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Abstract In the context of Finsler–Randers theory we con-
sider, for the first time, the cosmological scenario of the
varying vacuum. In particular, we assume the existence of
a cosmological fluid source described by an ideal fluid and
the varying vacuum terms. We determine the cosmological
history of this model by performing a detailed study on the
dynamics of the field equations. We determine the limit of
General Relativity, while we find new eras in the cosmolog-
ical history provided by the geometrodynamical terms pro-
vided by the Finsler–Randers theory.

1 Introduction

Since the pioneering discovery of the accelerating expan-
sion of our Universe [1–3] cosmology is now in the limelight
of modern science. The physical mechanism able to explain
this accelerating universe is one of the greatest challenges
of modern physics. Within the realm of General Relativity
(GR) this acceleration is easily accommodated by introduc-
ing a dark energy sector(DE) [4] characterized by negative
pressure. The simplest DE model arises with the inclusion
of a positive and time-independent cosmological constant,
namely �, in the gravitational equations of GR [5,6]. The
resulting cosmological scenario is widely known as the �-
cosmology and this cosmological model is in agreement with
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a series of observational data, however it suffers from two
mayor problems, for details see [7].

This naturally leads to think of several alternative �-
cosmological models [4] to investigate the same issue. One of
the simplest and natural generalizations of the �-cosmology
is to introduce time dependence in the � term, which leads to
varying vacuum cosmologies. On the other hand, apart from
the concept of DE physics, an alternative route to mimic
this accelerating phase appears either due to the direct mod-
ifications of GR leading directly to modified gravitational
theories [8–12] or by introducing new gravitational theories
completely different from GR, such as the teleparallel equiv-
alent of GR (TEGR) [13].

The models arising from this latter approach are usu-
ally known as the geometric dark energy (GDE) models.
Although both DE and GDE models have been widely stud-
ied and acknowledged in the literature, research over the last
several years has indicated that despite a large number of
models, none of them can be considered to be a completely
healthy and viable model able to portray the dynamical evolu-
tion of the universe. Most notably though, the physical nature
and evolution of both DE and GDE are still unknown even
after substantial cosmological research. Thus, the debates in
search of a perfect cosmological theory have been the central
theme of modern cosmology at present times. The studies so
far clearly justify that there are definitely no reasons to favor
any particular cosmological theory or model, at least in light
of the recent cosmological observations.

An interesting gravitational theory in the context of the
present accelerating expansion is based on the introduction
of Finsler geometry, which gives rise to a wider geometrical
picture of the universe extending the traditional Riemannian
geometry. In other words, one can recover the Riemannian
geometry as a special case of the Finslerian geometry. Thus
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Finslerian geometry is expected to provide more insights on
the dynamics and evolution of the observed universe, and as
a consequence, the cosmology in Finslerian geometry gained
significant attention in the scientific community (eg [14–23]
). In particular, the Finsler–Randers (FR) metric [24] and the
induced cosmological model [25,26] is of special interest
since the field equations include an extra geometrical term
that acts as a DE fluid. As we pointed out the (FR) cosmolog-
ical model contains in each point two metric structures, one
Riemannian and one Finslerian so it can be considered as a
direction-dependent (−y) motion of the Riemannian /FRW
model with osculating structure.

In the present article we consider a very general dynamical
picture of the universe in which a time-dependent cosmolog-
ical term is present within the context of Finslerian geometry.
The presence of a time dependent cosmological term, �(t)
actually inherits an interaction in the cosmic sector. These
kind of models are widely accepted in the literature for their
ability to describe various cosmological eras. The plan of the
paper is as follows.

In Sect. 2 we briefly discuss the FR cosmology. The vary-
ing vacuum model is described in Sect. 3 where we present
the field equations and the models of our analysis. Section
4 includes the main material of this work. In particular we
present the dynamical analysis and we determine the cosmo-
logical evolution for the models of our consideration. Finally,
in Sect. 5 we discuss our results.

2 Finsler–Randers theory: an overview

The origin of the FR model is based on the Finslerian geom-
etry [25,26] which is a natural generalization of the tradi-
tional Riemannian geometry and it has gained considerable
attention in the cosmological community, see for instance
[16,27–31] for more details in this direction. In what follows
we describe the basics of the Finslerian geometry.

As shown by Asanov [32], the general action for the oscu-
lating Riemannian space-time of Einstein field equations
is derived by a variational principle of the integral action,

IG =
∫

L
(
x, y(x)

)√−g
(
x, y(x)

)
dx4 of an osculating Rie-

mannian procedure, where L
(
x, y(x)

)
is the osculating Ricci

scalar, in the context of Finsler Geometry. The derived field
equations are more general than the Riemannian ones [32].
These equations can also be derived in the case of the Finsler–
Randers model by making further assumptions [33]. Indica-
tive works in the Finsler–Randers model are [24,34–40].

Given a differentiable manifold M , the Finsler space is
generated from a generating differentiable function F(x, y)
on the tangent bundle T M with F : T̃ M → R , T̃ M =
T (M)\{0}. The function F is a one degree homogeneous
function with respect to the variable y which is related to x ,

as y = dx
dt , here t is the time variable. In the FR space-time,

we have

F(x, y) = σ(x, y) + vμ(x)yμ, σ (x, y) = √
aμν yμyν,

where aμν is a Riemannian metric and vμ = (v0, 0, 0, 0)

is a weak primordial vector field with ‖vμ‖ � 1. Let
us note that the vector field vμ intrinsically contributes to
the geometry of Finslerian space-time and this vector field
introduces a preferred direction in the referred space time.
The vector field vμ additionally causes a differentiation of
geodesics from a Riemannian spacetime [41]. Although,
there is a case where the geodesics of Riemannian and (FR)
are identical. This happens when the covector vμ is a gradient
vector.

In this formulation, in general one starts with the Lorentz
symmetry breaking, which is a common feature within quan-
tum gravity phenomenology. Such a departure from relativis-
tic symmetries of space-time, leads to the possibility for the
underlying physical manifold to have a broader geometric
structure than the simple pseudo-Riemann geometry.

One of the most characteristic features of Finsler geom-
etry is the dependence of the metric tensor to the position
coordinates of the base-manifold and to the tangent vector of
a geodesic congruence, and this velocity dependence reflects
the Lorentz-violating character of the kinematics.

