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Abstract We have studied the null geodesics in the back-
ground of the Kerr–Newman black hole veiled by a plasma
medium using the Hamilton–Jacobi method. The influence
of black hole’s charge and plasma parameters on the effec-
tive potential and the generic photon orbits has been inves-
tigated. Furthermore, our discussion embodies the effects of
black hole’s charge, plasma and the inclination angle on the
shadow cast by the gravity with and without the spin param-
eter. We examined the energy released from the black hole as
a result of the thermal radiations, which exclusively depends
on the size of the shadow. The angle of deflection of the
massless particles is also explored considering a weak-field
approximation. We present our results in juxtaposition to the
analogous black holes in General Relativity, particularly the
Schwarzschild and Kerr black hole.

1 Introduction

The existence of super massive black holes has been investi-
gated extensively for nearly 2 decades, through various eso-
teric astrophysical phenomena. Recently, The Event Horizon
Telescope (EHT) project has been observed first direct image
of M87* black hole [1,2] using very long baseline interfer-
ometer (VLBI). The physical structure of black holes is well
apprehended by the shadow imaged by it, which is created
when the black hole confronts a luminous source. Synge [3]
studied the shadow of the Schwarzschild black hole, which
was then termed as the “escape cones” of light. The radius
of the shadow was calculated in terms of mass of the black
hole and the radial coordinate where the observer is located.
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Unlike a static black hole, the shadow of a rotating black
hole is not a circular disk. The first, foremost accurate calcu-
lations of the shadow were done by Bardeen considering the
Kerr space time [4]. So far, the latter feature of the black hole
has been widely investigated for various gravities adopting a
similar approach using classical method [5–24].

The influence of plasma medium on the events taking
place in the black hole vicinity contributes an additional
insight into its physical properties. The relativistic effects
of plasma tracing light rays in the surroundings of compact
objects are thoroughly studied in [25]. A detailed discus-
sion about gravitational lensing in the presence of a non-
uniform plasma is carried out by Bisnovatyi-Kogan and
Tsupko in [26]. Later on, they extended their research for
the Schwarzschild spacetime [27–29]. One may get specific
details from [30–36] in reference to the above mentioned
analysis.

Nowadays, shadow of the black hole in the presence
of plasma has become the field of interest for researchers.
Recently, a profound examination has been established to
study the shadow of the Schwarzschild and Kerr space-
time coupled with a plasma medium in the following papers
[37,38] using the Synge formalism [39] and the performance
of the plasma medium work was studied using a different
approach in [40]. We shall put forth the Synge formulism
analysis in analogy to the aforementioned papers to retrace
the influence of plasma on the Kerr–Newman space-time. It
is a stationary and an axisymmetric solution to the Einstein–
Maxwell equations depending on the mass, angular momen-
tum and electrical charge of the black hole. The surface geom-
etry of the Kerr–Newman metric and its physical properties
are well described in [41]. After this work was published,
several works were performed in a charged black hole [42–
44].
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The rest of our paper is organized as follows. In Sect. (2),
we consider the equations of motion of photons around an
axially symmetric black hole in the presence of a plasma.
In Sect. (3) the effective potential along with the generic
photon orbits are studied. Formalism for the shadow cast
by the space-time under consideration is set-up in Sect. (4).
The subsections of Sect. (4) incorporate the analysis of the
shadow and energy emission by taking into account a non
rotating charged black hole. Section (5) includes an elaborate
analysis of the deflection angle caused by the deviation of
photons in a weak-field approximation. Finally, in Sect. (6)
we summarize our main results.

2 Photon motion around the charged black hole in the
presence of a plasma

In Boyer–Lindquist coordinates the charged rotating Kerr–
Newman spacetime, an exact solution of the Einstein–
Maxwell field equations, is characterized by the line element
[42–44],

ds2 = − Δ

ρ2 (dt − a sin2 θdφ)2 + ρ2

Δ
dr2 + ρ2dθ2

+ sin2 θ

ρ2 [adt − (r2 + a2)dφ]2, (1)

where Δ = r2 − 2Mr + a2 + Q2 and ρ2 = r2 + a2 cos2 θ .
The parameters M , Q and a corresponds to the total mass,
electric charge and specific angular momentum of the black
hole, respectively. The Kerr metric is recovered when the
charge Q is annulled. Roots of the function Δ,

r± = M ±
√
M − a2 − Q2, (2)

determine the radii of the inner and outer horizons of the
black hole. The inner horizon r− and the outer horizon r+
are generally termed as the Cauchy horizon and the event
horizon, respectively. The event horizon acts as a threshold
from where no turning back is possible. The charge Q has
an evident influence on the horizon of the black hole which
moves to a farther position at Q = 0, shown in Fig. 1.

