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Institute of Physics, The Czech Academy of Sciences, 18221 Prague 8, Czech Republic

Received: 20 February 2020 / Accepted: 10 August 2020 / Published online: 26 August 2020
© The Author(s) 2020

Abstract Under the influence of standardly used descrip-
tion of Coulomb-hadronic interference proposed by West
and Yennie the protons have been interpreted as transparent
objects; elastic events have been interpreted as more cen-
tral than inelastic ones. It will be shown that using eikonal
model the protons may be interpreted in agreement with usual
ontological conception; elastic processes being more periph-
eral than inelastic ones. The corresponding results (differing
fundamentally from the suggested hitherto models) will be
presented by analyzing the most ample elastic data set mea-
sured at the ISR energy of 52.8 GeV and the LHC energy of
8 TeV. Detailed analysis of measured differential cross sec-
tion will be performed and possibility of peripheral behavior
on the basis of eikonal model will be presented. The impact of
recently established electromagnetic form factors on deter-
mination of quantities specifying hadron interaction deter-
mined from the fits of experimental elastic data in the broad-
est region of momentum transfers will be analyzed.

1 Introduction

Elastic differential cross section dσ/dt represents basic
experimental characteristic established in elastic collisions
of hadrons. If the influence of spins is not considered, the
t (four momentum transfer squared) dependence exhibits
a very similar structure in all cases of elastic scattering of
charged hadrons at contemporary high energies: there is a
peak at very low values of |t |, followed by a (nearly) expo-
nential region and then there is a dip-bump or shoulder struc-
ture at even higher values of |t | practically for all colliding
hadrons [1]. Figures 1 and 7 show measured dσ/dt of pp
scattering at the ISR energy of 52.8 GeV and at much higher
LHC energy of 8 TeV as examples.
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The elastic differential cross section is standardly defined
using elastic scattering amplitude F (s, t) as (common units
h̄ = c = 1 used)

dσ

dt
= π

sp2

∣
∣F (s, t)

∣
∣2 (1)

where s is the square of the total center-of-mass energy and
p is the value of momentum of one incident hadron in the
center-of-mass system; t = −4p2 sin2 θ

2 where θ is scatter-
ing angle.

Two fundamental interactions, i.e., the Coulomb and
hadronic ones being described by phenomenologically con-
structed amplitudes FC(s, t) and FN(s, t), have been com-
monly used for description of measured elastic differential
cross section of charged hadrons. Only some phenomeno-
logical models of elastic complete amplitude FC+N(s, t),
describing effect of both the Coulomb and hadron interac-
tions, have been applied to in interpreting experimental data
represented by elastic differential cross sections until now.

One of the first attempts to determine the t-dependence
of FC+N(s, t) was done by West and Yennie (WY) in 1968
[2] who used Bethe’s [3] formula for corresponding com-
plete elastic scattering amplitude FC+N(s, t). However, the
formula has been derived under very simplified and limited
conditions. The approach of WY has not allowed to study
shape of t-dependence of hadronic amplitude on the basis of
experimental data as the shape has been, without any justifi-
cation, strongly limited by the used assumptions.

It has been almost generally assumed (under the influence
of the WY approach) that the imaginary part of FN(s, t) is
dominant in a broad region of t around t = 0 and that it is van-
ishing around the region of diffractive minimum. It has con-
cerned nearly all contemporary models of elastic (hadronic)
scattering including the most recently published papers, see,
e.g. [4–22] (in some papers the t-dependence of the phase
of FN(s, t) has not been discussed at all). These additional
assumptions constraining hadronic amplitude FN(s, t) have
never been sufficiently reasoned (up to our knowledge) in the
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literature. They have led to some unusual physical properties
of protons - to some kind of proton transparency in head-on
collisions, i.e., to central behavior of elastic collisions.