The main object in Finsler geometry is the fundamental
function F(x, dx) that generalizes the Riemannian notion
of distance [42–44]. In Riemann geometry the latter is a
quadratic function with respect to the infinitesimal incre-
ments dxa between two neighboring points. Keeping all
the postulates of Riemann geometry but accepting a non-
quadratic distance measure, a metric tensor can be introduced
as

fμν = 1

2

∂2F2

∂yμ∂yν
. (1)

with tangent ya = dxa
dτ

. Note that when the generating func-
tion F(x, y) is quadratic, the above definition is still valid
and leads to the metric tensor of Riemann geometry. The
dependence of the metric tensor to the position coordinates
xa and to the fiber coordinates ya suggests that the geometry
of Finsler spaces is a geometry on the tangent bundle (TM). In
other words, the Finsler manifold is a fiber space where tensor
fields depend on the position and on the infinitesimal coor-
dinate increments ya . Therefore, the position dependence of
Riemann geometry can be replaced by the so called element
of support, which is the pair (xa, ya).

In relativistic applications of Finsler geometry the role
of the supporting direction ya must be explicitly given.
The locally anisotropic character (y-dependent) of the grav-
itational field, can be appeared by Lorentz violations,
scalar/vector/spinor fields, or internal perturbations in its
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structure. Energy momentum tensor of a cosmological fluid
in our consideration has the form

Tμν

(
x, y(x)

) = (ρ + P)yμ(x)yν (x) − P fμν

(
x, y(x)

)
(2)

It is a fundamental physical concept in the osculating Rie-
mannian (Finslerian) framework of Finsler gravity. By using
an extending framework of general relativity with a local
anisotropic structure, the gravitational field obtains more
degrees of freedom. The geometrical concepts, as Ricci ten-
sors etc. in [25], are incorporated in the generalized Fried-
mann equations, including the additional term u̇o . This repre-
sents the variation of small values of anisotropy. The consid-
eration of such a form of equations gives us the possibility of
understanding of possible small anisotropies of the evolution
of the universe of the early time up to the late time era. For
cosmological applications of the Finsler Randers models see
[34–36,40,45].

From Eq. (1) one can now derive the Cartan tensorCμνk =
1
2

∂ fμν

∂yk
using the Finslerian metric tensor given above. We

also note that the component u0 can be given as u0 = 2C000

[25]. Let us consider the gravitational equations in the FR
cosmology in order to explore the dynamics of the universe
within this context. The field equations in this context are

Lμν = 8πG

(
Tμν − 1

2
T fμν

)
, (3)

where Lμν denotes the Finslerian Ricci Tensor (for more
details see [25]); Tμν is the energy momentum tensor of the
matter sector and T is the trace of Tμν .

Now, consider the Finslerian perfect fluid with velocity
4-vector field uμ for which the energy momentum tensor
takes the form Tμν = diag

(
ρ,−P fi j

)
, where {μ, ν} ∈

{0, 1, 2, 3} and {i, j} ∈ {1, 2, 3}; ρ and P respectively denote
the total energy density and pressure of the underlying cos-
mic fluid [32].

For the above expression of the energy–momentum tensor,
in a spatially flat Friedmann–Lemaître–Robertson–Walker
(FLRW) metric,1

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
,

the gravitational field equations can be explicitly written as
[25]

Ḣ + H2 + 3

4
HZt = −4πG

3
(ρ + 3p), (4)

Ḣ + 3H2 + 11

4
HZt = 4πG(ρ − p), (5)

1 Let us note that the nonzero components of the Ricci tensor in the
context are: L00 = 3( äa +3 ȧ

4a u̇0) and Lii = −(aä+2ȧ2+ 11
4 aȧu̇0)/	i i

where (	11,	22,	33) = (1, r2, r2sin2θ).

where and the overdot represents the derivative with respect
to the cosmic time and H ≡ ȧ/a, is the Hubble rate and
Zt = u̇0(t). Now, combining Eqs. (4) and (5) one arrives at

H2 + HZt = 8πG

3
ρ. (6)

Obviously, the Friedmann equations are modified by the extra
term HZt . As expected for Zt = 0, hence u0 ≡ 0 we recover
the usual Friedmann equations.

Additionally, using the Bianchi identities one can have the
conservation equation for the total fluid which goes as

ρ̇ + 3H (ρ + p) − Zt

(
ρ + 3

2
p

)
= 0. (7)

This clearly shows that the usual conservation equation of
the energy–momentum tensor does not hold in the FR geom-
etry. This consequently means that the FR geometry is nat-
urally endowed with the effective matter creation process
which is quantified through the extra geometrodynamical
term appearing in Eq. (7), namely, Zt (ρ + 3

2 p).
Observing the form of the above conservation equation for

the CDM case (p = 0), and comparing to the creation of cold
dark matter model [46–48], we deduce that in the scenario at
hand we obtain an effective matter creation model of (mod-
ified) gravitational origin. In particular, based on the afore-
mentioned articles one can define the dark matter density by
the following equation ρ̇+3Hρ = �ρ, while the the creation
pressure of CDM component is given by pc = − �ρ

3H . Notice
that � is the creation rate of CDM particles (see [49–51]).
Therefore combining the above equation with (7) the effec-
tive matter creation rate is written in terms of Zt which is a
geometrical quantity, namely � = −Ztand thus the effective
creation pressure reads pc = ρZt

3H . The particle production is
an irreversible process, and, as such, it should be constrained
by the second law of thermodynamics. A possible macro-
scopic solution for this problem was discussed by Prigogine
et al. [50] utilizing nonequilibrium thermodynamics for open
systems, and by Calvao et al. [51] through a covariant rela-
tivistic treatment for imperfect fluids (see also [52]). In this
framework particle production, at the expense of the grav-
itational field, is an irreversible process constrained by the
usual requirements of nonequilibrium thermodynamics. This
irreversible process is described by a negative pressure term
in the stress tensor whose form is constrained by the sec-
ond law of thermodynamics. It is interesting to mention that
the proposed macroscopic approach has also microscopically
been justified by Zimdahl and collaborators via a relativistic
kinetic theoretical formulation (see [53,54]). In comparison
to the standard equilibrium equations, the irreversible cre-
ation process is described by two new ingredients: a balance
equation for the particle number density and a negative pres-
sure term in the stress tensor. These quantities are connected
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to each other in a very definite way by the second law of
thermodynamics.

In general the idea of cosmological particle production or
matter creation was discussed extensively independently by
several authors [55–64] where they proposed that the gravita-
tional field of the expanding universe is constantly acting on
the quantum vacuum, and due to this, particles are created.
This creation process is a continuous phenomenon and the
created acquire their mass, momentum and energy. Over the
last decade, cosmological theories with matter creation, have
been extensively studied and different models have been con-
strained in presence of the observational datasets (see [65–
69] and the references therein). In particular, a recent analysis
[68] has argued that the creation of dark matter particles is
favored (within 95% CL) according to the available observa-
tional sources, however, it is important to mention that rate
of matter creation must be constrained in such a way so that
the matter sector does not deviate much from its standard
evolution (∝ a(t)−3), see [67] for details.

