
, (39)
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Here y = y(R). Finally, we can obtain � from k2 as an impor-
tant property that can be compared to the one predicted by
GW 170817 and GW190425 data.

6 Numerical details

To this end, we have discussed in this work that the EOS as
the input to obtain the properties of NSs is restricted by two
uncertainties at high densities, i.e., the due RMF parameter
set used and due to the uncertainty of hyperon coupling con-
stants. The impact of the first one on NS’s global properties
is not too significant as long as we use the parameter set with
acceptable nuclear matter predictions. However, the second
one could provide an impact on NS properties prediction.
The following fact leads to the uncertainty of the value of the
free parameter of the anisotropic model obtained, consistent
with the selected constraints. Therefore, we might not take
too seriously the exact value of the obtained free parameter.
However, the estimation value of the free parameter of the
anisotropic model obtained is in order. It means we still can
check which anisotropic pressure model that more compati-
ble with observations of NSs.

In mass–radius constraints, we take the recent accurate
measured of NS mass of J0740+6620 to constraint the maxi-
mum mass and also the mass of J1614−2230 with lower mass
and lower error-bar for comparison [1–4] where the corre-
sponding masses of both pulsars are M = 2.140.10

0.09 M� and M
= 1.9280.0017

0.0017 M�, respectively. Note that another accurate
measure mass of massive NS is J0348+0432 is reported in
Ref. [5], whose the mass is M = 2.010.04

0.04 M�. The correspond-
ing mass value is in between the masses of J1614−2230
and J0740+6620. Compared to the NSs mass, the measure-
ments of the radius of NSs are less precise. The recent review
about the status of observation or measurement masses and
radii of NSs and the corresponding constraints with a vari-
ety basis, including from observation from GW170817, can
be seen, e.g., in Refs. [6,8], and please see also the ref-
erences therein for further discussion related to the methods
used to extract the radius constraints. To constrain the canon-
ical mass–radius, we use the constraints from the recent non-
parametric study from Landry et al. [9]. Note that the authors
of Ref. [9] used non-parametric EOS representation method
proposed in Refs. [123,124] to obtain their constraints based
on three classes of astronomical observations, i.e.,

1. The masses of pulsars J1614−2230, J0740+6620, and
J0348+0432,

2. Data from GW 170817 and GW190425,
3. Data mass and radius of J0030+0451 from NICER.

For comparison, we also use the radius of canonical
NS constraint from joint analysis of PSR J0030+0451,

GW170817, and the nuclear data from Ref. [30]. It can be
seen that both canonical mass constraints are consistent with
each other, but the one of Ref. [30] is more restricted. Note
that both canonical mass–radius constraints are also compat-
ible with the ones obtained from systematically study using
the GW170817 basis in Refs. [33]. Note there is also inter-
esting finding reported in Ref. [22] about the NS masses and
radii results, which are inferred from GW178087 with uni-
versal relation. The inferring masses and radii obtained from
Ref. [22] are the ones of double neutron stars (DNS), millisec-
ond pulsars (MSP), and low-mass X-ray binaries (LMXB)
(please see the numerical values in Table II, III, and IV in
Ref. [22]). The later results actually should be useful for con-
straining mass and radius of NSs, respectively. Unfortunately,
the corresponding error-bars are still too large to provide a
meaningful conclusion. Therefore, we do not show them in
Fig. 7.

Figure 7 has shown that the role of the values of free
parameters Υ , h and λBL of DY, HB, and BL models, respec-
tively in increasing maximum mass and radius of NS. It can
be seen for isotropic NS with hyperons using SU(6) prescrip-
tion to determine hyperon coupling constants, and the cor-
responding maximum mass does not reach 2 M� constraint.
It is interesting to see that the used constraints here are very
restricted. It can be seen in Fig. 7 that compared to other
models, the DY model has more flexibility to fit together
by the used maximum mass and canonical mass–radius con-
straints. Since the form of σ in the DY model, making the pre-
dicted maximum mass is sensitive, but the predicted radius
is not to decrease or increase the free parameter value of the
anisotropic model. In consequence, only the DY model that
compatible with all constraints used, i.e., for the free param-
eter value in the range − 2 ≤ Υ ≤ − 1.15. However, if we
make the constraint requirements rather loose by only using
the constraints of Landry et al. and the mass of J1614−2230,
they allow free parameter value for HB model is exist, i.e.,
with h=0.85, and for BL model is also exist within 1 ≤ λBL

≤ 1.82, while for DY model the constraint range is wider.
It becomes in the range of − 2.5 ≤ Υ ≤ − 1.15. Note that
these obtained ranges of the corresponding free parameter
will slightly change if we use other prescriptions to deter-
mine the hyperon coupling constants to obtain the EOS at
high density, as discussed above.