The centrality of elastic collisions has been recently
“rediscovered” by some authors under the term hollowness,
see, e.g., [16–18,23]. The result has followed mainly from
the requirement of the dominance of the imaginary part of
FN(s, t) in quite broad interval of t around t = 0 in the given
models, see Sect. 5 in [24] and useful comments related to
the hollowness in [25]. The fact that t-dependence of the
phase of FN(s, t) matters for determination of characteris-
tics of collisions in impact parameter space has been recently
admitted in [26]. The question of peripheral behavior of elas-
tic collisions has been recognized as an interesting question
in [27]. It has been summarized in [28] that protons cannot
be taken as point-like particles during collisions and that it is
necessary to take into account sizes of colliding particles in
a description of the physical process. In other words, some
even basic questions and problems concerning description
of pp scattering have not been satisfactorily understood and
solved up to know.

In order to overcome the mentioned deficiencies conve-
nient approach based on the eikonal model has been proposed
in [29]. In this case the used complete eikonal elastic scat-
tering amplitude FC+N(s, t) describes the influence of both
Coulomb and hadronic scattering with the help of only one
formula in the whole measured region of momentum trans-
fers in a unique and consistent way. It is based on additivity
of individual eikonals of the Coulomb and hadron interac-
tions. The formula for complete amplitude FC+N(s, t) has
been derived with the aim not to impose any strong assump-
tions concerning t-dependence of elastic hadronic amplitude
FN(s, t).

It has been shown already in 1981 in [30] that the cen-
tral behavior has followed as direct consequence of the
mentioned t-dependence of the dominant imaginary part of
FN(s, t). It has been found in [30] that the high-energy elastic
hadronic scattering may be described with the help of eikonal
model as a fully peripheral process if the phase of FN(s, t)
has been allowed to change rather quickly with changing t
already at small values of |t | (for more details see [29,31–
35]).

We have revisited possibilities of basically all historical as
well as more recent approaches (models) trying to describe
elastic scattering data and determine some properties of pro-
tons (see also [36]). The eikonal model is currently the only
one which is widely used at high energies and allows to take
into account consistently both the Coulomb-hadronic inter-
ference at all measured values of t and dependence of colli-
sions on impact parameter.

This paper is structured as follows. The simplified descrip-
tion of Coulomb and hadron interference proposed by WY,
which influenced directly or indirectly many contemporary

models of elastic (hadronic) scattering, is summarized in
Sect. 2.

In Sect. 3 one may find formula for complete elastic scat-
tering amplitude FC+N(s, t) derived within the eikonal model
which allows to take into account the influence of Coulomb
interaction described with the help of both the electric and
magnetic form factors in elastic scattering of charged hadrons
(originally only electric form factors have been used in [29]).

Elastic hadronic amplitude constrained similarly as it has
been done in majority of widely used models and leading
to central behaviour of elastic collisions was fitted to exper-
imental data of elastic pp scattering at the ISR energy of
52.8 GeV and at much higher LHC energy of 8 TeV. The same
data were fitted without the strong limitations and a periph-
eral solution has been obtained. The results corresponding
to the two fundamentally different alternatives are compared
and discussed in Sect. 4 in a greater detail than it was done in
the past. The impact of choice of form factors on the deter-
mined results is discussed also in Sect. 4; it represents another
new result. Concluding remarks are given in Sect. 5.

Formalism of impact parameter representation of the elas-
tic hadron scattering amplitude in the eikonal model is sum-
marized briefly in appendix A.

Electromagnetic form factors needed in description of
elastic pp collisions are discussed in appendix B. There are
several formulas or parameterizations which have been used
recently by several (group of) authors for determination of
t-dependences of electric and magnetic form factors. How-
ever, it seems that there is no comparative study between
them showing how much the t-dependences differ (if at all).
In appendix B new plots comparing several alternatives avail-
able in the literature are, therefore, shown.

2 Simplified description of Coulomb and hadron
interference proposed by West and Yennie

According to Bethe [3] the complete elastic scattering
amplitude FC+N(s, t) of two charged hadrons (neglecting
spins) has been commonly decomposed into the sum of the
Coulomb scattering amplitude FC(s, t) and the hadronic
amplitude FN(s, t) bound mutually with the help of relative
phase αφ(s, t)

FC+N(s, t) = FC(s, t) eiαφ(s,t) +FN(s, t); (2)

α = 1/137.036 being the fine structure constant. The t-
dependence of the relative phase factor αφ(s, t) has been
determined on various levels of sophistication. The depen-
dence having been commonly accepted in the past was pro-
posed by West and Yennie (WY) [2] within the framework
of Feynman diagram technique (one-photon exchange) in
the case of charged point-like particles and for s � m2 (m
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standing for nucleon mass) as

αφ(s, t) = ∓α

[

ln

(−t

s

)

+
∫ 0

−4p2

dt ′

|t − t ′|
(

1 − FN(s, t ′)
FN(s, t)

)]

. (3)

The upper (lower) sign corresponds to the scattering of par-
ticles with the same (opposite) electric charges.