3 Varying vacuum in a Finsler Randers model

In the framework of General Relativity the Running Vac-
uum Model (RVM) has been thoroughly studied at the back-
ground and perturbation levels respectively (see [70–87] and
references therein). Here we want to extend the situation by
including in the Finsler Randers geometry the concept of
RVM. Notice that the time dependence of the vacuum energy
density in the RVM is only through the Hubble rate, hence
ρ̇� �= 0.

Let us assume that we have a mixture of two fluids, namely,
matter (labeled with the symbol m) and the varying vacuum
(labeled with �), hence the total energy density and pressure
of the total fluid are given by

ρ = ρm + ρ�, p = pm + p�. (8)

The complete set of field equations reads

1 + Zt

H
= 8πG

3H2 ρm + 8πG

3H2 ρ� (9)

Ḣ

H2 + 1 + 3Zt

4H
= −4πG

3H2 (ρm + 3wmρm − 2ρ�), (10)

where through the Bianchi equations the continuity equations
become,

ρ̇m + 3H(1 + wm)ρm − Zt

(
ρ + 3

2
p

)
= Q̂, (11)

ρ̇� = −Q̂, (12)

where wm = pm/ρm , is the equation-of-state parameter of
the matter fluid and the term Q̂ appearing in (11) and (14)

refers to the interaction rate between the matter and vacuum
sectors. As one can quickly note that Q̂ = 0 actually recov-
ers the usual non-interacting dynamics. It is easy to realize
that the presence of interaction between these sectors cer-
tainly generalizes the cosmic dynamics and it is of utmost
importance to address many cosmological puzzles. Due to the
diverse characteristics, interacting models have gained a mas-
sive attention to the cosmological community because. The
mechanism of an interaction in the dark sector of the universe
is a potential route that may explain the cosmic coincidence
problem [42–44,88–90] and provide a varying cosmological
constant that could explain the tiny value of the cosmological
constant leading to a possible solution to the cosmological
constant problem [91]. In the past years, a cluster of interac-
tion models have been studied by many researchers. Some of
the interaction models existing in the literature are [92–101]
while some cosmological constraints on interacting models
can be found in [102–121] . On the other hand, this model can
also be seen as the particle creation model which has gained
massive attention in the scientific society [69,122–129]. In
this work we aim to study the generic evolution of the solu-
tion of the field equations for specific functional forms of the
interaction term Q̂. In the following we replace the interac-
tion term Q̂ with Q = Q̂+ Zt

(
ρ + 3

2 p
)

such that to remove
the nonlinear term and rewrite the continuous equation in the
friendly form

ρ̇m + 3H(1 + wm)ρm = Q, (13)

ρ̇� = −Q, (14)

Following our previous works [130,131] we study how the
implementation of the Finsler geometry affects the varying
vacuum scenarios studied in GR as well as how the imple-
mentation of the varying vacuum responds in a Finsler Ran-
ders scenario.

4 Dynamical evolution

In this Section, we study the cosmological evolution of the
different cosmological scenarios of varying vacuum in a FR
geometrical background by using methods of the dynamical
analysis [132,133]. Specifically, we study the critical points
of the field equations in order to identify the different cos-
mological eras that are accommodated by each scenario. The
respective stability of these cosmological eras is determined
by calculating the eigenvalues of the linearized system at the
specific critical points.

In order to perform such an analysis we define proper
dimensionless variables such that to rewrite the field equa-
tions as a set of algebraic-differential equations. The critical
points of the system are considered to be the sets of vari-
ables for which all the ODE of the system are zero. These
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sets of variables correspond to a specific solution of the
system and each to a different era of the cosmos that may
be able to describe the observed universe. The eigenvalues
of the above points are defining the stability of the critical
points. Namely a critical point is stable/attractor when the
corresponding eigenvalues have negative real parts. Thus, the
eigenvalues are valuable tools that characterize the behavior
of the dynamical system around the critical point [134].

Our approach is as follows. We consider a dynamical sys-
tem of any dimension

ẋ A = f A
(
x B

)
,

and then a critical point of the system P = P
(
x B

)
which

has to satisfy f A (P) = 0. The linearized system around P
is written as

δ ẋ A = J A
B δx B , J A

B = ∂ f A (P)

∂x B
.

where J A
B is the respective Jacobian matrix. We calculate the

eigenvalues and eigenvectors and then express the general
solution at the respective points as their expression. Since the
linearized solutions are expressed in terms of the eigenvalues
λi and thus as functions of eλi t , apparently when all these
terms have their real part negative the respective solution
of the critical point is stable and the point is an attractor,
otherwise the point is a source.

Such an analysis is very useful in terms of defining viable
theories that can describe the observable universe. Thus for a
healthy theory to be viable, the critical point analysis should
provide points where the universe will be accelerating and
also these points to be stable. This analysis has been applied in
various cosmological models, for instance see and references
therein [130,131,135–147] .

4.1 Dimensionless variables

We select to work in the H -normalization. Therefore, we
define the dimensionless variables [132,133]

�m = ρm

3H2 , �z = Zt

H
, �� = ρ�

3H2 . (15)

Thus, the first Friedmann equation gives the constraint
equation

1 + �z = �m + �� (16)

while the rest of the field equations are written as follows

d��

d ln a
= 2��

[
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

]

− Q

3H3 ,

d�m

d ln a
= 2�m

[
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

]

+ Q

3H3 − 3�m(1 + wm), (17)

where pm = wmρm . In the following we assume that wm ∈
(−1, 1).

We proceed by determining the critical points of the
dynamical system. Every point P has coordinates P =
{�m,��,�z}, and describes a specific cosmological solu-
tion. For every point we determine the physical cosmolog-
ical variables as well as the equation of the state parameter
wtot (P). In order to determine the stability of each criti-
cal point the eigenvalues of the linearized system around the
critical point P are derived.

We remark that the second Friedmann equation with the
use of the dimensionless variables reads

Ḣ

H2 = −1 − 3

4
�z − 1

2
�m(1 + 3wm) + �� , (18)

from where we find that at a stationary point P , the equation
of state parameter for the effective fluid is

wtot (P) = −1

3
+ 2

3

(
3

4
�z + 1

2
�m(1 + 3wm) − ��

)
.

