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Abstract Painlevé–Gullstrand coordinates, a very useful
tool in spherical horizon thermodynamics, fail in anti-de Sit-
ter space and in the inner region of Reissner–Nordström. We
predict this breakdown to occur in any region containing neg-
ative Misner–Sharp–Hernandez quasilocal mass because of
repulsive gravity stopping the motion of PG observers, which
are in radial free fall with zero initial velocity. PG coordinates
break down also in the static Einstein universe for completely
different reasons. The more general Martel-Poisson family
of charts, which normally has PG coordinates as a limit, is
reported for static cosmologies (de Sitter, anti-de Sitter and
the static Einstein universe).

1 Introduction

Black hole thermodynamics is an important area of modern
theoretical physics linking quantum processes and classical
gravity. The thermodynamics of stationary horizons is well
developed but, when horizons become dynamical (i.e., time-
like or spacelike apparent/trapping horizons instead of null
event horizons [1]), our understanding of their thermodynam-
ics drops dramatically. A valuable tool to obtain the Hawking
temperature of time-dependent horizons is the tunneling for-
malism pioneered by Parikh and Wilczek [2], which uses
Painlevé–Gullstrand (PG) coordinates [3,4] penetrating the
horizon (see [5] for a review). A chacteristic feature of PG
coordinates is that the three-dimensional spatial sections of
spacetimes foliated by these coordinates are flat. PG coor-
dinates constitute a very useful chart also in other problems
in classical and quantum gravity where Schwarzschild-like
(or “curvature”) coordinates fail [1,6–23]. Therefore, from
the point of view of tool building and in view of their many
applications, it is important to have a complete understanding
of PG coordinates.
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It is sometimes stated explicitly in the literature that
all static and spherically symmetric spacetimes admit PG
coordinates, but there are such situations of physical inter-
est where PG coordinates fail, and one must resort to less
optimal tools. To be clear, we reserve the name “Painlevé–
Gullstrand coordinates” for a foliation of a spherically sym-
metric spacetime with flat spatial sections: this is an essen-
tial feature of these coordinates that we want to preserve.
Other very useful coordinates in the literature (e.g., those of
[24] for the Reissner–Nordström spacetime) recast a spheri-
cally symmetric line element in a form close to the Painlevé–
Gullstrand one, but do not have flat spatial sections. These
situations include the Schwarzschild-anti de Sitter family of
black holes. It turns out that the problem is not the black
hole itself, but rather the anti-de Sitter background in which
the latter is embedded. It has been pointed out that PG coor-
dinates cannot be constructed for anti-de Sitter space [25].
On the other hand, a recipe that is quite general to construct
PG coordinates in spherically symmetric spacetimes exists
[12,26]. Here we explain the difficulties with anti-de Sitter
space and with many other spherical geometries (static or
not), from both the mathematical and the physical points of
view.

PG coordinates [3,4] are just a special case (correspond-
ing to a special value of the parameter) of the more general
one-parameter Martel–Poisson family of charts. Therefore,
we first discuss the general Martel–Poisson family. Not sur-
prisingly, the prototypical geometry in which both PG and
Martel–Poisson coordinates were originally introduced is the
Schwarzschild spacetime, to which one often refers to gain
physical intuition for more general situations, expecially in
black hole thermodynamics. We will abide to this unwritten
rule and use the Schwarzschild spacetime to shed light on
different geometries.

Motivated by the puzzle with anti-de Sitter space, we con-
sider static cosmological metrics, including de Sitter and
anti-de Sitter space and the Einstein static universe. The
Martel–Poisson coordinates [26] for the Schwarschild space-
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time are based on radial timelike geodesics and they use as
time coordinate the proper time of observers in radial free fall.
Martel and Poisson [26] give a detailed mathematical con-
struction and physical interpretation for the Schwarzschild
geometry, and also outline how to construct similar coor-
dinates for generic static spherically symmetric spacetimes
[26]. In the realm of cosmology, de Sitter and anti-de Sit-
ter spaces and the Einstein static universe are spherically
symmetric and locally static, like Schwarschild. The main
difference with respect to Schwarzschild in the construction
of Martel–Poisson coordinates is that one needs to consider
outgoing massive observers in radial motion starting from
a centre instead of ingoing observers falling radially from
infinity. This fact leads to some differences with respect to
the Martel-Poisson treatment, which are highlighted here.

