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Abstract In the background of isotropic horizonless spheres,
Hod recently provided an analytical proof of a bound on
the compactness at the innermost light ring with the domi-
nant energy condition. In this work, we extend the discussion
of isotropic spheres to anisotropic spheres. With the domi-
nant energy and non-negative trace conditions, we prove that
Hod’s bound also holds in the case of anisotropic horizonless
spheres.

1 Introduction

According to general relativity, highly curved spacetimes
may possess closed light rings (null circular geodesics), on
which massless particles can orbit in a circle [1,2]. It is well
known that closed light rings are usually related to black hole
spacetimes. In fact, closed light rings may also exist in the
horizonless ultra-compact spacetime. From theoretical and
astrophysical aspects, the light rings have been extensively
studied in various gravity backgrounds [3–13].

The closed light ring plays an important role in under-
standing properties of curved spacetimes. For example, the
interesting phenomenon of strong gravitational lensing in
highly curved spacetimes is closely related to the existence
of light rings [14]. In addition, the light ring can be used
to describe the distribution of exterior matter fields outside
black holes [15–20]. And it was also proved that the inner-
most light ring provides the fastest way to circle a central
black hole as measured by observers at the infinity [21–23].
Moreover, the existence of stable light rings suggests that the
central compact stars may suffer from nonlinear instabilities
[24–30]. And unstable light rings can be used to determine
the characteristic resonances of black holes [31–38].

Recently, the compactness at the innermost closed light
ring was investigated. The compactness can be described
by the parameter m(r)

r , where m(r) is the gravitational mass
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within the radius r. In the case of black holes, the compact-
ness parameter at the innermost light ring is characterized

by the lower bound
m(r inγ )

r inγ )
� 1

3 with r inγ as the innermost

light ring radius. However, very differently in the horizon-
less case, numerical data in [39] suggests that the compact-

ness parameter may satisfy an upper bound
m(r inγ )

r inγ )
� 1

3 for

spherically symmetric ultra-compact isotropic spheres. Hod
has provided compact analytical proofs of the characteristic

intriguing bound
m(r inγ )

r inγ )
� 1

3 for the spherically symmet-

ric spatially regular spheres with isotropic tensor (p = pτ ),
where p and pτ are interpreted as the radial pressure and the
tangential pressure respectively [40].

In the present paper, we study the compactness at the inner-
most light ring of horizonless spheres. We shall prove the

bound
m(r inγ )

r inγ )
� 1

3 in the case of anisotropic sphere with

p �= pτ . We point out that this bound in the isotropic case
of p = pτ has been proved in [40]. Our main results are
included in the last section.

2 Investigations on the compactness at the innermost
light ring

We study the closed light ring of spherically symmetric con-
figurations. In the standard Schwarzschild coordinate, these
spacetimes are expressed by line element [40]

ds2 = −e−2δμdt2 + μ−1dr2 + r2
(
dθ2 + sin2θdφ2

)
,

(1)

where the metric has two functions δ(r) and μ(r) = 1 −
2m(r)
r . For horizonless asymptotically flat spacetimes, the

metric functions are characterized by the near origin behavior
[40–42]

μ(r → 0) = 1 + O(r2) and δ(0) < ∞ (2)
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and the far region behavior [40–42]

μ(r → ∞) = 1 and δ(r → ∞) = 0. (3)

We denote the components of the energy–momentum ten-
sor as

ρ = −T t
t , p = T r

r and pτ = T θ
θ = T φ

φ , (4)

where ρ, p and pτ are respectively the energy density, the
radial pressure and the tangential pressure of the horizon-
less configurations [17,43]. For the case of isotropic energy-
momentum tensor, there is the relation p = pτ [40]. In this
work, our discussion also covers the case of p �= pτ . The
unknown metric functions are determined by the Einstein
equations Gμ

ν = 8πTμ
ν . With the energy density and pres-

sures (4), one can express the Einstein field equations in the
form

μ′ = −8πrρ + 1 − μ

r
, (5)