Formula (3) containing the integration over all admissi-
ble values of four-momentum transfer squared t ′ seemed to
be complicated when it was proposed. It has been simpli-
fied for practical use to perform the analytical integration.
The t-dependencies of modulus and phase of the hadronic
amplitude FN(s, t) defined as

FN(s, t) = i
∣
∣
∣FN(s, t)

∣
∣
∣ e−iζN(s,t) (4)

have been strongly limited. It has been assumed:

(i) the modulus
∣
∣FN(s, t)

∣
∣ has had purely exponential t-

dependence at all kinematically allowed t values;
(ii) the phase ζN(s, t) has been t-independent for all kine-

matically allowed t values (see [2,37] and [34,35]).

As analyzed in [38] some other high energy approximations
and simplifications were added, too (see also [36]).

For the relative phase between the Coulomb and elastic
hadronic amplitude the following simplified expression has
been then obtained:

αφ(s, t) = ∓α

[

ln

(−B(s)t

2

)

+ γ

]

(5)

where γ = 0.577215 is Euler constant and B(s) is the value
of diffractive slope B(s, t) at t = 0 generally defined as

B(s, t) = d

dt

[

ln
dσN

dt
(s, t)

]

= 2
∣
∣FN(s, t)

∣
∣

d

dt

∣
∣
∣FN(s, t)

∣
∣
∣ .

(6)

The t-independence of B(t) is equivalent to the requirement
of purely exponential t-dependence of

∣
∣FN(s, t)

∣
∣.

One may further define quantity ρ(s, t) as ratio of the real
to imaginary parts of elastic hadronic amplitude

ρ(s, t) = Re FN(s, t)

Im FN(s, t)
. (7)

It follows from Eqs. (4) and (7) that

tan ζN(s, t) = ρ(s, t) . (8)

The following simplified formula for complete elastic
scattering amplitude FC+N(s, t) has been then derived in [2]

FC+N
WY (s, t) = ± αs

t
G1(t)G2(t) eiαφ(s,t)

+ σ tot,N(s)

4π
p
√
s(ρ(s) + i) eB(s)t/2 .

(9)

Here the first term corresponds to the Coulomb scattering
amplitude (relative phase included) while the second term
represents the elastic hadronic amplitude in which the quan-
tity σ tot,N(s) is the total cross section given by optical theo-
rem

σ tot,N(s) = 4π

p
√
s

Im FN(s, t = 0) (10)

and the quantity ρ(s) is value of the assumed t-independent
quantity ρ(s, t).

The two quantities G1(t) and G2(t) in Eq. (9) stand for
the electric form factors taken commonly in standard dipole
form (see, e.g., [39]) as

GD
E (t) =

(

1 − t

Λ2

)−2

(11)

where Λ2 = 0.71 GeV2. The electric form factors as Fourier-
Bessel (FB) transform of electric charge distribution of col-
liding hadrons have been put into formula (9) by hand.

The Coulomb differential cross section (including form
factors) has been, therefore, taken as

dσC(s, t)

dt
= πs

p2

α2

t2 G2
1(t)G

2
2(t) , (12)

i.e., diverging at t=0. Integrated elastic hadronic cross sec-
tion may be calculated as

σ el,N(s) =
∫

t

dσ el,N

dt
=

∫

t

π

sp2

∣
∣
∣FN(s, t)

∣
∣
∣

2
. (13)

The optical theorem then allows to determine integrated
inelastic cross section

σ inel(s) = σ tot,N(s) − σ el,N(s) . (14)

