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Abstract The effective theory of large-scale structure for-
mation based on �CDM paradigm predicts finite dissipa-
tive effects in the resulting fluid equations. In this work, we
study how viscous effect that could arise if one includes
self-interaction among the dark-matter particles combines
with the effective theory. It is shown that these two possi-
ble sources of dissipation can operate together in a cosmic
fluid and the interplay between them can play an important
role in determining dynamics of the cosmic fluid. In par-
ticular, we demonstrate that the viscosity coefficient due to
self-interaction is added inversely with the viscosity calcu-
lated using effective theory of �CDM model. Thus the larger
viscosity has less significant contribution in the effective vis-
cosity. Using the known bounds on σ/m for self-interacting
darkmatter, where σ and m are the cross-section and mass of
the dark-matter particles respectively, we discuss role of the
effective viscosity in various cosmological scenarios.

1 Introduction

In order to study large scales structures in the Universe, there
are two important length-scales: one is comoving Hubble
scale H−1 and the another is the non-linear scale k−1

NL. Here,
k−1

NL describes the scales at which gravitational collapse takes
place; it is typically considered to be of the order of the size of
a Galactic cluster, i.e., ∼ a few Mpc. The Universe is homo-
geneous at a scale of ∼ 200 Mpc, and there are roughly
153 homogeneous patches within the Hubble volume. The
dynamics of the perturbations can be analyzed in terms of a
parameter εk = kNL/k, where k is the inverse length scale.
The hierarchy between these two scales is quantified by the
parameter εk � 1 which is responsible for the success of
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linear perturbation theory in describing the observed large
scale structures (LSS) (for a recent review see [1] and also
[2]). The dark energy (cosmological constant �) plus cold
dark-matter (CDM) model, (i.e. �CDM) is highly successful
in predicting the large scale structure of the Universe. The
model is consistent with observations from the length scales
typically of the order of ∼ 1 Mpc (i.e., intergalactic scale) to
the scale of the horizon (∼ 15,000 Mpc) [1]. In this model,
structure formation in the dark-matter (DM) sector occurs
more rapidly than the baryonic matter. The structure forma-
tion in the dark sector provides a gravitational potential for
the baryonic matter and hence gives the information about
the distribution of visible matter in the Universe. Although
this model provides extensive agreement with the large scale
structure and cosmic microwave background (CMB) radi-
ation observations, it faces difficulty at small length scale
(� 1Mpc). These problems include ‘missing satellite prob-
lem’ [3,4] (prediction of too many dwarf galaxies within the
viral radius of the Milky Way from the N-body simulations
than observed), the ‘cusp-core problem’ [5] (Observations
show nearly constant dark-matter density in the inner parts
of galaxies, but simulations show a steeper density behavior)
and the ‘too-big-to-fail problem’ [6,7] (from simulations it
is not possible to explain the dynamics of the massive satel-
lites in the Milky Way galaxy). Especially, these problems
become more evident in studying the galaxy rotation curve
[1,8].

There have been attempts to address some of these issues
within �CDM and also by modifying the �CDM model
(see the review [1] and references therein). One of the excit-
ing proposals to resolve the issues related to the small scales
is by introducing self-interaction between dark-matter par-
ticles. Such models are called self-interacting dark-matter
(SIDM) models. In these models typical mean free path of
dark-matter particle is taken to be in the range of 1 kpc to 1
Mpc, proposed as a remedy for tension between observations
and numerical simulations at the scale of a few Mpc (εk � 1)
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[9–11]. Inclusion of interaction can introduce dissipation in
the dark-matter fluid, and one can define coefficients of bulk
and shear viscosities [12]. This small scale physics can affect
the large scale behavior of the Universe- it has been shown
that the viscous effect can lead to an accelerated expansion
of the Universe [12–18]. Further, the dissipative dynamics of
dark-matter can resolve the tension between Planck CMB and
LSS observations [19]. In other scenarios, viscous cosmology
can also be used for constraint the neutrino mass [20]. It also
explains the cosmic chronometer and type Ia supernova data
[21,22]. As well, dissipations can play a role at suppressing
the growth of density perturbations and delaying the nonlin-
earities in the Universe [23]. The dissipative effect may arise
due to dark-matter-baryon interaction also. Recently a sys-
tematical inclusion of baryon-DM interaction has been incor-
porated in the Boltzmann-Fokker-Planck formalism [24,25].
It ought to be noted that the baryon-DM interaction has also
been considered in the literature to explain 21-cm line [26–
29]. The damping of the gravitational waves in the viscous
fluid can be used to constrain the mean free path and the
DM mass [30,31]. In this work we critically examine the
role of the viscosity that arises due to self-interaction among
dark-matter particles.