Let us begin by reviewing Martel–Poisson coordinates
(and their special PG subcase) for the Schwarzschild space-
time1 [26]

ds2 = −
(

1 − 2M

r

)
dt2 + dr2

1 − 2M/r
+ r2dΩ2

(2)

≡ − f dt2 + dr2

f
+ r2dΩ2

(2), (1)

where dΩ2
(2) = dϑ2 + sin2 ϑ dϕ2 is the line element on

the unit 2-sphere. The Martel–Poisson family of charts is
parametrized by a parameter p spanning the range 0 < p ≤
1. The family includes the Painlevé–Gullstrand coordinates
(for p = 1) and the Eddington–Finkelstein (EF) coordinates
obtained as the limit p → 0. Let τ denote the proper time
along radial timelike geodesics and ua be the particle four-
velocity, which is related to its coordinate 3-velocity by

uμ ≡ dxμ

dτ
= dxμ

dt

dt

dτ
=γ

dxμ

dt
=γ

(
1,

dx
dt

)
≡ (γ, γ v) ,

(2)

wherev is the coordinate 3-velocity andγ (v) = (
1 − v2

)−1/2

is the Lorentz factor. The Martel–Poisson coordinates for the
Schwarzschild spacetime are based on ingoing freely falling
observers with purely radial velocity. The energy E of a par-
ticle of mass m is conserved along the geodesics,

m uct
c = −E , (3)

where tc ≡ (∂/∂t)c is the timelike Killing vector. Introduc-
ing the particle energy per unit mass Ē ≡ E/m, it is

dt

dτ
= Ē

f
. (4)

The normalization ucuc = −1 reads

− f

(
dt

dτ

)2

+ 1

f

(
dr

dτ

)2

= −1; (5)

1 We follow the notation of Ref. [27].

Equation (4) then yields
(
dr

dτ

)2

= Ē2 − f (6)

and

dr

dτ
= −γ v = −

√
Ē2 − f (7)

with v ≡ |v|. At r = ∞, the coordinate time t of
static observers coincides with the proper time τ along the
geodesics and Eq. (7) reads

v∞ ≡
∣∣∣∣drdt

∣∣∣∣∞ =
√
Ē2 − 1. (8)

The parameter p is defined as

p ≡ 1

Ē2
= 1 − v2∞. (9)

The Martel–Poisson coordinates are defined by

dt̄ = dt +
√

1 − p f

f
dr (10)

or, in integral form,

t̄ = t +
∫ √

1 − p f

f
dr (11)

and the Schwarzschild line element becomes

ds2 = − f dt̄2 ± 2
√

1 − p f dt̄dr + pdr2 + r2dΩ2
(2).

(12)

For p = 1, which corresponds to observers infalling radially
from infinity with zero initial velocity v∞ = 0, the Martel–
Poisson coordinates reduce to the more familiar PG coordi-
nates in which the Schwarzschild line element assumes the
form

ds2 = −
(

1 − 2M

r

)
dt̄2 + 2

√
2M

r
dt̄dr + dr2 + r2Ω2

(2)

(13)

and

t̄ = t + 4M

⎛
⎝

√
r

2M
+ ln

√∣∣∣∣
√
r/(2M) − 1√
r/(2M) + 1

∣∣∣∣
⎞
⎠ . (14)

In the limit p → 0, EF coordinates [28,29] are obtained [26].
First, one introduces the tortoise coordinate

r∗ ≡ r+2M ln
∣∣∣ r

2M
− 1

∣∣∣ =r + 2M ln

∣∣∣∣ r

2M

(
1 − 2M

r

)∣∣∣∣ ,
(15)

whose differential satisfies

dr∗ = dr

1 − 2M/r
. (16)
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The null coordinates (u, v) are introduced by

du ≡ dt − dr∗, (17)

dv ≡ dt + dr∗, (18)

and dt = du+dr∗ = dv−dr∗. Ingoing (−) EF coordinates
[28,29] use the advanced time v and the Schwarzschild line
element (1) is written as

ds2
(−) = −

(
1 − 2M

r

)
dv2 + 2dvdr + r2dΩ2

(2), (19)

while outgoing (+) coordinates use the retarded time u, with

ds2
(+) = −

(
1 − 2M

r

)
du2 − 2dudr + r2dΩ2

(2). (20)