As to Eqs. (5) and (9) they were derived also by Locher
[40] one year earlier than Eq. (3) proposed by WY [2]. Locher
assumed from the very beginning the validity of both the
mentioned assumptions (i) and (ii) limiting the general t-
dependence of the elastic hadronic amplitude FN(s, t). He,
therefore, avoided the misleading idea that WY integral for-
mula (3) may be correctly used for determination of the rel-
ative phase for any t-dependent elastic hadronic amplitude
FN(s, t). The high-energy approximations used in the given
approach might be regarded as acceptable at that time when
nothing was known about actual structure of elastic differ-
ential cross section data. However, the questions have arisen
when experimental data have shown not to be in agreement
with the mentioned assumptions (for details see [35,41]).
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Simplified formula of WY given by eqs. (5) and (9) has
been used in the majority of analyses of all hitherto elas-
tic scattering data of charged hadrons in the forward region,
i.e., for |t | � 0.05 GeV2 (see, e.g., [37,39,42–53]); contrary
to the fact that both the mentioned theoretical assumptions
(i) and (ii) justifying the validity of both Eqs. (9) and (5)
have not been fulfilled in the analyzed experimental data. At
higher values of |t | the influence of Coulomb scattering has
been then fully neglected and the elastic scattering of charged
hadrons has been described only with the help of the elastic
hadronic amplitude being constructed on a phenomenologi-
cal basis with completely different t-dependence. Such type
of fundamentally inconsistent description of elastic scatter-
ing by two different approaches in diverse regions of t has
been pointed out and further analyzed in, e.g., [35,54–56].

The relative WY phase specified by Eq. (3) should be a
real quantity. According to a mathematical theorem derived
in [58] this is fulfilled if the phase of elastic hadronic ampli-
tude is a t-independent quantity for all kinematically allowed
values of t . Thus it has turned out that the specification of
the complete Bethe elastic scattering amplitude FC+N(s, t)
with the help of WY phase according to Eq. (2) contains
fundamental limitation from the very beginning.

The values of σ tot,N and ρ determined with the help of
the WY approach at different energies have often been used
also in connection with dispersion relations (see, e.g., [57]).
These approaches have been, therefore, based on all problems
and limitations involved in the WY approach; neither one of
these models has provided precise and consistent description
of elastic differential cross section at all energies.

3 Eikonal model description of Coulomb and hadron
interference

3.1 Eikonal complete amplitude with effective
electromagnetic form factors

Instead of the limited approach of WY (see Sects. 1 and 2) it
is necessary to give the preference to a more suitable eikonal
approach concerning description of Coulomb-hadronic inter-
ference, based on impact parameter representation which has
been proved to be mathematically consistent and valid at any
s and t [59]. In the eikonal model the complete elastic scat-
tering amplitude FC+N(s, t) has been introduced as the func-
tion of common eikonal being equal to the sum of individ-
ual (Coulomb and hadronic) eikonals [60,61]. This approach
has been used by Cahn [62] who has rederived the West and
Yennie simplified formula (9) using several approximations
similar to the ones used by WY.

However, the eikonal model approach can be used in a
more general way as it has been shown in [29]. The complete
elastic scattering amplitude in this approach may be written

as

FC+N(s, t) = ±αs

t
G2

eff(t) + FN(s, t)[1∓iαḠ(s, t)], (15)

where

Ḡ(s, t) =
0∫

tmin

dt ′
{

ln

(
t ′

t

)
d

dt ′
[

G2
eff(t

′)
]

− 1

2π

[
FN(s, t ′)
FN(s, t)

− 1

]

I (t, t ′)
}

,

(16)

and

I (t, t ′) =
2π∫

0

dΦ ′′ G2
eff(t

′′)
t ′′

; (17)

here G2
eff is effective form factor squared given by (51)

reflecting the electromagnetic structure of colliding charged
hadrons and t ′′ = t + t ′ + 2

√
t t ′ cos Φ ′′. The lowest value of

t is limited by kinematical limit

tmin = −s + 4m2 (18)

where m is rest mass of hadron in the case of elastic hadron-
hadron scattering. The upper (lower) sign in Eq. (15) corre-
sponds to the scattering of particles with the same (opposite)
electric charges.