(19)

In this work we study various functional forms for the
interaction term Q. In order to extend the results of [130],
we assume that (A) the interaction term Q is proportional
to the density of dark matter [102], that is, QA = 9nHρm
or equivalent QA 	 9nH3�m, where the dimensionless
parameter n is an indicator of the interaction strength; (B)
Q is proportional to the density of the dark energy term, i.e.
QB = 9nH3ρ� [99,103]; (C) QC is proportional to the
sum of the energy density of the dark sector of the universe,
that gives QC = 9nH(ρ� + ρm).

Motivated by the above functional forms Q, which have
given interesting results in General Relativity, [130], we pro-
pose some new interaction terms which are proportional
to the energy density �z . In particular we select the mod-
els (D) QD = 9nH3�z; (E) QE = 9nH3�z + 9mHρm
and (D) QF = 9nH3�z + 9mHρm . In these models m is
a dimensionless parameter, an indicator of the interaction
strength. Finally, in order to compare our results with the
non-varying vacuum model we investigate the case where
QG = −3�z�mH3

(
1 + 3

2wm
)
.

4.2 Model A: QA = 9nHρm

For the first model that we consider QA = 9nHρm , the field
equations are expressed as follows.
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Table 1 Stationary points and physical parameters for the interaction model A

Point (�m ,��,�z) Existence wtot Acceleration

A1 (0, 0,−1) Always − 5
6 Yes

A2 (0, 1, 0) Always −1 Yes

A3

(
1 − n

1+wm
, n

1+wm
, 0

)
wm �= −1, (n =

0, wm >

−1) or (n >

0, wm > −1 + n)

wm − n wm ≤ n − 1
3

Table 2 Stationary points and stability conditions for the interaction
model A

Point Eigenvalues Stability

A1 { 1
2 ,− 5

2 − 3(wm − n))} Source

A2
{− 1

2 ,−3(wm − n + 1)
}

wm ≥ n − 1

A3

{
3(wm − n + 1), 3(wm − n + 5

6 )
}

wm < n − 1

d��

d ln a
= 2��

[
1 + 3

4
(�m + �� − 1)

+1

2
�m(1 + 3wm) − ��

]
− 3n�m (20)

d�m

d ln a
= 2�m

(
1 + 3

4
(�m + �� − 1)

+1

2
�m(1 + 3wm) − ��

)

+3n�m − 3�m(1 + wm) (21)

The dynamical system (20), (21) admits three critical
points with coordinates {�m,��,�z}
A1 = {0, 0,−1}, A2 = {0, 1, 0},
A3 =

{
1 − n

1 + wm
,

n

1 + wm
, 0

}
,

Point A1 always exists and describes an empty uni-
verse with equation of state parameter wtot (A1) = − 5

6 .

The universe accelerates with the contribution of the extra
term introduced due to the Finsler–Randers Geometry. The
eigenvalues of the linearized system near to point A1 are
{ 1

2 ,− 5
2 −3(wm−n))}, from where we can infer that the point

is always a source, since one of the eigenvalues is always pos-
itive.

Point A2 describes a de Sitter universe with equation of
state parameter wtot (A2) = −1, where only the � term
contributes in the evolution of the universe. The eigenvalues
are derived to be

{− 1
2 ,−3(wm − n + 1)

}
, from where we

can infer that the point is an attractor when wm ≥ n − 1 or
equivalently n ≤ 1 + wm . Because n is the strength of the
interaction of the varying vacuum and matter we assume this
term to be close to zero (either positive or negative) and thus

Fig. 1 Phase space diagram for the dynamical system (20), (21). We
consider wm = 0, for n < 1. The unique attractor is the de Sitter point
A2

understand that the aforementioned condition is satisfied (we
generally have that wm > −1). Thus this point is of great
physical interest.

Point A3 exists for n ≥ 0 (for n < 0 then wm < −1
and it exists in the phantom region) and describes a universe
dominated by the varying vacuum and the matter fluid; in the
case where wm = 0, point A3 describes the �-CDM universe
in the FR theory. The equation of state parameter is derived
wtot (A3) = wm − n, from where we conclude that the exact
solution at the point describes an accelerated universe when
wm ≤ n + 1

3 . The eigenvalues of the linearized system are{
3(wm − n + 1), 3(wm − n + 5

6 )
}

and thus can be stable for

wm < n − 1.

The above results are summarized in Tables 1 and 2. In
addition in the Figs. 1 and 2 we present the evolution of the
trajectories for the dynamical system of our study.
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Fig. 2 Evolution diagrams with time, for various energy densities of
the dynamical system (20), (21). We consider the initial conditions a
�m = 0.4, �� = 0.1. b�m = 0.7, �� = 0.1. c�m = 0.5, �� = 0.2.

d �m = 0.2, �� = 0.3. e �m = 0.1, �� = 0.9. f �m = 0.2,
�� = 0.3, for n < 1 and wm = 0

4.3 Model B: QB = 9nHρ�

For the second model of our analysis, where QB = 9nHρ�,
the field equations become

d��

d ln a
= 2��

[
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

]

−3n��, (22)
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Table 3 Stationary points and physical parameters for the interaction model B

Point
(
�m ,��,�z

)
Existence wtot Acceleration

B1 (0, 0,−1) Always − 5
6 Yes

B2 (1, 0, 0) Always wm wm ≤ − 1
3

B3

(
n

1+wm
, 1 − n

1+wm
, 0

)
wm �= −1, (1 + wm) ≥ n ≥ 0 −1 + n n ≤ 2

3

Table 4 Stationary points and
stability conditions for the
interaction model B

Point Eigenvalues Stability

B1 { (1−6n)
2 ,− (5+6wm )

2 } n > 1
6 & wm > − 5

6

B2

{
3(wm − n + 1),

(5+6wm )
2

}
n ≤ 1

6 & wm < n − 1 or n > 1
6 & wm < − 5

6

B3 { (6n−1)
2 ,−3(wm − n + 1)} n < 1

6 & wm > −1 + n

d�m

d ln a
= 2�m

(
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

)

+3n�� − 3�m(1 + wm), (23)

The dynamical system (22), (23),admits three critical
points with coordinates

B1 = {0, 0,−1}, B2 = {1, 0, 0},
B3 =

{
n

1 + wm
, 1 − n

1 + wm
, 0

}
.

Point B1 exists always and it corresponds to an empty uni-
verse with equation of state parameter wtot (B1) = − 5

6 , that
is accelerating due to the contribution of the extra term intro-
duced by the Finsler–Randers geometrical background. The
eigenvalues of the linearized system are { (1−6n)

2 ,− (5+6wm )
2 };

hence the exact solution at the stationary point B1 it is stable
when n > 1

6 and wm > − 5
6 . Thus this point is of great phys-

ical interest since it can describe a past or future acceleration
phase.