Before we proceed further, it is important to note that
the dissipative effects may arise even for the case of cold-
collisionless dark-matter (CCDM) in the presence of self-
gravity. In Ref. [2] the effective fluid theory of the long-
wavelength Universe was obtained by integrating out the
short-wavelength perturbations. The effective fluid behaves
as a viscous medium coupled to gravity. Here the short-
wavelength contributes to the viscous stress tensor of the DM
fluid, which depends on the gravitational potential. The effec-
tive fluid description of CCDM is based on the truncation of
the Boltzmann hierarchy [2,32]. This stress tensor can poten-
tially change the bias parameters in the galaxy bispectrum
[33]. The perturbations contributing to the background in the
effective viscous fluid may affect the baryon acoustic oscil-
lation [2,34]. If the self-interaction among dark-matter par-
ticle is turned on it can change the physics described in Ref.
[2] . Thus to incorporate effect of the self-interaction, in the
present work, we consider the Boltzmann kinetic equation in
the relaxation time approximation to obtain the effective fluid
description for the dark-matter particles. We consider two
relaxation times in our scheme: first relaxation time which is
inspired by the effective fluid considered in case of CCDM
[2] and the second relaxation time is based on the cross-
section for SIDM [11,12]. In order to estimate the relaxation
time for the interaction among dark-matter particles, we take
‘SIDM halo model’ described in Ref. [11]. For the relax-
ation time due to collision one writes τsi = 1/(n〈σvc〉). The
average scattering rate per particle times the halo age can
be written as: (〈σvc〉/m) ρ tage ∼ 1, where ρ = mn with n
and m respectively denote number density and mass of dark-

matter particles. This expression in Ref. [11] used to obtain
bounds on σ/m. For the present work, we take tage ∼ τsi .
Thus one can allow for more than one sources of viscosity
in dark-matter fluid. In such a situation, different viscosities
can combine in a particular way. For example, in quark-gluon
plasma shear viscosity ηA due to turbulence and kinetic vis-
cosity ηc combined to give effective shear viscosity ηe f f as
1/ηe f f = 1/ηA + 1/ηc [35]. Using the relaxation times, we
show that the two different viscosity sources combine in the
above way. We believe that this additional contribution to
the viscosity can significantly alter the dynamics of the dark-
matter fluid and provide useful insight into long-wavelength
dynamics of the dark-matter fluid.

This work is divided into following sections: Sect. 2, con-
tains the fluid approximation for the collisionless cold dark-
matter in the presence of self-gravity; in Sect. 3, we have
calculated the relaxation times for collisionless cold dark-
matter and self-interacting dark-matter; spatial perturbation
in the Maxwell–Boltzmann (MB) distribution of dark-matter
fluid is discussed in Sect. 4; in Sect. 5, we get the shear and
bulk viscosity for cosmic fluid. Finally, we have given results
obtained in present work and a brief conclusion in Sect. 6. All
Latin indexes in the manuscript represents the spatial indices.