Martel and Poisson [26] proceed to generalize the construc-
tion of their coordinates to more general static and spherically
symmetric spacetimes

ds2 = −e−2Φ f dt2 + dr2

f
+ r2dΩ2

(2) (21)

with Φ = Φ(r), f = f (r). By redefining the time coordi-
nate according to

T = t +
∫ √

e2Φ − p f

f
dr, (22)

the line element becomes

ds2 = −e−2Φ f dT 2 + 2e−2Φ
√

e2Φ − p f dT dr

+pe−2Φdr2 + r2dΩ2
(2) (23)

PG coordinates are obtained in the limit p → 1 and 3-
surfaces of constant T are flat [26].

This construction breaks down when the argument of the
square root becomes negative. The failure for anti-de Sit-
ter space and for the inner region of the Reissner–Nordström
metric was noted in [25]. These two regions have in common
a negative quasilocal mass. We show in Sect. 4 that, whenever
this happens, PG coordinates cannot be introduced and we
highlight the physical reason: since gravity becomes repul-
sive, a massive test particle with zero initial velocity cannot
overcome this repulsion and it cannot even begin to travel
radially along a radial timelike geodesic. For illustration, we
refer to the case of the Schwarschild naked singularity (which
is illuminating as usual) and then revert to anti-de Sitter space.

2 Martel–Poisson family of charts for de Sitter space

Various coordinate charts in de Sitter space are reviewed in
Refs. [30,31]. Here we limit ourselves to the Poisson–Martel
family of charts and its limits. Begin from the de Sitter line

element in Schwarzschild-like (or curvature) coordinates

ds2 = −
(

1 − H2R2
)
dT 2 + dR2

1 − H2R2 + R2dΩ2
(2)

≡ − f dT 2 + dR2

f
+ R2dΩ2

(2), (24)

where H is constant and the line element is locally static in
the region 0 ≤ R ≤ H−1, and define a new time coordinate
T̄ by2

dT̄ = dT +
√

1 − p f

f
d R, (25)

where p is a parameter labelling different charts. Clearly, the
components of the differential dT̄ = c1dT + c2dR satisfy
∂c1/∂R = ∂c2/∂T and dT̄ is exact.

To see the physical meaning of p, write the equation of
outgoing (Ṙ > 0) radial timelike geodesics

ds2

dτ 2 = − f

(
dT

dτ

)2

+ 1

f

(
dR

dτ

)2

= −1, (26)

where τ is the proper time along timelike geodesics. Since the
de Sitter metric is locally static, the energy is conserved along
geodesics. If T a = (∂/∂T )a denotes the timelike Killing
vector and pc = muc the four-momentum of a massive par-
ticle of mass m and 4-velocity uc, then paT a = −E is con-
stant along the geodesic. Using the energy per unit mass
Ē ≡ E/m, we have u0 = dT/dτ = Ē/ f . Substituting into
the radial timelike geodesic equation (26) yields
(
dR

dτ

)2

= Ē2 − f (27)

and

dR

dτ
= ±

√
Ē2 − f (28)

with the upper sign for outgoing and the lower sign for ingo-
ing geodesics. Introduce the parameter p ≡ 1/Ē2 and con-
sider the radial component of the four-velocity of the massive
particle

dR

dτ
= dR

dt

dt

dτ
= ±γ (v) v = ± v√

1 − v2
= ±

√
Ē2 − f ,(29)

where γ (v) is the Lorentz factor and v = |v| is the magnitude
of the coordinate 3-velocity.

At R = 0 we have∣∣∣∣dRdτ

∣∣∣
R=0

∣∣∣∣ = v0√
1 − v2

0

=
√
Ē2 − 1; (30)

2 Changing the sign of the term in dR in Eq. (25) leaves dT̄ an exact
differential and changes the sign of dR/dτ and switches from ingoing
to outgoing geodesics and vice-versa. Since in the following we are
already considering both outgoing and ingoing geodesics, we do not
need to include a ± sign here.
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then

p ≡ 1

Ē2
= 1 − v2

0 . (31)

The range of values of the parameter p is 0 < p ≤ 1, as for
the Schwarzschild case, although now there is a difference:
the observer starts out at R = 0 instead of R = ∞ and
it is outgoing instead of ingoing. In the de Sitter case one
cannot start at R = ∞ because in the region R > RH ≡
H−1 beyond the de Sitter horizon the geometry is not static
and there is no conserved energy E along timelike geodesics
there.