Point B2 describes a universe dominated by matter,
wtot (B2) = wm , and the exact solution at the point cor-
responds to an accelerated universe when wm < − 1

3 .
The eigenvalues of the linearized system are derived to be{

3(wm − n + 1),
(5+6wm )

2

}
, from where we observe that B3

is an attractor when n ≤ 1
6 & wm < n − 1 or n > 1

6 & wm <

− 5
6 .
Point B3 exists when wm �= −1, (1 + wm) ≥ n ≥ 0 and

it has the same physical properties with point A3. The eigen-
values of the linearized system near the stationary point are

derived to be
{

(6n−1)
2 ,−3(wm − n + 1)

}
, from where we

infer that the exact solution at B3 is stable for n < 1
6 & wm >

−1 + n.
The above results are summarized in Tables 3 and 4. In

Figs. 3 and 4 the evolution of trajectories for the dynamical
system our study in phase space are presented.

Fig. 3 Phase space diagram for the dynamical system (22), (23). We
consider wm = 0, for n < 1. The unique attractor is the de Sitter point
B3

4.4 Model C: QC = 9nH(ρ� + ρm)

For the third model of our analysis, where QC = 9nH(ρ� +
ρm), the field equations read

d��

d ln a
= 2��

[
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

]

−3n�� − 3n�m , (24)
d�m

d ln a
= 2�m

(
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

)

+3n�� + 3n�m − 3�m(1 + wm), (25)
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Fig. 4 Evolution diagrams with time, for various energy densities of
the dynamical system (22), (23). We consider the initial conditions a
�m = 0.4, �� = 0.1. b�m = 0.7, �� = 0.1. c�m = 0.5, �� = 0.2.

d �m = 0.2, �� = 0.3. e �m = 0.1, �� = 0.9. f �m = 0.2,
�� = 0.3, for n < 1 and wm = 0

The latter dynamical system admits the following critical
points

C1 = {0, 0,−1}, C2± =
{

1

2

(
1 ±

√
x

(1 + wm)

)
,

1

2

(
1 ∓

√
x

(1 + wm)

)
, 0

}
,

where we considered x = 1 − 4n + wm .
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Table 5 Stationary points and physical parameters for the interaction model C

Point
(
�m ,��,�z

)
Existence wtot Acceleration

C1 (0, 0,−1) Always − 5
6 Yes

C2±
(

1
2

(
1 ±

√
x

(1+wm )

)
, 1

2

(
1 ∓

√
x

(1+wm )

)
, 0

)
wm �= 0, n < 0 & wm ≤ 4n − 1 1

2

(
wm − 1 ± √

(1 + wm) x
)

see 7

wm �= 0, n > 0 & wm � 4n − 1

Table 6 Stationary points and
stability conditions for the
interaction model C

Point Stability

C1
{ 1

12 < n < 1
2 ,− 2

3 < w < −1 + 4n
}
,
{
n > 1

2 ,− 2
3 , w < 1

}
{

1
12 < n < 11

72 ,−1 + 4n < w < 5−36n
36n−6

}
{ 11

72 < n < 1
2 ,−1 + 4n < w < 1

}
C2− Unstable

C2+ n < 0: wm < −1 + 4n, − 1 < wm < 5−36n
36n−6 , 5−36n

36n−6 < wm < − 2
3

0 < n < 1
12 :wm < −1,−1 + 4n < wm < 5−36n

36n−6 , 5−36n
36n−6 < wm < − 2

3
1

12 < n < 1
6 : wm < −1

n > 1
6 :wm < 5−36n

36n−6 , 5−36n
36n−6 < wm < −1

n < 1
12 :wm = 5−36n

36n−6

− 2
3 ≤ wm < 1, n < 6wm+5

36(1+wm )
.

Table 7 Acceleration conditions for the interaction model C for point
C2±
Point Acceleration

C2± n = 0

n > 0 & wm ≤ −1 or n < 1
3 and 4n − 1 ≤ wm

2
3 > n � 1

3 and wm > 4
9n−6 − 1

n < 0 and [4n − 1 � wm or wm � −1]

The universe described by the exact solution at the station-
ary point C1 has the same physical quantities with those of
points A1 and B1. The eigenvalues of the linearized system
are

e1 (C1) = −1

2

(
2 + 3wm + 3

√
(1 + wm)x

)

e2 (C1) = −1

2

(
2 + 3wm − 3

√
(1 + wm)x

)

from where we can infer that the point is an attractor when{ 1
12 < n < 1

2 ,− 2
3 < w < −1 + 4n

}
,
{
n > 1

2 ,− 2
3 , w < 1

}
,{

1
12 < n < 11

72 ,−1 + 4n < w < 5−36n
36n−6

}
,
{ 11

72 < n < 1
2 ,−1

+4n < w < 1} .

Point C2± exists for {n < 0 & wm ≤ 4n − 1} or
{n > 0 & wm � 4n − 1} and describes the same physical
solutions with points A3 and B3. The equation of state param-
eter is wm (C2±) = 1

2

(−1 + wm ± √
(1 + wm) x

)
. From the

Fig. 5 Phase space diagram for the dynamical system (24), (25). We
consider wm = 0, for n < 1. The unique attractor is point C2

linearized system around the critical points we determine the
eigenvalues

e1 (C2±)

= 1

4

(
2+3wm ± 9

√
(1+wm ) x

)

+ 1

4

√
13 − 36n (1+wm ) ∓ 12

√
(1+wm ) x+6wm

(
5+3wm ∓ 3

√
(1+wm ) x

)
,
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Fig. 6 Evolution diagrams with time, for the various densities for
the dynamical system (24), (25). We consider the initial conditions a
�m = 0.4, �� = 0.1. b�m = 0.7, �� = 0.1. c�m = 0.5, �� = 0.2.

d �m = 0.2, �� = 0.3. e �m = 0.1, �� = 0.9. f �m = 0.2,
�� = 0.3, for n < 1 and wm = 0

e2 (C2±)

= 1

4

(
2+3wm ± 9

√
(1+wm ) x

)

− 1

4

√
13 − 36n (1+wm ) ∓ 12

√
(1+wm ) x+6wm

(
5+3wm ∓ 3

√
(1+wm ) x

)
.

Therefore, point C2− is always unstable while point C2+
is conditionally stable as shown in Table 6.