2 Fluid approximation for CCDM

In this section, we consider identical, non-relativistic, colli-
sionless cold dark-matter particles, coupled gravitationally
with each other. Dynamics of phase-space distribution of the
particles can be described by Boltzmann equation [32]

∂ f

∂τ
+ ∂ f

∂xi
dxi

dτ
+ ∂ f

∂q

dq

dτ
+ ∂ f

∂ q̂i
dq̂i

dτ
= Ic , (1)

where f ≡ f (xi , τ, q, q̂i ) is the phase-space distribution and
Ic represents the collisions between particles. Here variables
are: comoving coordinates of the particle xi , conformal-time
τ (a(τ ) dτ = dt , t = physical or proper time coordinate),
comoving-momentum q, and q̂ is the unit vector along q.∫
d3q Ic = 0, leads to the total conservation of phase-space

distribution.
In the presence of anisotropies and inhomogeneities, the

distribution function can be written as

f (x, τ, q, q̂) = fo(q, τ ) + fo(q, τ ) 	(x, τ, q, q̂) , (2)

where back-ground distribution depends only on conformal-
time and comoving-momentum amplitude, and 	(x, τ, q, q̂)

is the first-order perturbation in phase-space distribution
which depends on comoving spatial-coordinate, momentum,
and conformal-time. For the length-scale εk � 1, the DM
consistent with the �CDM is nonrelativistic and noninter-
active matter (CCDM), for which zeroth-order distribution
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function can be written as [32,36]

fo(q, τ ) ∝ exp

[

− q2

2ma2(τ )T (τ )

]

, (3)

where a(τ ) is the scale factor, m is the mass of DM particles,
and T (τ ) is temperature of the CCDM scales as a−2(τ ).
Hence fo(q, τ ) ≡ fo(q) i.e. only depends on particle’s
comoving momentum ( qi ≡ a(τ ) pi , where | p| ∝ 1/a(τ )

is particle’s physical momentum ). We have considered the
line element in the conformal Newtonian gauge as [32,37]

ds2 = a2(τ )
[
−e2ψdτ 2 + e−2φdx2

]
, (4)

where ψ ≡ ψ(x, τ ) and φ ≡ φ(x, τ ) are scalar perturba-
tions and corresponds to the Newtonian potential and per-
turbation to the spatial curvature (with a minus sign) respec-
tively [36] . Since ∂ f/∂q̂ i and dq̂i/dτ , both are the first-order
quantity, we can neglect the last term of L.H.S up-to the first-
order contribution in the Eq. (1). For CCDM, the Boltzmann
equation takes the form,

fo

[
∂	

∂τ
+ ∂	

∂xi
qi

ε

]

+ ∂ fo
∂q

[
q φ̇ − εq̂ i∂iψ

]
= 0 , (5)

where ε ≡ ε(q, τ ) = √
q2 + (am)2 is the comoving energy

of a particle [38]. Taking Fourier transformation of the lin-
ear perturbation 	(x, τ, q, q̂) and expanding in the form of
Legendre polynomials Pl ,

	(x, τ, q, q̂) =
∞∑

l=0

(−i)l (2l + 1)	l(k, τ, q) Pl(ς) , (6)

where ς = k̂ · q̂ , k̂ is the unit vector of k and 	l(k, τ, q) are
coefficients of the Legendre polynomials. We get the differ-
ential equations for moments (or Boltzmann hierarchy),

	̇0 = −kvp	1 − φ̇(k, τ )
d ln fo
d ln q , (7)

	̇1 = 1
3kvp [	0 − 2	2] − k

3vp
ψ(k, τ )

d ln fo
d ln q , (8)

	̇l = kvp

[
l

2l+1	l−1 − l+1
2l+1	l+1

]
; l ≥ 2 , (9)

where vp = q/ε is the particle’s peculiar velocity. The time
evolution of moments can be taken to the order of the Hubble
time at long wavelength,

	l ∼ (kvpH−1)l−2 	2 ; l ≥ 2. (10)