In principle, one could consider a radially ingoing timelike
observer starting out at the de Sitter horizon RH with velocity

vH ≡ −dR/dτ

∣∣∣
R=H−1

= −Ē , but the (t, R) coordinates fail

there.
In terms of the new time coordinate T̄ , the line ele-

ment (24) becomes

ds2 = − f dT̄ 2 ± 2
√

1 − p f dT̄ dR + pdR2 + R2dΩ2
(2)(32)

with the upper [lower] sign referring to ingoing [outgoing]
timelike geodesics. The metric is regular at the horizon RH =
H−1: these coordinates penetrate the horizon and the time
slices dT̄ = 0 are not flat unless p = 1.

The relation (25) can be integrated explicitly to provide
the new time

T̄ = T +
∫

dR

√
1 − p f

f
(33)

= T + √
1 − p

∫
dR

√
1 + p

1−p H2R2

1 − H2R2 . (34)

Using H̄ ≡
√

p
1−p H and α ≡

√
1−p
p ∈ R, one obtains

T̄ = T + √
1 − p

∫
dR

√
1 + H̄2R2

1 − α2 H̄2R2

= T + 1

α2 H̄

[√
α2 + 1 tanh−1

(√
α2 + 1 H̄ R√
1 + H̄2R2

)

− sinh−1 (
H̄ R

)]

= T+
√
p

H

⎡
⎣ 1

p
tanh−1

⎛
⎝ 1√

p(1 − p)

HR√
1+ p

1−p H2R2

⎞
⎠

− sinh−1
(√

p

1 − p
H R

)]
+ const. (35)

2.1 Painlevé–Gullstrand coordinates

For the parameter value p = 1, corresponding to vanishing
initial velocity of the observer v0 = 0, the line element (32)

becomes

ds2 = − f dT̄ 2 ± 2HR dT̄ dR + dR2 + R2dΩ2
(2) (36)

(upper sign for ingoing, lower for outgoing geodesics), which
is the de Sitter line element in Painlevé–Gullstrand coordi-
nates, which are therefore contained in the Martel–Poisson
family of charts. Now the 3-spaces of constant time T̄ are
Euclidean.

The Painlevé–Gullstrand time coordinate obtained from
Eq. (33) for p = 1 is

T̄ = T +
∫

dR

√
1 − f

f
= T ± 1

2H

∫
dR

H R

1 − H2R2

= T ± 1

2H
ln

∣∣∣1 − H2R2
∣∣∣ + const. (37)

This is precisely the coordinate called “Painlevé–de Sitter
time” used to study Hawking radiation with the tunneling
method in Ref. [32].

2.2 Eddington–Finkelstein coordinates

EF coordinates for de Sitter space are used routinely, and
they parallel the EF coordinates for Schwarzschild spacetime
[28,29]. The analogue of the tortoise coordinate is

R∗ ≡ 1

2H
ln

∣∣∣∣1 + HR

1 − HR

∣∣∣∣ = 1

2H
ln

∣∣∣∣ 1 − H2R2

(1 − HR)2

∣∣∣∣ , (38)

whose differential satisfies

dR∗ = dR

1 − H2R2 . (39)

Null coordinates (U, V ) are introduced by

dU = dT − dR∗, (40)

dV = dT + dR∗, (41)

and

dT = dU + dR∗ = dV − dR∗ = dU + dV

2
,

dR∗ = dV − dT = dT − dU = dV − dU

2
. (42)

Although the parameter p spans the range (0, 1), one can
formally obtain EF coordinates by taking the limit p → 0,
which lies outside of this range, in the relevant equations. In
this limit, the line element (32) becomes

ds2 = −
(

1 − H2R2
)
dT̄ 2 ± 2dT̄ dR + R2dΩ2

(2) (43)

which is the well known de Sitter line element in EF coordi-
nates ( e.g., [1,33]), with the upper sign denoting EF coor-
dinates based on ingoing null geodesics and the lower sign
denoting those based on outgoing null geodesics. In this limit
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the coordinate T̄ (renamed V ) is obtained by integrating in
Eq. (33):

V ≡ lim
p→0

T̄ = T +
∫

dR

1 − H2R2

= T + 1

H
tanh−1 (HR)