A measurement of NS moment inertia is crucial because
its inherent capability to constrain quite restricted the EOS of
NSs at high density is insensitive to EOS, and it has a univer-
sal relation with compactness and tidal deformability. Panel
(a) and panel (b) of Fig. 8 show the impact of anisotropic
pressure on inertia moment of NS with hyperons. Here, we
use λBL= 1.82, Υ = − 1.15, and h=0.8. The results are con-
fronted with the ones obtained by the new non-parametric
constraints on inertia moment from Ref. [9], the one obtained
from joint PSR J0030+0451, GW170817, and the nuclear
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Fig. 7 Impact of anisotropic pressure on the mass–radius relation of
NSs with hyperons. a For HB anisotropic model, b for DY anisotropic
model, and c for BL anisotropic model. We include the constraint from
the recent non-parametric study from Ref. [9], and the constraint from
joint analysis of PSR J0030+0451, GW170817, and the nuclear data
from Ref. [30] as well as the recent observed maximum masses of NSs,
J1614−2230, and J0740+6620 from Refs. [1–4]. As benchmark’s, we
also include the result of isotropic (ISO) case

data analysis constraints from Ref. [30], the predicting the
moment inertia of pulsar J0737−3039A from Ref. [21], and
the one obtained by inferring moment inertia of DNS, MSP,
and LMXB obtained from GW178087 with universal rela-
tions [22]. Note that the moment of inertia results of some NS
obtained by the author of Ref. [22] have more data compared
to others, but on average, the corresponding moment iner-
tia values are systematically smaller and the corresponding
error-bars are larger than those of Refs. [9,21,30]. It is obvi-
ous from Panel (a) and Panel (b) of Fig. 8 that moment iner-
tia results from anisotropic NS with hyperons predict relative
larger than those of Refs. [9,21,22,30]. It can also be seen that
only model NS with hyperons by using the DY anisotropic
model with Υ ≈ − 1.15 and the case isotropic NS with
hyperons which are compatible with those of Refs. [9,21,30].

0.35

0.4

0.45

I/M
R
2

0.1 0.15 0.2 0.25 0.3
C

BL = 1.82
= -1.15

h=0.8
ISO

Lattimer & Schutz (2005)
Breu & Rezzolla (2016)

(c)

0.5

1.0

1.5

2.0

2.5

3.0

I(
10

45
g
cm

2 )

0.5 1.0 1.5 2.0 2.5
M (M )

Landry et al 2020
Zhang et al 2019
Lim et al 2019

BL = 1.82
= -1.15

h=0.8
ISO

(b)

0.5

1.0

1.5

2.0

2.5

3.0

I(
10

45
g
cm

2 )

0.5 1.0 1.5 2.0 2.5
M (M )

DNS Kumar-Landry 2019
MSP Kumar-Landry 2019
LMXB Kumar-Landry 2019

(a)

BL = 1.82
= -1.15

h=0.8
ISO

Fig. 8 Impact of anisotropic pressure on inertia moment of NS with
hyperons (a, b). For comparison, we also include in b, new non-
parametric constraint on inertia moment of canonical NS from Ref. [9],
and the one from joint PSR J0030+0451, GW170817, the nuclear data
analysis constraints from Ref. [30]. The predicting the moment inertia
of pulsar J0737−3039A from Bayesian modeling of nuclear EOS of
Ref. [21] also is given. While in a, we include the inferring moment
inertia of DNS, MSP, and LMXB obtained from GW178087 with uni-
versal relations [22]. For dimensionless inertia moment as a function
of compactness case (c), we include the results of Refs. [18,20] for
comparison

For completeness, we also provide the dimensionless inertia
moment as a function of compactness results in Panel (c).
We include the results of Refs. [18,20] for comparison. Note
that the constraint from Ref. [20] is relative more accurate
than that of Ref. [18]. It can be seen that all anisotropic pres-
sure models compatible with constraint from Ref. [18], but
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some parts of the one of the BL model is located outside the
constraint from Ref. [20]. Note that the most recent analysis
of moment of inertia from the speed of sound model using
EOS constraints from nuclear physics, NS masses and future
moment inertia measurements can be seen in Ref. [29].