The above results are summarized in Tables 5, 6 and 7.
Moreover, in Figs. 5 and 6 the evolution of trajectories for
the dynamical system our study in phase space are presented.
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Table 8 Stationary points and physical parameters for the interaction model D

Point (�m ,��,�z) Existence wtot Acceleration

D1 (0, 1, 0) Always −1 Yes

D2 (1, 0, 0) Always wm wm ≤ − 1
3

D3 (6nα, 6nα(5 + 6wm), (5 + 6wm)α) n < 0, wm > − 5
6 or n > 1

6 , 0 < wm + 5
6 < n − 5

6 Yes

Table 9 Stationary points and stability conditions for the interaction
model D

Point Eigenvalues Stability

D1 {− 1
2 ,− 3(1 + wm)} wm > −1

D2

{
3(1 + wm),

(5+6wm )
2

}
wm < −1

D3

{
1
2 ,− (5+6wm )

2

}
Source

4.5 Model D: QD = 9nH3�z

In this scenario we shall consider an interaction of the form,
Q = Q (�z), that of course due to the constraint equation
(16) means that

Q = Q (�m,��)

So, if we consider the interaction term to be Q = 9nH3�z

then it follows

Q = 9nH3 (�m + �� − 1) .

and our system is now

d��

d ln a
= 2��

[
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

]

−3n(�m + �� − 1), (26)
d�m

d ln a
= 2�m

[
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

]

+3n(�m + �� − 1) − 3�m(1 + wm), (27)

The dynamical system (26), (27) admits three critical
points with coordinates

D1 = {0, 1, 0}, D2 = {1, 0, 0}, D4

= {6nα, 6nα(5 + 6wm), (5 + 6wm)α}
where α = (36n(1 + wm) − (5 + 6wm))−1 . Point D1

describes a de Sitter universe with equation of state param-
eter wtot (D1) = −1, where only the varying vacuum term
contributes in the evolution of the universe. The eigenvalues
are derived to be {− 1

2 ,− 3(1 + wm)}, so for wm ≥ −1 the
point is always an attractor and this point is of great physical
interest.

Point D2 describes a universe dominated by matter,
wtot (D2) = wm , and the exact solution at the point cor-
responds to an accelerated universe when wm ≤ − 1

3 .
The eigenvalues of the linearized system are {3(1 + wm),

Fig. 7 Phase space diagram for the dynamical system (26), (27). We
consider �m = 0, wm = 0, for n < 1. The unique attractor is the point
D1

(5+6wm )
2

}
, from where we observe that this point is an attrac-

tor only when wm < −1.
Point D3 exists when n < 0, wm > − 5

6 or n > 1
6 , 0 <

wm + 5
6 < n and it corresponds to a universe of two fluids

and the contribution of the geometrical background of Finsler
Randers that is always accelerating, that is, wtot (D3) = − 5

6 .
Given that we consider the values of n very small this solution
describes a universe where matter decays in vacuum. The
eigenvalues of the linearized system near the stationary point

are
{

1
2 ,− (5+6wm )

2

}
, so point D3 is always a source, since one

of the eigenvalues has always positive real part.
The above results are summarized in Tables 8 and 9. In

Figs. 7 and 8 the evolution of real trajectories for the dynam-
ical system our study in phase space are presented.

4.6 Model E: QE = 9nH3�z + 9mHρm

Our system is now

d��

d ln a
= 2��

[
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

]
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Fig. 8 Evolution diagrams with time, for various energy densities of
the dynamical system (26), (27). We consider the initial conditions a
�m = 0.4, �� = 0.1. b�m = 0.7, �� = 0.1. c�m = 0.5, �� = 0.2.

d �m = 0.2, �� = 0.3. e �m = 0.1, �� = 0.9 f �m = 0.2,
�� = 0.3, for n < 1 and wm = 0

−3n(�m + �� − 1) − 3m�m , (28)
d�m

d ln a
= 2�m

[
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

]

+3n(�m + �� − 1) + 3m�m − 3�m(1 + wm), (29)

The dynamical system (28), (29), admits three critical
points with coordinates

E1 = {0, 1, 0}, E2 = {1, 0, 0},
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Table 10 Stationary points and physical parameters for the interaction model E

Point
(
�m ,��,�z

)
Existence wtot Acceleration

E1 (0, 1, 0) Always −1 Yes

E2

(
1 − m

1+wm
, m

1+wm
, 0

)
wm > −1, 0 ≤ m ≤ 1 + wm wm − m wm ≤ m − 1

3

E3 (6nb, 6nb(5 + 6wm), (5 + 6wm − 6m)b) See Table 12 − 5
6 Yes

Table 11 Stationary points and stability conditions for the interaction
model E

Point Eigenvalues Stability

E1 {− 1
2 ,− 3(1 + wm − m)} wm > m − 1

E2

{
3(1 + wm − m),

(5+6wm )−6m
2

}
wm < −1 + m

E3

{
1
2 ,− (5+6wm )

2 + 3m
}

Source

E3 = {6nb, 6nb(5 + 6wm), (5 + 6wm − 6b)b}.
where b = (36n(1 + wm) − (5 + 6wm) + 6m)−1 . Point E1

describes a de Sitter universe with equation of state param-
eter wtot (E1) = −1, where only the varying vacuum term
contributes in the evolution of the universe. The eigenvalues
are derived to be {− 1

2 ,− 3(1+wm −m)}, so for wm > m−1
the point is always an attractor and thus this solution is of
great physical interest.

Point E2 describes a universe dominated by the varying
vacuum and matter; when wm = 0, point E2 describes the �-
CDM universe in the FR theory. The equation of state param-
eter is derived wtot (E2) = wm − m, so this point describes
an accelerated universe when wm ≤ m − 1

3 . The eigenvalues

of the linearized system are
{

3(1 + wm − m),
(5+6wm )−6m

2

}
from where we can infer that the point is stable for wm <

m−1.Given though the existence condition m−1 ≤ wm we
consider the point to be unstable.

Point E3 exists when n, m and wm are constrained as
presented in Table 12. Similarly with point D3 this point
corresponds to a universe of two fluids and the contribu-
tion of the geometrical background of Finsler Randers that
is always accelerating(wtot (E3) = − 5

6 ). The eigenval-
ues of the linearized system near the stationary point are{

1
2 ,− (5+6wm )

2 + 3m
}

, so point E3 is always a source.

The above results are summarized in Tables 10 and 11.
The trajectories of the dynamical system in the phase space
are presented in Figs. 9 and 10.