= T + 1

2H
ln

(
1 + HR

1 − HR

)
≡ T + R∗ (44)

and becomes the (null) advanced time. Introducing the
retarded time as the second null coordinate

U ≡ T − 1

2H
ln

(
1 + HR

1 − HR

)
≡ T − R∗, (45)

the line element (43) can be written as

ds2 = −
(

1 − H2R2
)
dV

(
dV ∓ 2dR∗) + R2dΩ2

(2)

= −
(

1 − H2R2
) [

dV 2 ± dV (dV − dU )
]

(46)

(upper sign for ingoing and lower for outgoing geodesics),
where

R (U, V ) = 1

H
tanh

[
H (V −U )

2

]
. (47)

Using

dT = dU + dV

2
, (48)

dR =
(
1 − H2R2

)
2

(dV − dU ) , (49)

one obtains

ds2
(−) = −

(
1 − H2R2

)
dV (2dV − dU ) + R2dΩ2

(2) (50)

for ingoing null geodesics and

ds2
(+) = −

(
1 − H2R2

)
dUdV + R2dΩ2

(2) (51)

for outgoing null geodesics. These line elements can be
rewritten in terms of only one null coordinateU or V , respec-
tively, obtaining

ds2
(+) = −

(
1 − H2R2

)
dU 2 − 2dUdR + R2dΩ2

(2) (52)

ds2
(−) = −

(
1 − H2R2

)
dV 2 + 2dVdR + R2dΩ2

(2). (53)

3 Martel–Poisson charts for anti-de Sitter space

Begin from the de anti-Sitter line element in curvature coor-
dinates

ds2 = −
(

1 + H2R2
)
dT 2 + dR2

1 + H2R2 + R2dΩ2
(2)

≡ − f dT 2 + dR2

f
+ R2dΩ2

(2) (54)

and redefine the time coordinate T → T̄ according to

dT̄ = dT +
√

1 − p f

f
d R. (55)

The equation of outgoing radial timelike geodesics is again

ds2

dτ 2 = − f

(
dT

dτ

)2

+ 1

f

(
dR

dτ

)2

= −1 (56)

and a particle energy is conserved along geodesics, pcT c =
−E , giving
(
dR

dτ

)2

= Ē2 − f (57)

and

dR

dτ
=

√
Ē2 − f (58)

for outgoing geodesics. Introducing p ≡ 1/Ē2 and v0

defined by

dR

dτ

∣∣∣
R=0

=
√
Ē2 − 1 = γ 2

0 v2
0, (59)

the line element (54) becomes

ds2 = − f dT̄ 2 ± 2
√

1 − p − pH2R2 dT̄ dR

+pdR2 + R2dΩ2
(2). (60)

The Martel–Poisson coordinates are only defined for

0 ≤ R ≤
√

1 − p

p
H−1 ≡ R+. (61)

In the limit p → 1− in which one expects to recover
Painlevé–Gullstrand coordinates, R+ → 0 and this coor-
dinate chart disappears.

If 0 < p < 1, one can again obtain the time coordinate
T̄ in finite terms. Using the same H̄ and α as in the previous
section,

T̄ = T +
∫

dR

√
1 − p f

f

= T + √
1 − p

∫
dR

√
1 − p

1−p H2R2

1 + H2R2

= T +
√

1 − p

α2 H̄

[√
α2 + 1 tan−1

(√
α2 + 1 H̄ R√
1 − H̄2R2

)

− sin−1 (
H̄ R

)]

= T+
√
p

H

⎡
⎣ 1

p
tan−1

⎛
⎝ 1√

p(1 − p)

HR√
1 − p

1−p H2R2

⎞
⎠

− sin−1
(√

p

1 − p
H R

)]
+ const. (62)

123



771 Page 6 of 9 Eur. Phys. J. C (2020) 80 :771

True PG coordinates for this metric, corresponding to the
limit p → 1, do not exist. In addition to the disappearance
of the chart, T̄ becomes complex in this limit. This fact was
noted in Ref. [25]. We come now to the crucial point, which
is more general than the anti-de Sitter geometry. For com-
pleteness, before discussing this central issue, we report the
EF coordinates for anti-de Sitter space.