We consider a static inhomogeneous plasma in the gravita-
tional field with a refractive index n, the expression of which
was formulated in general terms by Synge [39],

n2 = 1 + pμ pμ

(pνuν)2 , (3)

pμ and uν refers to the four-momentum and four-velocity
of the massless particle. One may obtain the vacuum case
when n = 1. The Hamilton–Jacobi equation for a black hole

Fig. 1 The spin parameter a dependence of the radial coordinate r for
the different values of electric charge Q. The values assigned to Q (top
to bottom) are 0,0.2,0.4,0.6 and 0.8

surrounded by a plasma is

H(xμ, pμ) = 1

2

[
gμν pμ pν + (n2 − 1)(pνu

ν)2
]
. (4)

Now we use the Hamilton–Jacobi equation which defines
the equation of motion of the photons for a given space-time
geometry

H(xμ, pμ) = 1

2

[
gμν pμ pν − (n2 − 1)

(
p0

√
−g00

)2]
. (5)

The equations ẋμ = ∂H/∂pμ and ṗμ = ∂H/∂xμ define
the trajectories of the photon in the plasma medium, given
as below

ρ2 ṫ = (a2 + r2)

Δ

(
n2E(a2 + r2) − aL

)

+a sin2 θ

(
L

sin2 θ
− an2E

)
, (6)

ρ2φ̇ = a

Δ
(E(a2 + r2) − aL) +

(
L

sin2 θ
− aE

)
, (7)

ρ2ṙ = √
R, (8)

ρ2θ̇ = √
Θ. (9)

The overdot denotes differentiation with respect to the
particle’s proper time τ . The functions R(r) and Θ(θ) admit
the following expressions,

R = −Δ(K − 2aLE) + (
nE(a2 + r2) − aL

)2

+2aLE(n − 1)(a2 + r2), (10)
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Θ = K − 1

sin2 θ

(
L2 + a2n2E sin4 θ

)
. (11)

Here, K is the constant of separation. E and L are the con-
served quantities acting along the axis of symmetry termed,
respectively, as the energy and angular momentum of the
photon.

3 Effective potential and photon sphere

For a systematic rational reasoning, it is necessary to intro-
duce a specific form of the refractive index n [26,27], defined
as follows

n2 = 1 − ωe
2

ω2 . (12)

Here, ωe is the plasma electron frequency and ω is the pho-
ton frequency perceived by a distant observer. The photon
frequency depends on the spatial coordinates xμ due to the
gravitational field. The light propagation through the plasma
medium is possible, provided that ω2 > ωe

2. The plasma
frequency has the following analytic expression

ω2
e = 4πe2N (r)

m
, (13)

where e,m and N (r) are the charge, mass and number density
of the electron, respectively. By the implication of radial law
density [31]

N (r) = N0

rh
, (14)

where h ≥ 0, the plasma frequency becomes

ωe
2 = k

rh
. (15)

For simplicity, we shall take h = 1 [31,38]. The radial
potential can be directly evaluated from (8) to study the
generic photon behaviour in the presence of plasma,

Veff = −a2
(
L2 − aE(2L − an2E)

) + Δ(2aLE − K)

r4

+2aE(L − an2E) − n2E2r2

r2 . (16)

The circular orbits exist at ṙ = 0 and the massless parti-
cle attains its stability at a fixed stationary position r under
the constraint ∂r Veff . The particle may follow a marginally
stable circular motion between the relative extrema satisfy-
ing the condition ∂2

r Veff [45]. The charge Q of the black
hole gives an additional strength to it, as illustrated in Fig.
2. For the Kerr Black hole at Q = 0, the effective potential
attains its maximum value with the highest potential barrier.
It is observed that the minimum values of Q yields an extra
shield to the photons against the black hole gravity, hence,
enhancing their stability. The plasma density increases with

an increase in the refractive index, consequently, the pho-
ton’s strength depletes to carry on its motion in the black
hole vicinity. It is also incurred that the barrier is sufficiently
reduced when n = 1 (vacuum case) [38].