For isotropic NS, the structure of the crust, as well as
some related dynamical processes, happen affected only by
the core-crust interface. E.g., the values transition density
is related to the existence of the nuclear pasta, the pulsar
glitches related to the crustal fraction of the moment of iner-
tia. At the same time, the dynamical process of the NSs cool-
ing, thermal relaxation of the crust is sensitive to crust radius
(see Ref. [28] and the references therein for further detail
discussion.). In Fig. 9, we show that the anisotropic fac-
tor also affects the crust properties. It can be seen that for
the same transition density value, the crust radius and the
crust mass of anisotropic NS are relatively larger than that of
isotropic NS. How large the impact of anisotropic pressure
on the corresponding crustal fraction of the radius and mass
depends on the anisotropic model used. Compared to the ones
of isotropic, the HB model predicts the larger crustal fraction
of the mass and radius. DY model predicts the smaller crustal
fraction of mass and radius to those of other anisotropic mod-
els. Panel (c) displays the crustal fraction of moment inertia. It
can be seen that the anisotropic factor increases the allowed
region of the crustal fraction of moment inertia. Like the
mass and radius of the crust cases, the HB model predicts
the larger crustal fraction of the moment of inertia compared
to the one of the isotropic case, while DY model predicts a
closer value of crustal fraction to that of isotropic case. If we
use unified core-crust EOSs, we would obtain the trends of
the relation between anisotropic parameter with crust proper-
ties not change much qualitatively from what we have done.
However, employing the unified or consistent description of
core and crust EOSs is necessary for the study that the quanti-
tave results are essential because the low uncertainties in the
predictions are a requirement. For example, the study of the
correlation between nuclear parameters and crust properties
yields more meaningful results if we use unified core-crust
EOSs. The corresponding study has been done recently, and
the results are reported in Ref. [21].

The detection of GWs from the coalescence of binary NSs
has been reported [14–17]. In the inspiralling stage of the,
both NS orbits can be extracted a quantity known as tidal
deformation on GW signals that informing about the related
composition and EOS of the NS. In Figs. 11 and 12 we show
the impact of anisotropic pressure for the three anisotropic
pressure models used on dimensionless tidal deformability
as a function of NS radius and mass as well as the ones
for specific mass, i.e., for canonical mass as the function
of the corresponding radius and the anisotropic free param-
eter values. We check the compatibility of tidal deforma-
bility of anisotropic NS results with data by comparing the
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Fig. 9 Impact of anisotropic pressure on the crust properties. a The
ratio of the crust to core radius as a function of NS mass, b the ratio
of crust to core mass as a function of NS mass, and c the ratio of crust
to core inertia moment of NS with hyperons as a function of NS mass.
For comparison, we include the horizontal lines in c Icr/I constraint
deduced from Vela pulsar with canonical mass (see Ref. [28] and the
references therein)

results with those of Refs. [9,22,30] as well as the results
from GW170817 and GW190425 [15,17]. We discuss first
the impact of anisotropic pressure for all anisotropic pres-
sure models on compactness profiles for NS with a mass
equal to 2 M� and 1.4 M�, and the corresponding com-
pactness on maximum mass because the tidal deformability
depends on the compactness C of the stars and the com-
pactness of anisotropic NS also depends on the anisotropic
pressure model. For comparisons, in Panel (b) of Fig. 10, we
include the compactness of one recently measured isolated
NS [125] while in Panel (c), we include the NS maximum
compactness results of Refs. [8,126].
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Fig. 10 Impact of anisotropic pressure for all anisotropic pressure
models on compactness profiles of NS with a 2 M�, b 1.4 M�, and
c compactness on maximum mass. In b, we include the compactness
of one recently measured isolated NS [125], while in c, we include the
NS maximum compactness results of Refs. [8,126] for comparisons.

Note recent study [54] has shown that within isotropic
NSs, the RMF models are consistent with the experimen-
tal observed nuclear matter properties [53] also are compat-
ible with the recent data from binary neutron star merger
event GW170817. They also confirm the strong correlation
between �1.4 and the radius of canonical stars. They have
also found that RMF parameter sets belonging to the same
families present very similar compactness both for the max-
imum mass case and the canonical one. It can be seen in Fig.
10 that the impact of the anisotropic NS model on the com-
pactness profiles for NS with a mass equal to 2 M� and 1.4
M� are not too significantly different and for the later, the
maximum value is quite compatible with the observed one of
Ref. [125]. The impact of the value of the free parameter of
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Fig. 11 Impact of anisotropic pressure for all anisotropic pressure
models on dimensionless tidal deformability as a function of NS radius
(a) and as a function of mass (b). For comparison, we also include
the new non-parametric constraint on dimensionless tidal deformability
from Ref. [9], and the one from joint of PSR J0030+0451, GW170817,
and the nuclear data analysis constraints from Ref. [30] as well as the
inferring tidal deformability of DNS, MSP, and LMXB obtained from
GW170817 with universal relations [22]