3.1 Eddington–Finkelstein coordinates

One defines the tortoise coordinate r∗ by imposing that the
restriction of the metric to the 2-space (T, r∗) is explicitly
conformally flat,

− f dT 2 + f −1dR2 = f
(
−dT 2 + dr∗2

)
, (63)

hence dr∗ = dR/ f = dR/
(
1 + H2R2

)
or, in finite form,

r∗ =
∫

dR

1 + H2R2 = tan−1 (HR)

H
. (64)

The EF retarded and advanced times (u, v) are then

u ≡ T − r∗ = T − tan−1 (HR)

H
, (65)

v ≡ T + r∗ = T + tan−1 (HR)

H
. (66)

The outgoing and ingoing EF line elements follow by sub-
stituting dT = du + dr∗ and dT = dv − dr∗ in the line
element (60),

ds2
(+) = − f du2 − 2 du dR + R2dΩ2

(2), (67)

ds2
(−) = − f dv2 + 2 dv dR + R2dΩ2

(2). (68)

Using dr∗ = (dv − du) /2 in Eq. (67) yields

ds2 = − f dudv + R2dΩ2
(2). (69)

4 PG coordinates and Misner–Sharp–Hernandez mass

A rather general recipe to construct PG coordinates for any
spherically symmetric metric (static or not) is given in Ref.
[12]. Begin with the line element in the Abreu–Nielsen–
Visser gauge [12,13]

ds2 = −e2Φ(t,R)

(
1 − 2MMSH(t, R)

R

)
dt2

+ dR2

1 − 2MMSH(t, R)/R
+ R2dΩ2

(2) (70)

employing the areal radius R as the radial coordinate.
Here MMSH(t, R) is the Misner–Sharp–Hernandez mass well
known in spherical fluid mechanics and in gravitational col-
lapse [34,35]. (It is not trivial that this is the object appearing
in Eq. (70) – see [12,13] for an explanation.)

Define the new time coordinate t̄ (t, R) by

dt̄ = ∂ t̄

∂t
dt + ∂ t̄

∂R
dR ≡ ˙̄tdt + t̄ ′dR; (71)

substituting into the line element and requiring gRR = 1
leads to [12]

t̄ ′ = ±
√

2MMSH/R

1 − 2M/R
eΦ ˙̄t, (72)

which has always a solution. Then the line element in PG
coordinates takes the form

ds2 = −
[
c2 (

t̄, R
) − v2 (

t̄, R
)]

dt̄2 + 2v
(
t̄, R

)
dt̄d R

+R2dΩ2
(2), (73)

where

c
(
t̄, R

) = e−Φ

˙̄t , (74)

v
(
t̄, R

) = c
(
t̄, R

) √
2MMSH

R
≤ c. (75)

In practice, the function t̄ (t, R) is not always determined
explicitly. This is equivalent to introducing an integrating
factor to make dt̄ an exact differential [1].

It is clear that the Nielsen–Visser procedure breaks down
in regions where the mass MMSH becomes negative and v

becomes imaginary. This is exactly the case of anti-de Sitter
space in the region 0 ≤ R < H−1 covered by the locally
static coordinates, and of the inner region of the Reissner–
Nordström spacetime pointed out in [25] (although the pro-
cedure of [12] to construct PG coordinates is not mentioned
there). Trivial as it may seem, this observation explains from
themathematical point of view why one cannot construct PG
coordinates in these two spaces and, more in general, in any
region with negative Misner–Sharp–Hernandez mass.

Let us come now to the physical explanation. As usual, the
Schwarzschild spacetime taken as an example sheds light on
other geometries. Consider the Schwarzschild spacetime (1)
with negative mass, which has a naked central singular-
ity and no horizons. The Misner-Sharp-Hernandez mass is
MMSH = −|m| < 0 and PG coordinates cannot be con-
structed. The reason is that these coordinates are associated
with observers falling in radially from infinity with zero ini-
tial velocity. Since gravity is now repulsive, these particu-
lar observers cannot even begin to fall because they cannot
overcome the repulsion and must move outwards instead.
There are no ingoing timelike radial geodesics with zero ini-
tial velocity. To wit, repeat the procedure of Sect. 1 to obtain,
along radial timelike geodesics,