Where H = a′/a and a′ = da/dτ . Thus, it is clear that
higher order moments can be written in terms of second
order moment for l > 2. If the factor of 	2 in Eq. (10)
is smaller than unity (i.e. kvpH−1 � 1), then it implies

the fluid approximation or truncation of the Boltzmann hier-
archy. Taking a bound on the maximum possible particle
velocity from the velocity in the non-linear regime [2,39],

v2
p ≤ Δ2

v(kNL) ∼ Δ2
δ (kNL)

H2

k2
NL

∼ H2

k2
NL

, (11)

where, Δ2
v(k) = (k3/2π2) Pv(k), Pv(k) = 〈|vp(k)|2〉 is

the power spectrum of velocity fluctuations and Δ2
δ (k) =

(k3/2π2) Pδ(k) . Δ2
δ (k = kNL) ∼ 1 corresponds to the

separation between linear and non-linear scales. Pδ(k) =
〈|δ(k)|2〉 is the power spectrum of density fluctuations.
Therefore,

kvpH−1 � k

kNL
, (12)

if εk � 1 then kvpH−1 � 1, implies fluid approximation
(i.e. lmax = 2). Thus, for linear scale εk � 1, the higher
moments are suppressed (i.e. 	l � 	2 for l > 2 ). 	1

and 	2 give energy flux and shear stress respectively. This
hierarchy depends on non-linear scale and it comes due to
the gravitational coupling of fluid.

3 Relaxation time for CCDM and SIDM

In above Sect. 2 we have obtained the fluid approximation
for CCDM. In this section we will calculate the mean free-
time (relaxation time) for collisionless cold dark-matter and
self-interacting dark-matter.

3.1 Collisionless cold dark-matter

Taking that, in a Hubble time CCDM particle move to the
scale vp τcb, one can rewrite inequality (12) as

kvpτcb � k

kNL
, (13)

Multiplying Eq. (13) by fo(q), where q = vpε ∼= vp a m,
and taking integral over d3q

1

am
τcb

∫
d3q q fo(q) � 1

kNL

∫
d3q fo(q) , (14)

τcb v̄p � 1

kNL
, (15)

here v̄p ∼= q̄/(a m) is the mean peculiar velocity of
fluid, where n(x, τ ) q̄ = 1/a3

∫
d3q q fo(q); n(x, τ ) =

1/a3
∫
d3q fo(q) is the number density and v̄pτcb is regarded

as the “mean free path”. Therefore from (15) , we write

τ−1
cb � v̄p kNL . (16)
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Here, the relaxation time arises because particles are grav-
itationally bound and during a Hubble time particles move
only up-to the nonlinear scale. In the absence of gravitational
coupling or non-linear scale ( kNL ), the mean free-path can
be infinitely long. Here we would like to note that, k−1

NL refers
to the objects of galaxy clusters size. k−1

NL can be estimated
by considering Δ2

δ (kNL) = 1 [40,41]. For redshift z = 0,
we get kNL ≈ 0.2 h/Mpc [40,42,43].

3.2 Self-interacting dark-matter

In the above subsection, we have obtained the relaxation
time τcb for CCDM in the presence of nonlinearities. For the
case of cold collisionless dark-matter, relaxation time arises
because of the nonlinear structures due to self-gravity. For
the case of self-interacting dark-matter, the concept of mean
free path arises due to collisions between particles. But for the
present case, we need to consider the effects of self-gravity
and self-interaction. Thus our formalism involves relaxation
times due to both these effects. For the case of SIDM [9–11],
relaxation time can be written as [44,45],

τ−1
si = n 〈σ vc〉 , (17)

where 〈··〉 represents the ensemble average, n is the number
density of the particles, σ is the differential cross-section for
scattering and vc = |vc| is the relative velocity between DM
particles.