We follow the formulism of [37] to find the photon orbits,
by considering a pressureless inhomogeneous plasma in the
equatorial plane, θ = π/2. Using (5) we obtain the flight
path of the photons in a unique way,
(
dr

dφ

)2

= −grr (gtt E2 + gφφL2 − 2gtφLE + we
2)

(gφφL − gtφE)2 . (17)

For a circular photon orbit rph we have dr/dφ = 0, which
further yields a distinguished special parameter L/E in the
form of a function

ξ(r) = L

E
=

gtφ +
√

(gtφ)2 − gφφ(gtt + we
2

E2 )

gφφ
, (18)

here, γ = we
E is the dimensionless plasma constant. Note that

γ = 0 corresponds to the vacuum case. The working out of
dξ(r)/dr = 0 gives a general expression, the roots of which
provide the radius of the photon orbits,

0 = (Δ − a2)
[
r2(2Q2 + r(−3M + r)

) − γ 2(Δ − a2)2]

−a(Q2 − Mr
)[

2r
√

Δ(r2 − γ 2(Δ − a2))

+a((Δ − a2)γ 2 − 2r2)
]
. (19)

We have solved numerically (19) to examine the influence of
plasma and charge parameter on the spherical photon orbits.
The left panel of Fig. 3 exhibits the dependence of the radius
on the plasma parameter for different values of Q. The rph

increases in the presence of γ , hence, the orbit shifts at a far
distance due to rise in the plasma factor. The right panel of
Fig. 3 shows the effect of charge parameters on the radius for
different values of γ . Thus, it is inferred that the orbits come
closer to the black hole due to the electric field intensity. It is
noticed that the radius of the orbits is generally larger at Q =
0. It is worth mentioning that the silhouette of the black hole,
elaborated in the subsequent section is observed only when
rph > r+ [5], i.e, the radius of the spherical photon orbit must
be greater than that of the event horizon. An infinitesimal
gravitational perturbation would drive the massless particles
into the black hole or toward spatial infinity.

4 Shadow of Kerr–Newman black hole in presence of
plasma

We first present an ansatz for the analysis of the shadow cast
by the Kerr–Newman gravity in the presence of a plasma. Let
us consider the black hole between a bright source of light and
an observer situated at fixed a Boyer–Lindquist coordinate
(r0, θ0), where θ0 is the inclination angle between the rotation
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Fig. 2 Radial potential for photons with fixed parameters E = 0.9 and L = 4. In the left panel the values ascribed to Q (top to bottom) are 0, 0.2,
0.4, 0.6 and 0.8 and in the right panel n (top to bottom) has the values 0.2, 0.4, 0.6, 0.8 and 1

Fig. 3 The photon orbits by varying γ and Q. In the left and right panel from top to bottom the values of Q and γ are 0, 0.1, 0.2, 0.3, 0.4, 0.5 and
0.6, respectively

axis of the black hole and the line of sight of the observer
and withal r0 → ∞. The light waves emitted by the source
reach the observer after gravitational deflection whereas, the
photons with comparably less impact factor gets absorbed by
the black hole. As a result, a dark patch in the space is created
which is called the shadow. The boundary of this shadow
provides us details regarding the intrinsic configuration of
the black hole. Utilizing the conserved quantities along with
the constant K, one can conveniently introduce the impact
parameters ξ = L

E and η = K
E2 . With reference to (10) the

orbits must satisfy the conditions, R(r) = ∂r R(r) = 0 which
are fulfilled by the impact parameters and are further used to
explore the contour of the black hole shadow.

ξ = A +
√
A2 − B, (20)

η = 2aMξ − (a2 + r2)
(
2rn2 + nn

′
(a2 + r2)

)

M − r
. (21)

where,

A =
(
M(a2 − r2) + r Q2

)

a(M − r)
,

B = (a2 + r2)
((
M(a2 − r2) + r Q2 + rΔ

)
n2 + Δnn

′
(a2 + r2)

)

a2(M − r)
.

(22)

The contour of the shadow in terms of celestial coordi-
nates, (α, β) is given as below,

α = lim
r0→∞

(
− r2

0 sin θ0
dφ

dr

)
, (23)

β = lim
r0→∞

(
r2

0
dθ

dr

)
. (24)

Calculating dφ/dr and dθ/dr using equations (7–9), we
have

α = −ξ csc θ

n
, (25)

β = ±
√

η − ξ2 csc2 θ − a2n2 sin2 θ

n
. (26)

In Fig. 4 the shadow of the rotating black hole for the dif-
ferent values of black hole charge parameter Q, inclination
angle θ0 and the plasma factor is shown. We made a special
choice of the plasma frequency in the form ωe/ω = k/r . It is
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Fig. 4 The shadow of the black hole surrounded by a plasma for the different values of the charge parameter Q, inclination angle θ0, and the
refraction index n. The solid lines in the plots correspond to the vacuum case, while for dotdashed lines the plasma frequency is k/M = 0.5 and a
= 0.4
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clearly seen in Fig. 4, the size and shape of the rotating black
hole surrounded by the plasma gradually gets modified as the
charge and plasma refractive index variate. From a physical
perspective the change in refractive index occurs as a result
of the gravitational red shift phenomenon.