(
dr

dτ

)2

= Ē2 − f = Ē2 − 1 − 2|M |
r

; (76)
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imposing zero initial velocity at infinity gives

v2∞ =
(
dr

dτ

)2 ∣∣∣∞ = Ē2 − 1 = 0 (77)

or Ē = 1. Then at any radius r ∈ (0,+∞) it is

(
dr

dτ

)2

= −2|M |
r

< 0, (78)

whic is clearly impossible. Therefore, PG observers cannot
be defined because of the repulsion. The situation is the same
in anti-de Sitter space, except that now the observer starts at
the centre. We have again (changing f → 1 + H2R2),

(
dr

dτ

)2

= Ē2 − f = Ē2 − 1 − H2R2 (79)

and, imposing that the initial velocity at the centre vanishes,

v2
0 ≡

(
dR

dτ

)2 ∣∣∣
R=0

= Ē2 − 1 = 0, (80)

one obtains again Ē = 1 and

(
dr

dτ

)2

= −H2R2 < 0 (81)

for all R ∈ (
0, H−1

)
, which clearly shows the impossibility

of defining PG observers. This is due to the fact that the
negative cosmological constant repels and confines a particle
at the centre. If the particle has zero initial velocity there, it
will not exit. By contrast, the positive cosmological constant
of de Sitter space attracts a particle located at R = 0 toward
larger and larger values of R.

5 Einstein static universe

In general relativity, the static Einstein universe [36] arises
from the delicate balance between a dust and the posi-
tive cosmological constant, and is unstable with respect to
homogenous perturbations [37]. Stability with respect to vec-
tor and tensor perturbations is a different issue, and stability
with respect to inhomogeneous scalar density perturbations
depends on the sound speed cs [38–40], with neutral stability
occurring if cs > 1/

√
5, a range that also maximizes entropy

[39].
Modern interest in this solution arises in braneworld mod-

els [41–44], loop quantum cosmology [45,46], string the-
ory [47], analog gravity [48], with generalizations to non-
constant pressure [49–53]. Further motivation for the study
of the static Einstein universe comes from the possibility
that the early inflationary universe might have begun in an
asymptotic Einstein state [54,55]. Moreover, the static Ein-
stein universe has seen renewed attention as a solution of the

field equations of modified gravity theory [56–63]. Our con-
siderations in this section are independent of the theory of
gravity.

For the positively curved Einstein static universe, intro-
ducing the Martel-Poisson coordinates proceeds as outlined
in [26]. The line element is

ds2 = −dt2 + a2
0

(
dr2

1 − r2 + r2dΩ2
(2)

)
, (82)

where 0 ≤ r < 1 and a0 is constant. This geometry has
the timelike Killing vector ta = (∂/∂t)a and areal radius
R = a0r . The energy E of a test particle is conserved along
the geodesic. Along radial timelike geodesics, dt/dτ = Ē ≡
E/m and, substituting into the normalization ucuc = −1
yields
(
dr

dτ

)2

=
(
Ē2 − 1

)
a2

0

(
1 − r2

)
. (83)

The proper 3-velocity at r = 0 has magnitude

v0 =
∣∣∣∣ drdτ

∣∣∣∣ =
√
Ē2 − 1

a0
(84)

so that the parameter p is again

p ≡ 1

Ē2
= 1 − v2

0, (85)

it has the same meaning as in the de Sitter universe, and it
spans the range 0 < p ≤ 1. Defining the new time coordinate
t̄ by [26]

dt̄ = dt +
√

1 − p

1 − r2 dR, (86)

the line element becomes

ds2 = −dt̄2 + 2

√
1 − p

1 − r2 dt̄d R + pdR2

1 − r2 + R2dΩ2
(2).

(87)

Using α ≡ √
(1 − p)/p, the integration of Eq. (86) gives

t̄ = t + a0
√

1 − p
∫

dr√
1 − r2

= t + a0
√

1 − p arcsin r + const.

≡ t + a0
√

1 − p χ + const., (88)

where χ is the usual hyperspherical radius [27]. The proper
radius a0χ (which could also be called “volume” radius) is
distinct from the areal radius R in spatially curved FLRW
universes.

5.1 PG coordinates

By taking the limit p → 1, dt̄ reduces to dt in Eq. (86),
and the line element (87) reverts to the static FLRW line
element (82) in comoving coordinates, in which the spatial
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sections are positively curved. Again, setting v0 = 0 implies
Ē = 1 and (dr/dτ)2 < 0 along radial timelike geodesics. PG
coordinates cannot be introduced as a limit of the Poisson-
Martel family of charts. The reason is rather simple: since the
matter content of this universe is dust and its collapse is (just)
balanced by the positive cosmological constant, a test particle
with zero radial initial velocity, i.e., initially comoving with
the cosmic substratum, remains comoving with it – that is, not
moving at all. Massive particles on timelike radial geodesics
need nonzero initial velocity to move.