4 Spatial perturbation in the MB distribution of DM

In the present case, the relaxation time comes from two dif-
ferent processes, one from the gravitational coupling of the
DM particle’s and other one from DM self interaction. The
collision term (Ic) in Eq. (1), can be approximated by “relax-
ation time approximation”. Thus for the present case, the
collision term Ic becomes [44,46–49]

Ic ≈ − f − fo
τcb

− f − fo
τsi

= − f − fo
τe f f

, (18)

where τ−1
e f f = τ−1

cb + τ−1
si and f = f (x, τ, q) are the inverse

effective relaxation time and phase-space distribution func-
tion respectively. At the lowest order approximation, we can
assume fo to be the Maxwell–Boltzmann distribution [12],

fo(x, τ, q) = g

(2π)3 exp

[
PμUμ

T

]

= g

(2π)3

× exp

[

− ε(τ, q)

a(τ ) T (τ )
+ q · V (τ, x)

a(τ )T (τ )

]

,

(19)

Where we have used the metric (4). Here four velocity Uμ

satisfies UμUμ = −1 and PμUμ = P0U 0 + PiUi , where
U 0 = a−1(τ ) e−ψ(τ,x), P0 = −ε eψ(τ,x), Ui = a−1(τ )V i

with V i ≡ dxi/dτ is the coordinate velocity of the fluid. Pi
is replaced by qi , and q̂i q̂i = δi j q̂ i q̂ j = 1, where q̂ is the
unit vector along q, as in the references [2,32]. In Eq. (19),
q · V (τ, x) = δi j qi V j (τ, x) and g represents the degree-
of-freedom. Writing f (x, τ, q) = fo(x, τ, q)+ δ f (x, τ, q),
where δ f (x, τ, q) is the variation from the MB distribution.
The Boltzmann equation in this case, takes the form

[
∂

∂τ
+ dxi

dτ

∂

∂xi
+ dq

dτ

∂

∂q

]

( fo + δ f ) = − δ f

τe f f
. (20)

Assuming δ f � fo, we can neglect δ f on the L.H.S., implies

δ f = −τe f f

[
∂

∂τ
+ dxi

dτ

∂

∂xi
+ dq

dτ

∂

∂q

]

fo . (21)

Obtained δ f ≡ δ f (x, τ, q) depends on the effective relax-
ation time of the fluid. In the above equation, first term is
related with the heat conduction [50]. Second term defines
the spatial changes in the fluid with velocity i.e. related with
spatial-dissipation in the fluid. In the third term, conformal
time-derivative of comoving-momentum q can be written in
terms of the conformal time-derivative and comoving spatial-
derivative of the scalar perturbations φ and ψ respectively
(dq/dτ = qφ̇ − εq̂i∂iψ). This term signifies effect of the
over/under-dense regimes or fluctuations in the phase-space
distribution of the DM particles. Viscosity in the fluid is
defined by the spatial derivative of the fluid velocity, and
in the distribution function ( fo(x, τ, q) ), only fluid veloc-
ity depends on spatial component. Accordingly we evaluate
only the second term of the Eq. (21),

δ f s = −τe f f
1

a T ε

[

qiql
{

1
2

(
∂i (Vl) + ∂l(Vi )

) − 1
3δil θ

}

+ 1
3 q

2 θ

]

fo , (22)

where δ f s ≡ δ f s(x, τ, q) is the spatial first order perturba-
tion in the phase-space distribution , θ = ∂ j V j is the veloc-
ity divergence and it’s related with the bulk-viscosity. The
quantity, in the curly bracket, is known as the shear tensor
σil [2,50,51].

5 Viscosity in the dark-matter fluid

The stress-energy tensor for imperfect fluid can be written as
[2],

Ti j = ρUiU j + (p − ζθ)γi j + �i j , (23)
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where ρ is the energy density, p is the pressure, U is the fluid
velocity, ζ is the bulk viscosity, �i j is the viscous stress-
tensor, γ i j = gi j + UiU j and gi j is metric. Here, we are
interested in the bulk-viscosity and shear-viscosity as the dis-
sipation in DM fluid. The viscous stress-tensor defined as [2],

�i j = −ησi j , (24)

where η is shear viscosity. Thus the dissipative stress-energy
tensor

ΔTi j ∼= −η σi j − ζ θ δi j . (25)