the corresponding anisotropic model has been shown in Panel
(c). It can be seen that the different parameter values of each
model are still in the range of the maximum compactness
constraints from Refs. [8,126]. It is depicted in Fig. 11 that
for a specific value of a free parameter of the anisotropic mod-
els, which are consistent with maximum mass constraints, it
can be seen that only DY model with Υ = − 1.15 is com-
patible with the ones obtained in Refs. [9,30]. Note that the
data from Table II, III, and IV of Ref. [22] yield quite large
error-bar both for � is a function of mass and radius. While
the ones of � as a function of radius yield systematically
smaller radius for the same � compared to other data[9,30]
and � calculation results in this work.

�1.4 as a function of the corresponding radius for some
varied free parameters of each anisotropic model used
are shown in panel (a) of Fig. 12. Some free parameter
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Fig. 12 Impact of anisotropic pressure for all anisotropic pressure
models on dimensionless tidal deformability for M = 1.4 M�. a �1.4 as
a function of radius and b as a function anisotropic pressure parameters.
For comparison, we also include the new non-parametric constraint on
dimensionless tidal deformability from Ref. [9] and the constraint from
joint of PSR J0030+0451, GW170817, and the nuclear data analysis
constraints from Ref. [30], Constraints on EOS from experiments and
chiral effective theory using Bayesian framework [31], empirical for-
mula from Ref. [32] as well as the results from GW170817 (a) [14,16],
GW170817 (b) [15] and GW190425 [17]

results lie on the outside of the grey box constraint from
GW170817 result [15], and the only the results of isotropic
and anisotropic with DY model lie inside the green box of
Ref. [31]. However, not all of the results inside the grey and
green boxes, also compatible with the maximum mass con-
straints. The results from isotropic and from anisotropic with
HB and DY models are closer to those of Refs. [9,30]. It can
also be seen in panel (a) that the results of all models are
quite compatible with the empirical formula of Annala et al.
[32]. The latter fact is more explicit seen if we observe from
Panel (b) of Fig. 12, �1.4 as a function of a free parameter of
each anisotropic models. The light grey box and orange box
constraints of Refs. [15,17] are tightly limit the allow free
parameter value, i.e., for the DY model with Υ = − 1.15,
HB model with h = 0.95, and isotropic case. It is evident that

only for DY model with Υ = − 1.15 is also simultaneously
in agreement with the maximum mass constraints.

7 Conclusions

In conclusion, we have systematically investigated the mass–
radius relation, the moment of inertia, and the tidal deforma-
bility predicted by three models of anisotropic pressure of NS
with hyperons, namely DY, HB, and BL models [76–80]. The
EOS of the core of NS is calculated using the RMF model
with the BSP parameter set [60,81] under which the stan-
dard SU(6) prescription and hyperon potential depths [82]
are utilized to determine the hyperon coupling constants.
For the inner and outer crusts, we use the crust EOS that
obtained from Miyatsu et al. [83]. The compatibility of the
nuclear matter properties is discussed. They are also com-
pared to other calculations as well as experimental and obser-
vations data. We have found that as far as the nuclear mat-
ter predicted by the corresponding parameter set compati-
ble with experimental nuclear data, the uncertainty of EOS
and the corresponding parameters in the nucleon sector is
not too significant. However, the uncertainty of EOS in the
hyperon sector due to uncertainty of hyperon coupling con-
stant values wherein the case of the BSP parameter set starts
to appear at ρ ≈ 3ρnuc, is relatively significant. Hopefully,
future progress in hyper-nuclei physics will pin down this
uncertainty significantly. We have shown that the effect of
anisotropic pressure on NSs is mainly to increase the stiff-
ness of the NS EOS. This effect can compensate for the EOS
softening due to hyperons and or other exotic particles by
delaying the appearance of hyperons or other exotic parti-
cles at relatively higher critical density. It means the role of
anisotropic pressure is to increase or decrease the NS mass
and radius. However, the trend of increasing radius depends
significantly on the anisotropic model, while the trend of
increasing mass almost does not depend on the model used.

Furthermore, it is interesting to observe that the DY model
can yield a relatively short NS radius easily compared to one
of the other anisotropic models. We also have confronted the
corresponding NS mass–radius relation, moment of inertia,
and tidal deformability results with the corresponding recent
extracted results from the combination of some observation
data [1–4,9,15–18,20–22,30–32]. As we expected, we have
found that the results obtained by using DY model with Υ ≈
− 1.15 are compatible with all constraints used. This result
also confirms the previous finding [37].
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