PG coordinates can still be introduced following the pro-
cedure of [12,13], which yields MMSH(R) = R3/

(
2a2

0

)
and

c
(
t̄, R

) = a0

R
t̄ ′, (89)

v
(
t̄, R

) = ±2a0

R
t̄ ′, (90)

and the line element in PG coordinates is

ds2= − a2
0

R2 (t̄ ′)2
(

1 − R

a0

)
dt̄2 ± 2a0 t̄ ′

R
dt̄d R+R2dΩ2

(2).

(91)

The Martel–Poisson interpretation of PG coordinates does
not apply to the static Einstein universe.

5.2 Eddington–Finkelstein coordinates

The tortoise coordinate r∗ is defined so that dr∗ = dR/
√

f
and, integrating,

r∗ =
∫

dR√
1 −

(
R
a0

)2
= a0 sin−1 r = a0χ, (92)

where χ is the usual hyperspherical radius [27]. The retarded
and advanced times are now

u ≡ t − r∗ = t − a0 sin−1 r, (93)

v ≡ t + r∗ = t + a0 sin−1 r. (94)

As expected, v = limp→0 t̄ .
With the substitutions dt = du+dr∗ and dt = dv−dr∗,

the outgoing/ingoing EF line elements are

ds2
(+) = −du2 − 2dudR√

1 − r2
+ R2dΩ2

(2), (95)

ds2
(−) = −dv2 + 2dvdR√

1 − r2
+ R2dΩ2

(2). (96)

Then, using dr∗ = (dv − du) /2, one obtains

ds2 = −dudv + R2dΩ2
(2). (97)

6 Conclusions

The PG coordinates originally introduced for the
Schwarzschild geometry [3,4] have proved very useful in
the study of the thermodynamics of black holes and other
horizons, especially in the context of the tunneling formal-
ism of Parikh and Wilczek [2,32]. It is rather unfortunate
that this coordinate chart cannot be introduced for the most
important space of string theories, anti-de Sitter space asso-
ciated with a negative cosmological constant, and for the
Schwarzschild-anti de Sitter geometry obtained by embed-
ding the Schwarzschild black hole into it. This difficulty has
been noted, but not explained, in the literature and its physical
intepretation has remained a puzzle. One can approach the
problem geometrically by attempting to foliate a static spher-
ical spacetime with a flat foliation ( e.g., [21,25]), but this
avenue does not offer physical insight. We have clarified the
anomaly by looking at the physical meaning of PG observers
in static cosmological spacetimes. While, in asymptotically
flat spherical spacetimes, PG observers fall in radially from
infinity, starting with zero initial velocity, in cosmological
settings instead they fall outward from R = 0. In anti-de
Sitter space, where the Misner–Sharp–Hernandez quasilo-
cal mass is negative and repulsive because of the negative
cosmological constant, a would-be PG observer starting at
the centre with zero initial velocity cannot overcome this
repulsion and move away. Similarly, in the Schwarzschild
spacetime with negative mass, an observer located at infinity
with zero initial velocity does not fall radially toward smaller
radii because it is repelled by the negative mass at the central
singularity.

This physical interpretation applies to generic regions
containing negative Misner–Sharp–Hernandez mass, which
repels instead of attracting. Martel-Poisson observers differ-
ent from PG ones, and Lorentz-boosted with respect to them,
start out radially with non-vanishing initial velocity and have
a chance to overcome the initial repulsion, at least for part
of their journey before they are turned around by repulsion,
which causes Martel–Poisson coordinates to have a range
smaller than the entire locally static region (cf. Eq. (61) for
anti-de Sitter space).

In the case of (non-extremal) Schwarzschild-(anti)-de Sit-
ter black holes, where there are two horizons, radial timelike
geodesics cannot start ar R = 0 nor at R = ∞. In this
case it is more convenient to drop an observer somewhere in
between [64], but then the physical meaning of the Martel–
Poisson observers (and associated coordinates) is altered.
This situation will be discussed separately.
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