4.1 Shadow of a non rotating charged black hole in
presence of plasma

Now we focus on the static charged black hole, aiming to
understand the charge and plasma effects thoroughly. Using
(25, 26) the radius of the static black hole walled in by a
plasma is obtained as,

Rsh = 1

n(M − r)

[
2Mr(Q2 − Mr) − 2n2r3(M − r)

−nn
′
r4(M − r) + 2Mr{ Q2(Q2 − 2Mr) + M2r2

−n2r(M − r)
(
2Q2 + r(−3M + r)

)

−nn
′
r2(M − r)

(
Q2 + r(−2M + r)

) }1/2]1/2 (27)

For Q = 0, at rph = 3M we retain the radius of the shadow
for Schwarzschild black hole, i.e, Rsh = 3

√
3M [46,47]. The

influence of charge and plasma on the radius of the shadow
for a static charged black hole is demonstrated in Fig. 5.
The relative values of rph are obtained numerically using
(19). The results attained are analogous to [48], the increase
in charge makes the shadow appear smaller to the distant
observer while for the plasma parameter we notice contrary
effects on the radius. When k/M = 0, the shadow emerges
in a much smaller size. In Fig. 6 the evolution of shadow
is represented visually with respect to various charge and
plasma parameters. In the left panel, as the value of charge
adds up the shadow radius is seen to shrink down. It is clearly
shown in the right panel that the radius becomes larger with
the increasing plasma factor.

4.2 Emission energy of a non rotating charged black hole

Black holes are known to emit thermal radiations which lead
to a slow decrease in mass of the black hole until it completely
annihilates [49]. We are interested to examine the energy
emission of the Kerr–Newman black hole in the presence of
plasma using the relation for the Hawking radiation at the
frequency ω

d2E(ω)

dωdt
= 2π2σlimω3

e
ω
T −1

, (28)

where T = κ/2π is the Hawking temperature and κ is the
surface gravity. Here, for convenience, we consider the case
when the black hole is static and spherically symmetric. The
limiting constant σlim defines the value of the absorption

cross section vibration for a spherically symmetric black hole

σlim ≈ πRsh
2, (29)

where Rsh is computed from (27). Therefore, (28) takes the
form [8]

d2E(ω)

dωdt
= 2π3Rsh

2ω3

e
ω
T −1

. (30)

The energy radiation of a black hole in the presence of
plasma is directly proportional to the size of its shadow. The
dependence of the energy emission rate on the frequency for
the different values of charge and plasma parameters is illus-
trated in Fig. 7. It is observed that the rate of emission is
higher for the small charge values, thus, at Q = 0, com-
paratively a large amount of energy is liberated. In case of
the plasma parameter the emission rate exhibits rise with the
increasing values of the plasma. In the absence of plasma
k/M = 0, a less amount of energy release is detected.

5 Lensing in weak field in the presence of plasma

We first present a model of weak-field for the non rotating
Kerr Newman black hole to study the gravitational lensing
more precisely. The weak-field approximation is given by the
relation

gμν = ημν + hμν , (31)

ημν and hμν refer to the Minkowski metric and perturba-
tion metric, respectively. They satisfy the below mentioned
properties

ημν = diag(−1, 1, 1, 1) ,

hμν � 1, hμν → 0 under xi → ∞ ,

gμν = ημν − hμν, hμν = hμν . (32)

Taking into account the weak-field approximation and
weak plasma strength, for photon propagation along z direc-
tion, one can easily obtain the angle of deflection complying
the steps in [34], we have

α̂k = 1

2

∫ ∞

−∞

(
h33 + h00ω

2 − ωe
2

ω2 − ω2
e

)

,k
dz . (33)

Note that negative and positive sign for α̂b indicate respec-
tively deflection towards and away from the central object.
At large r , the black hole metric could be approximated to
[35]

ds2 = ds2
0 +

(
2M

r
− Q2

r2

)
dt2 +

(
2M

r
− Q2

r2

)
dr2, (34)

where ds2
0 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2).
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Fig. 5 The radius of the shadow as a function of charge and plasma parameter. In the left panel the solid, dashed and dotted plots correspond to
k/M= 0, 0.5 and 0.7, respectively. In the right panel the solid, dashed and dotted plots correspond to Q/M = 0, 0.5, and 0.7, respectively