4.7 Model F: QF = 9nH3�z + 9mHρ�

Our system is now

d��

d ln a
= 2��

[
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

]

Table 12 Existence conditions for the stationary point E4

Point Existence Existence

E3 m < 0 n < 0 and wm ≥ − 5
6

m + n = 1
6 and 5 + 6wm = 6m

6n−1

n = 0 and (wm < m − 5
6 or

wm > m − 5
6 )

m + n > 1
6 and

6m + 6n ≥ 5 + 6wm ≥ 6m
6n−1

0 < m ≤ 1
6 5 + 6wm > 0 and [(n > 0,m + n ≤

1
6 , 5 + 6wm ≤ 6m

6n−1 ) or

(m + n > 1
6 , 6m + 6n ≤ 5 + 6wm )]

m > 1
6 m + n ≤ 1

6 and 5 + 6wm ≥ 6m
6n−1

m + n ≤ 1
6 and

n < 0, 6m + 6n ≤ 5 + 6wm

n > 0 and 0 < 5 + 6wm ≤ 6m + 6n

m = 0, 5 + 6wm > 0 n < 0 or [n ≥ 1
6 and n ≥ 5

6 + wm ]

Fig. 9 Phase space diagram for the dynamical system (28), (29). We
consider wm = 0, for n < 1. The unique attractor is point E1
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Fig. 10 Evolution diagrams with time, for various energy densities of
the dynamical system (28), (29). We consider the initial conditions a
�m = 0.4, �� = 0.1. b�m = 0.7, �� = 0.1. c�m = 0.5, �� = 0.2.

d �m = 0.2, �� = 0.3. e �m = 0.1, �� = 0.9. f �m = 0.2,
�� = 0.3, for n < 1 and wm = 0

−3n(�m + �� − 1) − 3m��, (30)
d�m

d ln a
= 2�m

[
1 + 3

4
(�m + �� − 1) + 1

2
�m(1 + 3wm) − ��

]

+3n(�m + �� − 1) + 3m�� − 3�m(1 + wm), (31)

The dynamical system (30), (31) admits three critical
points with coordinates

F1 = {0, 1, 0}, F2 = {1, 0, 0},
F3 = {6nc, 6nc(5 + 6wm), (5 + 6wm)(1 − 6m)c} ,
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Table 13 Stationary points and physical parameters for the interaction model F

Point
(
�m ,��,�z

)
Existence wtot Acceleration

F1 (1, 0, 0) Always wm wm ≤ − 1
3

F2

(
m

1+wm
, 1 − m

1+wm
, 0

)
wm > −1, 0 ≤ m ≤ 1 + wm −1 + m m ≤ 2

3

F3 (6nc, 6nc(5 + 6wm), (5 + 6wm)(6m − 1)c) See Table 15 − 5
6 Yes

Table 14 Stationary points and stability conditions for the interaction model F

Point Eigenvalues Stability

F1 { (5+6wm )
2 , 3(1 + wm − m)} wm < − 5

6 and 1 + wm < m

F2
{−3(1 + wm − m), 3m − 1

2

}
Attractor for m < 1

6 and 1 + wm > m

F3

{
1
2 − 3m,− (5+6wm )

2

}
Attractor for m > 1

6 and wm > − 5
6

Table 15 Existence conditions for the stationary point F4

Point Existence Existence

F3 5 + 6wm ≥ 0 m = 1
6 , n �= 0

for m < 1
6 , n < 0 or m + n > 1

6

for m > 1
6 , n > 0 or m + n < 1

6

5 + 6wm ≤ 0 n > 0 or m + n < 1
6

n < 0 or m + n > 1
6

m �= 1
6 m + n = 1

6 or n = 0, 5 + 6wm �= 0

where c = (36n(1 + wm) + (5 + 6wm)(6m − 1))−1 . Point
F1 describes a universe dominated by matter, wtot (F1) =
wm , and the exact solution at the point corresponds to an
accelerated universe for wm ≤ − 1

3 . The eigenvalues of the

linearized system are { (5+6wm)
2 , 3(1+wm−m)}, from where

we observe that this point is an attractor only when wm <

− 5
6 and 1 + wm < m. Thus this point provides a viable

scenario of a matter dominated universe.
Point F2 describes a universe dominated by the varying

vacuum and matter; when wm = 0, point F3 describes the �-
CDM universe in the FR theory. The equation of state param-
eter is derived wtot (F2) = m − 1, so this point describes
an accelerated universe when m ≤ 2

3 . The eigenvalues of
the linearized system are

{−3(1 + wm − m), 3m − 1
2

}
from

where we can infer that the point is stable for m < 1
6 and

1 + wm > m.We observe that for the theoretical values of m
(very small) this is a stable point that describes an accelerated
universe and thus it is extremely interesting from a physical
point of view.

The existence conditions of point F3 are given in Table
15. Similar with point E3, it corresponds to a universe of
two fluids and the contribution of the geometrical back-
ground of Finsler Randers that is always accelerating, that
is, wtot (F3) = − 5

6 . The eigenvalues of the linearized sys-

Fig. 11 Phase space diagram for the dynamical system (30), (31). We
consider wm = 0, for n < 1. The unique attractor is point F3

tem near the stationary point are
{

1
2 − 3m,− (5+6wm )

2

}
, so

point F3 is an attractor for m > 1
6 and wm > − 5

6 . The above
results are summarized in Tables 13 and 14. In Figs. 11 and
12 the evolution of trajectories for the dynamical system our
study in phase space are presented.

4.8 Model G: QG = −3
(
1 + 3

2wm
)
�z�mH3

For the last model that we consider the term that is intrinsi-
cally by the FR model, namely QG = −3

(
1 + 3

2wm
)
�z�m

H3, and the field equations are expressed as follows.

d��

d ln a
= 1

2
[�� − �2

� + �m (2 + 3wm)(�m − 1)
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Fig. 12 Evolution diagrams with time, for various energy densities of
the dynamical system (30), (31). We consider the initial conditions a
�m = 0.4, �� = 0.1. b�m = 0.7, �� = 0.1. c�m = 0.5, �� = 0.2.

d �m = 0.2, �� = 0.3. e �m = 0.1, �� = 0.9. f �m = 0.2,
�� = 0.3, for n < 1 and wm = 0
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Fig. 13 Phase space diagram for the dynamical system (32), (33). We
consider wm = 0, for n < 1. de Sitter point G2

+���m(7 + 9wm)] (32)
d�m

d ln a
= −3

2
�m(1 + 3wm)(1 + �� − �m) (33)

The dynamical system (32), (33) admits four critical points
with coordinates {�m,��,�z}
G1 = {0, 0,−1}, G2 = {0, 1, 0}, G3 = {1, 0, 0},
G4 =

{
− 1

4 + 6wm
,−5 + 6wm

4 + 6wm
,−2 − 2

4 + 6wm

}

Point G1 always exists and describes an empty uni-
verse with equation of state parameter wtot (G1) = − 5

6 .