δ′ = −4πr(ρ + p)

μ
. (6)

Using the Einstein field Eqs. (5) and (6), it has been explic-
itly proved that the closed light rings are characterized by the
relation [41]

R(r) = 3μ(r) − 1 − 8πr2 p(r) = 0 f or r = rγ , (7)

where rγ is the radius of the closed light ring.
From Eq. (2) and the regular condition p(0) < ∞, the

function R(r) is characterized by asymptotical behaviors

R(r) = 3μ(r) − 1 − 8πr2 p(r) → 2 f or r → 0. (8)

We label r inγ as the radius of the innermost closed light ring,
which corresponds to the smallest positive root of R(r) = 0.
In the range [0, r inγ ], the function R(r) satisfies the relation

R(r) � 0 f or r ∈ [0, r inγ ]. (9)

In particular, at the innermost closed light ring, there is the
relation

R(r) = 3μ(r) − 1 − 8πr2 p(r) = 0 f or r = r inγ . (10)

Substituting Eqs. (5) and (6) into the conservation equa-
tion Tμ

r;μ = 0, one obtains a relation

P ′(r) = r

2g
[R(ρ + p) + 2μT ], (11)

where P(r) = r4 p(r), R = 3μ − 1 − 8πr2 p and T =
−ρ + p + 2pτ .

In proving the following bound (22), Hod has imposed the
dominant energy condition [40]. In this work, we impose the
same dominant energy condition

ρ � |p|, |pτ | � 0. (12)

And we also take the non-negative trace condition, which is
[39–42]

T = −ρ + p + 2pτ � 0. (13)

In fact, for a polytropic pressure density equation of the

form p = pτ = kpρ, Hod has obtained a bound
m(r inγ )

r inγ )
�

kp+2
6(kp+1)

, where ρ, p and pτ are interpreted as the energy den-
sity, the radial pressure and the tangential pressure respec-

tively [40]. In the case of kp � 1
3 , Hod’s bound is

m(r inγ )

r inγ )
� 1

3 ,

which is the same as (22). So Hod proved the bound (22) in
the case of p = pτ . In the present work, we generalize the
discussion to cover the case of p �= pτ .

Relations (9–13) yield that the function P(r) satisfies the
inequality

P ′(r) � 0 f or r ∈
[
0, r inγ

]
. (14)

Near the origin, the pressure function P(r) has the asymp-
totical behavior

P(r → 0) = 0. (15)

With relations (14) and (15), one obtains

P(r) � 0 f or r ∈
[
0, r inγ

]
. (16)

The relation (16) and P(r) = r4 p(r) yield that

p(r) � 0 f or r ∈
[
0, r inγ

]
. (17)

In particular, at the innermost light ring, there is the rela-
tion

p
(
r inγ

)
� 0. (18)

According to (10) and (18), one finds that

3μ(r) − 1 = 8πr2 p(r) � 0 f or r =in
γ . (19)

The relation (19) yields that

μ
(
r inγ

)
� 1

3
. (20)

The inequality (20) can be expressed as

1 −
2m

(
r inγ

)

r inγ
� 1

3
. (21)

Then we obtain an upper bound on the compactness at the
innermost light ring

m
(
r inγ

)

r inγ
� 1

3
. (22)
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3 Conclusions

We studied the compactness at the innermost light ring of
anisotropic horizonless spheres. We assumed the dominant
energy and non-negative trace conditions. At the innermost
light ring, we obtained an upper bound on the compactness

expressed as
m(r inγ )

r inγ
� 1

3 , where r inγ is the innermost light

ring and m(r inγ ) is the gravitational mass within the sphere

of radius r inγ . In fact, Hod firstly proved this bound in the
spacetime of horizonless spheres with isotropic tensor p =
pτ [40]. In the present work, we proved the same bound
in the background of horizonless spheres with generalized
anisotropic tensor covering the case of p �= pτ .
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