Fig. 6 A visualization of the silhouette for distinct charge and plasma parameters. In the left panel the solid, dashed and dotted plots correspond
to Q/M = 0, 0.5 and 0.7, respectively. In the right panel the solid, dashed and dotted plots correspond to k/M = 0, 0.5 and 0.7, respectively

Fig. 7 Energy emission of the black hole for distinct charge and plasma parameters. In the left panel the solid, dashed and dotted plots correspond
to Q/M = 0, 0.5 and 0.7, respectively. In the right panel the solid, dashed and dotted plots correspond to k/M = 0, 0.5 and 0.7, respectively
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Fig. 8 Deflection angle α̂b as a function of the impact parameter b for different charge and plasma values. In the left panel the values of Q (top to

bottom) are 0, 0.5, 0.7 and 0.9 and in the right panel the values 4πe2N0r0
mω2∞M

(bottom to top) are 0, 0.5, 0.7 and 0.9

In the Cartesian coordinates the components hμν can be
written as

h00 =
(
Rg

r
− Q2

r2

)
,

hik =
(
Rg

r
− Q2

r2

)
nink ,

h33 =
(
Rg

r
− Q2

r2

)
cos2 χ , (35)

where Rg = 2M .
Using the above expressions in the formula (33), one can

compute the light deflection angle for a black hole in plasma

α̂b =
∫ ∞

0

∂

∂b

[ (
Rg√

b2 + z2
− Q2

b2 + z2

)
z2

b2 + z2

+ 1

1 − ω2
e/ω

2

(
Rg√

b2 + z2
− Q2

b2 + z2

) ]
dz , (36)

where b2 = x2
1 + x2

2 is the impact parameter, and x1 and x2

are the coordinates on the plane orthogonal to the z axis, and
the photon frequency at large r is given by

ω2 = ω2∞(
1 − Rg

r + Q2

r2

) . (37)

Here, ω∞ is the asymptotic value of photon frequency. In the
approximation of the charge and large distance, the expres-
sion (12), after expanding in series on the powers of 1/r , can
be approximated to

n2 =
(

1 − ω2
e

ω2

)−1

	 1 + 4πe2N0r0

mω2∞r
− 4πe2N0r0Rg

mω2∞r2 .(38)

Using this approximation one can easily find the deflection
angle α̂b of the light around a black hole in presence of plasma

α̂b = 2Rg

b

(
1 + π2e2N0r0

mω2∞b
− 4πe2N0r0Rg

mω2∞b2

)

− Q2

4b2

(
3π + 4πe2N0r0

mω2∞b

(
8 − 3πRg

b

))
. (39)

We get α̂b = 2Rg/b in the absence of charge and plasma
for the Schwarzschild black hole [29]. The dependence of
the angle of deflection α̂b on the impact parameter b for var-
ious charge and plasma parameters is demonstrated in Fig.
8. In the left panel as the value of charge increases the angle
of deflection decreases and it is seen that α̂b is maximum
when the charge is turned off, i.e., Q = 0. We observe that
the deflection angle α̂b increases with the gradual supple-
ment in the plasma parameter (right panel). Also, one can
clearly notice that the deviation of photons is smaller when
the plasma factor is removed from the black hole background.

6 Conclusion

In this paper we reviewed some well known features of the
black hole, i.e., the black hole silhouette, energy emission
and the weak field lensing in the background of the Kerr–
Newman gravity walled in by a plasma medium. The results
are recovered for the Schwarzschild metric when the charge
and spin parameter are excluded. The impact of the charge
and plasma parameters on the aforesaid properties have been
investigated explicitly. It is construed that the shadow size
viewed by a distant observer is smaller as the charge param-
eter is increased and by supplementing the plasma factor the
size of the shadow appears to be larger. Since, the energy
liberated from the black hole depends on the radius of the
shadow, therefore, rate of energy emission from the black
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hole is higher when the black hole is surrounded by a plasma.
As far as angle of deflection is concerned, the photons are
observed to experience an increase in the deviation as the
plasma factor gradually adds up. While on the other hand,
angle of deflection sufficiently reduces when the amount of
charge parameter rises. Nevertheless, it is investigated that
the Kerr–Newman black hole experiences a contradictory
influence of the charge and plasma parameters.
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