The stress-energy tensor can be described in the terms of the
distribution function [32]

T i j + ΔTi j = 1

a4

∫
q2dqd�

qiq j

ε(q, τ )
( fo + δ f s) , (26)

here we are interested only in spatial dissipation, therefore
we have taken only δ f s , and T i j is the background energy-
momentum tensor. Substituting Eq. (22) into Eq. (26) and
comparing with Eq. (25), we get the expression for the effec-
tive bulk viscosity as

ζe f f = 1

9
· τe f f · 1

a T
· 1

a4

∫
d3q

q4

ε2 fo , (27)

and for the effective shear viscosity as [52,53],

ηe f f = 1

15
· τe f f · 1

a T
· 1

a4

∫
d3q

q4

ε2 fo . (28)

For the cold (non-relativistic) DM, the comoving energy (ε)
can be approximated as ε−2 � (am)−2−q2/(a2m2)2. Hence

ζe f f ∼= 1

9
· τe f f · n

m2 T
· 1

a4

[

〈 q4 〉 − 1

(am)2 〈 q6 〉
]

, (29)

and

ηe f f ∼= 1

15
· τe f f · n

m2 T
· 1

a4

[

〈 q4 〉 − 1

(am)2 〈 q6 〉
]

, (30)

where n(x, τ ) 〈 q4 〉 = a−3
∫
d3q q4 fo(x, τ, q) , n(x, τ ) is

the number density of the DM and ρ(x, τ ) = m n(x, τ ) is
the energy density of the DM. We can write Eqs. (29) and
(30) as

1

ζe f f
= 1

ζSI DM
+ 1

ζCCDM
, (31)

and

1

ηe f f
= 1

ηSI DM
+ 1

ηCCDM
. (32)

Where ζSI DM and ζCCDM are bulk-viscosities due to self-
interacting DM and gravitational coupling of DM respec-
tively, and defined as

ζSI DM = 1

9
τsi S and ζCCDM = 1

9
τcb S , (33)

similarly, ηSI DM and ηCCDM are shear-viscosities due to
SIDM and gravitational coupling of DM respectively, and
defined as

ηSI DM = 1

15
τsi S and ηCCDM = 1

15
τcb S , (34)

here S ≡ S(x, τ ),

S = n

m2 T

1

a4

[

〈 q4 〉 − 1

(am)2 〈 q6 〉
]

. (35)

We get the effective bulk-viscosity (31) and shear-viscosity
(32) due to two different relaxation times because of two
different processes, as in the reference [35], and these are
inversely additive.

6 Result and discussion

In the present work, we have considered the possibility where
the viscosity coefficients of a dark-matter fluid can arise due
to two different processes. For this purpose, we have used the
Boltzmann equation with the effective relaxation time (18),
which contains contributions from the nonlinear scale and the
self-interaction between the dark-matter particles. Here we
note that the relaxation times for the different processes in the
Boltzmann equation are inversely additive. This leads to the
expressions of the effective bulk (31) and shear (32) viscosi-
ties. In terms of relaxation time one can write the effective
(shear or bulk) viscosityηe f f or ζe f f ∝ ( τcbτsi )/( τcb+τsi ).
Thus the shorter relaxation time is dominated in determining
the viscous contribution. For example, when relaxation time
due to the self-interaction is larger than the relaxation time
due to the nonlinearities, the effective viscosity is dominated
by the smaller time scale i.e. nonlinearities.