Comparing the t-dependence of the complete eikonal scat-
tering amplitude given by Eq. (15) with the standardly used
complete WY scattering amplitude (9) one may see the sub-
stantial difference between these two approaches. Instead
of calculating the relative phase between the Coulomb and
elastic hadron components the shape of the whole com-
plete elastic amplitude has been derived in the eikonal model
approach. More detailed analysis [54,63] shows that the func-
tion Ḡ(s, t) represents the convolution between the Coulomb
and hadronic amplitudes and it is in general a complex func-
tion.

At difference to the previous approaches one complete
amplitude FC+N(s, t) describes the influence of both the
Coulomb and elastic hadron collisions at any finite s in the
whole interval of t ∈ 〈tmin, 0〉 up to the terms linear in α. For-
mulas (15), (16) and (17) may be used in two ways: either for
establishing the elastic hadronic amplitude FN(s, t) from the
analysis of measured corresponding differential cross sec-
tion data provided the hadronic amplitude is conveniently
parametrized as it has been done in [29]. Or for a consistent
inclusion of the influence of Coulomb scattering if the elastic
hadronic amplitude is phenomenologically established as it
has been done in [64] in the case of predictions of pp elastic
differential cross sections at the LHC.

The use of electromagnetic form factors reflects the influ-
ence of both the electric and magnetic charge structures
of colliding nucleons. Only the electric form factors given
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by Eq. (49) have been used originally in [29] to calculate
FC+N(s, t) according to Eq. (15) for analysis of experimen-
tal data. It has enabled to include in the elastic scattering
the influence of electric space structure of colliding protons.
Such an approach can be generalized by taking into account
also the influence of the proton magnetic form factor, i.e., the
interaction of magnetic moment of the proton with Coulomb
field of the other colliding proton.

The influence of the magnetic form factors in the case of
elastic pp scattering at high energies have been theoretically
studied by Block [53,65]. However, this approach has been
based on the application of standard WY complete elastic
amplitude containing originally only the dipole electric pro-
ton form factors given by Eq. (11) which have been replaced
by effective electromagnetic form factor (51) containing also
dipole magnetic form factor (48). Such an approach, how-
ever, contains many limitations and deficiencies as it has been
discussed in Sects. 1 and 2.

Unlike the approach of WY the electromagnetic form fac-
tors form the part of Coulomb amplitude from the very begin-
ning in the eikonal model. Due to the integration over all kine-
matically allowed region of t ′ in Eq. (16) the t ′-dependence
of effective electromagnetic form factors should describe the
charge distributions in the largest possible interval of momen-
tum transfers t ′. For some suitable t-dependent parame-
terizations of electromagnetic proton form factor the inte-
gral I (t, t ′) may be analytically calculated (see appendix C)
which helps in numerical calculations in application of the
eikonal model to experimental data. The elaborated approach
then enables to study either the influence of individual effec-
tive electric or magnetic form factor or the common influence
of both of them.

In [66] one may find a recent review of calculations
concerning Coulomb-nuclear interference at high energies
within the eikonal model framework. It confirmed that the
Bethe’s formula Eq. (2) and the simplified description of
Coulomb-hadronic interference proposed by West and Yen-
nie (see Sect. 2) can be hardly used for reliable analysis of
contemporary experimental data. The approach in [66], how-
ever, did not sufficiently distinguish between kinematically
allowed and forbidden values of t variable in the calculations,
see Sect. 7 in [24] for further details.

The eikonal model approach allows to study behavior of
hadron collisions in impact parameter space, see the main
formulae in appendix A (see also [67]). Dependence of elas-
tic hadron collisions on the value of impact parameter will
be analyzed with the help of experimental data and under
different assumptions in the next section.

4 Analysis of elastic pp scattering data

4.1 Fitting procedure

Main unknown function in the eikonal interference formula
given by Eqs. (15) and (16) is elastic hadronic amplitude
FN(s, t). It may be, therefore, parametrized and one may
try to determine it from experimental data under different
assumptions (constrains). Conveniently parameterized elas-
tic hadronic amplitude FN(s, t) has been fitted to the mea-
sured pp elastic differential cross section at given energy in
broad interval of t values including both peak at very low
values of |t | and dip-bump structure at higher values of |t |
with the help of Eq. (1) and complete amplitude FC+N(s, t)
given by Eqs. (15) and (16).