The universe accelerates with the contribution of the extra
term introduced due to the Finsler–Randers Geometry. The
eigenvalues of the linearized system near to point G1 are
{ 1

2 ,− 3
2 (1 + wm)}, and thus the point is always a source.

Point G2 describes a de Sitter universe with equation of
state parameter wtot (G2) = −1, where only the � term
contributes in the evolution of the universe. The eigenvalues
are derived to be {− 1

2 ,− 3
2 (1 + wm)}, from where we can

infer that the point is an attractor when wm > −1. Thus this
point is of great physical interest.

Point G3 always exists and describes a matter dominated
universe that is accelerating for wm ≤ − 1

3 .The eigenvalues

of the linearized system are {3(1 + wm),
(5+6wm )

2 } and thus
can be stable only for wm < −1.

Point G4 exists only for wm = − 5
6 in which case it again

describes a matter dominated universe, but in this case it is
always accelerating. By studying its eigenvalues for wm =
− 5

6 though we deduce that the point is always unstable.

The above results are summarized in Tables XVII and
XVII. In addition in the Figs. 13 and 14 the evolution of
trajectories for the dynamical system our study in phase space
are presented.

5 Discussion

We performed, for the first time, a detailed study on the
dynamics of the varying vacuum model in a Finsler–Randers
geometrical background. Specifically in the homogeneous
and isotropic spatially flat FLRW spacetime we assumed the
existence of an ideal gas fluid source which couples with the
varying vacuum terms. That scenario follows from the inter-
acting models where interaction in the dark sector has been
proposed as a possible scenario to explain the cosmological
observations. For the gravitational theory, we consider that of
Finsler Randers from where a new geometrodynamical term
is introduced and affects the dynamical evolution.

The functional form of varying vacuum model is in gener-
ally unknown but a dominating quadratic term in the Hubble
function has been found to be good a candidate. In this work
we consider six different functional forms for the interaction
between the components of the dark sector of the universe.

Models QA, QB and QC have been studied in a previous
work in the case of GR [130]. In this work we recover the
results of the previous study, that is, the limit of GR relativity
is recovered, while there exists one possible era in the cosmo-
logical history which corresponds to the epoch where only
the geometrodynamical term of the FR geometry contributes.

In addition, we considered three new interaction models,
namely QD , QE and QF which depend also on the geometro-
dynamical term of FR. For these three models the limit of
GR is recovered while now there is a new cosmological solu-
tion where the geometrodynamical term contributes along the
terms of the dark sector. These new epochs describe acceler-
ated universe. As far as the stability of these exact solutions
are concerned, they can be stable or unstable, depending on
the coupling constants of the models.

Finally QG is the case without varying vacuum term. In
this scenario we found four critical points which describe
the matter dominated era, the de Sitter universe, the vac-
uum space and an exact solution which correspond to a point
where all the fluid source contributes in the cosmological
evolution.

For model QA there are three stationary points, point A1

describes a universe dominated by the Finsler geometro-
dynamical terms and it is always a source, points A2, A3

describe the limit of GR, where A2 describes the de Sitter
universe and A3 corresponds to the solution of GR where the
matter source and the cosmological constant term contribute
in the cosmological evolution. Notice thatA2 is an attractor
when wm ≥ n− 1 and wm is an attractor when wm < n− 1.
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Fig. 14 Evolution diagrams with time, for various energy densities of
the dynamical system (32), (33). We consider the initial conditions a
�m = 0.4, �� = 0.1. b�m = 0.7, �� = 0.1. c�m = 0.5, �� = 0.2.

d �m = 0.2, �� = 0.3. e �m = 0.1, �� = 0.9. f �m = 0.2,
�� = 0.3, for n < 1 and wm = 0

123



816 Page 20 of 22 Eur. Phys. J. C (2020) 80 :816

Table 16 Stationary points and physical parameters for the interaction model G

Point
(
�m ,��,�z

)
Existence wtot Acceleration

G1 (0, 0,−1) Always − 5
6 Yes

G2 (0, 1, 0) Always −1 Yes

G3 (1, 0, 0) Always wm wm ≤ − 1
3

G4 (− 1
4+6wm

,− 5+6wm
4+6wm

,−2 − 2
4+6wm

) wm = − 5
6 − 5

6 Yes

Table 17 Stationary points and stability conditions for the interaction
model G

Point Eigenvalues Stability

G1 { 1
2 ,− 3

2 (1 + wm)} Source

G2 {− 1
2 ,− 3

2 (1 + wm)} wm > −1

G3 {3(1 + wm),
(5+6wm )

2 } wm < −1

G4 {0, 1
2 } Unstable

In the case of a dust fluid, i.e. wm , the de Sitter universe is
an attractor when n ≤ 1. For model QB we determined three
stationary points: B1 describes the Finsler epoch, while B2

corresponds to the matter dominated era. Point B3 has similar
physical properties with point A3, while de Sitter solutions
are not provided by the model. In addition, the Finsler domi-
nated epoch can be an attractor for specific values of the free
parameters, as are the GR solutions of points B2, B3. Model
QC admits three stationary points, where C1 describes the
Finsler epoch and the two points C± describe the limit of GR
which physical properties similar with that of point A3.

Interaction models, QD , QE and QF provide three sta-
tionary points. Points D1, D2 are the limits of GR, which
correspond to the matter dominated era and the de Sitter uni-
verse respectively. Point D3 describes a universe where all
the fluid components and the Finsler term contribute in the
cosmological evolution. Points E1, E2 have physical proper-
ties similar to those of points A2, A3 while the exact solution
at point E3 has similarities with the solutions at D3. Further-
more, the dynamics close to pointsF1, F2is similar with that
of B2, B3 and F3 describes the same epoch with that of D3.

As far asQG model is concerned, the field equations admit
four stationary points. Point G1 describes an unstable exact
solution where the cosmological fluid is described only by
the Finsler terms. Point G4 is always unstable and is has
the same physical properties similar to that of D3. Finally,
points G2, G3 are the limit of GR, which correspond to the
de Sitter and matter dominated eras, while one of two points
is a unique attractor. Notice that for wm > −1 the attractor
is a de Sitter point.

From the results of this analysis we conclude that the vary-
ing vacuum cosmological scenario in the context of Finsler–
Randers geometry can describe the basic epochs of cosmic

history, however there are differences between the same phe-
nomelogical interaction models in GR. In a future work we
plan to test the performance of the current class of modified
gravity models against the cosmological data.
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