Now, for example, consider the relaxation time arising due
to self-interaction τsi = m/(ρ 〈σvc〉) and the constraints
on σ/m discussed in Ref. [11]. As argued before τsi and
the age of the halo are related τsi ∼ tage. Thus, one gets
τsi ∼ 3.16×1016 sec for a super cluster, τsi ∼ 1.58×1017 sec
for cluster and τsi ∼ 3.16 × 1017 sec for galaxy scales.
Next consider the relaxation time τcb for the cold-collision
less case in the effective fluid theory [2]. Expression for the
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relaxation time: τcb � k−1
NL/v̄p, where vp is particle veloc-

ity in the nonlinear regime and kNL ≈ 0.2 h/Mpc, can be
estimated by using the relation Δ2

δ (kNL) = 1 for z = 0 [40–
43]. Three-dimensional root-mean-square peculiar velocity
of matter smoothed over a radius 3 h−1Mpc has been esti-
mated to 507 ± 48 km/s [39,54]. We take the h = 0.70
[55]. Thus we get τcb � 3.97 × 1017 sec. From Eq. (35),
we get S = 2.1 × 10−15 kg/m/s2 using Equipartition of
energy v̄p = √

(3T/m) for a = 1. We estimate shear and
bulk viscosity coefficients to be � 5.6 × 101 kg/m/s and
� 9.3 × 101 kg/m/s respectively for collisionless cold dark-
matter case for redshift z = 0. For the SIDM case, we get
shear and bulk viscosity coefficients to be 2.2 × 101 kg/m/s
and 3.7×101 kg/m/s respectively fora = 1 and cluster scales.
Therefore, effective shear viscosity η � 1.6 × 101 kg/m/s
and bulk viscosity ζ � 2.6 × 101 kg/m/s for cluster scale
and z = 0. Authors of the Ref. [29], consider model depen-
dent bulk viscosity in the light of Experiment to Detect the
Global Epoch of Reionization Signature (EDGES) observa-
tion and constraint bulk viscosity coefficient ζ � 3.93 kg/m/s
for constant viscosity case–no dependency on redshift. For
variable viscosity case ζ � 1.57×104 kg/m/s. In the dimen-
sionless form (multiplying by 8πG/H0 = 8.2 × 10−9 m
s/kg) shear and bulk viscosity coefficients are ∼ 1.8 × 10−7

and ∼ 3 × 10−7 respectively for SIDM case for the cluster
scale. For the super cluster scale, shear and bulk viscosities
in the dimensionless form are ∼ 3.6 × 10−8 and ∼ 6 × 10−8

respectively. For CCDM case, dimensionless shear and bulk
viscosity are � 4.6 × 10−7 and � 7.6 × 10−7 respectively.
To reduce discordance between PLANCK and LSS data,
author of the Ref. [19] consider viscous dark-matter with-
out self interaction between DM particles. Authors found
that, dimensionless 2.0 × 10−7 ≤ η ≤ 2.2 × 10−6 and
3.2 × 10−7 ≤ ζ ≤ 3.32 × 10−6. These values of shear
and bulk viscosities are consistent with the effective fluid
description transport coefficients based on CCDM [2]. While,
for SIDM case shear and bulk viscosity are O(10−1) small.
But, for small scales these coefficients are consistent with
SIDM case also. In the Ref. [57], authors consider model-
dependent bulk viscosity: ζ = ζ0(ρ/ρ0)

ν . Here, ρ ≡ ρ(τ)

is dark-matter energy density and ρ0 = ρ(z = 0). They
get upper constraint on constant bulk viscosity coefficient
(ν = 0) to the � 1.95 × 102 kg/m/s for k = 0.2 h/Mpc
by requiring that perturbations should grow to the nonlinear
stage. The authors also discuss the upper constraint on ζ for
variable bulk viscosity (ν �= 0). As we have shown, shorter
relaxation time contributes more to the viscosity because the
total viscosity of the system depends on τe f f . In this work,
we have considered the viscosity of the cosmic fluid at the
cluster and shown that the effective viscosity of the fluid can
reduce by a factor of ∼ 2.

In conclusion, we have examined the role of viscosity due
to self-interaction. It is shown that such viscosity should

not be considered in isolation as since the effective theory
description based on �CDM model also has viscosity and
both the viscous coefficients are added inversely. From the
examples we have considered above, at the cluster scale the
effective fluid description of �CDM models provide good
estimates of viscosity.
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