The recent analyses of both electric and magnetic proton
form factors has showed some deviations from standardly
used dipole formulas (see appendix B). One may see in
Fig. 15 that the effective electromagnetic form factor has
quite different values than the widely used electric one for
analysis of pp experimental data represented by measured
elastic differential cross section. Details and valuable com-
ments concerning measurement of elastic pp scattering data
at high energies may be found, e.g., in TOTEM papers [68–
70] (see also review of TOTEM results in chapter 2 in [36]).
It is clear that the inclusion of magnetic form factor might
have an impact also on the results of analysis of elastic pp
scattering data at high energies.

This was one of the reasons why we have performed new
analysis of pp elastic scattering data (at the ISR energy of
52.8 GeV and the LHC energy of 8 TeV) with the help of
the eikonal model (see Sect. 3) similarly as it has been done
in [29] but now with the help of effective electric form fac-
tor (52) and effective electromagnetic form factor (51). Form
factors GBN

E (t) and GBN
M (t) (i.e., Borkowski’s et al. parame-

terizations (49) and (50) specified by parameters taken from
table 2) have been used for this purpose. However, impact
of the choice of form factor on determination of FN(s, t)
and corresponding hadronic quantities has been found to be
very small or negligible (see [36] for numerical details). In
the following results corresponding to only effective electro-
magnetic form factors will be, therefore, shown.

The integral I (t, t ′) in Eq. (16) has been analytically cal-
culated using Eqs. (54) to (64) and parameters from table 2,
and compared to corresponding numerical integration (17).
The result of numerical integration of the complete ampli-
tude performed for the measured t values should be finite.
The formulas (both analytical and numerical) for the integral
I (t, t ′) contain singularity at t = t ′. However, this singular-

ity is canceled by the factor
[
FN(s,t ′)
FN(s,t)

− 1
]

in Eq. (16). The

integration in Eq. (16) needs to be treated with care at t ′ equal
to t and 0 (for both numerically and analytically calculated
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function I (t, t ′)).1 The integrals in the regions (tmin, t − ε)

and (t + ε,−ε) where ε is small and positive, should be con-
vergent. Also the integrand leading to the different improper
integrals should be convergent in all the regions. Using the
theorems valid for the values of improper integrals (see, e.g.,
[71]) their values can be easily calculated in the limiting case
when ε → 0.

All the fits of experimental data under different assump-
tions have been performed by minimizing the corresponding
χ2 function with the help of program MINUIT [72]. Quoted
uncertainties of free parameters have been estimated with
the help of HESSE procedure in MINUIT. Uncertainty σ f

of a function f depending on free parameters xi has been
calculated with the help of

σ f =
√
√
√
√

∑

i

(
∂ f (x)

∂xi

)2

(σxi )
2 (19)

where σxi stands for uncertainty of the i-th parameter.
For each performed fit of data the following consistency

tests were performed. Values of integrated cross sectionσ tot,N

determined with the help of Eq. (10) and σ el,N determined
with the help of Eq. (13) were compared to values obtained
on the basis of integrating corresponding b-dependent profile
functions DX(b) with the help of Eq. (39). Similarly, mean
impact parameters

√〈b2〉X calculated on the basis of Eqs.
(41) to (43) have been compared to values obtained with the
help of Eq. (40). In all cases good numerical agreement was
obtained.

4.2 Parameterization of hadronic amplitude

The analysis of experimental data with the help of Eqs. (15)
and (16) requires a convenient parameterization of the com-
plex elastic hadronic amplitude FN(s, t), e.g., its modulus
and its phase. The modulus may be parameterized very gen-
erally as
∣
∣
∣FN(s, t)

∣
∣
∣ = (a1 + a2t) eb1t+b2t2+b3t3

+(c1 + c2t) ed1t .

(20)

The integration limit tmin in Eq. (16) is lesser than the lower
limit of measured data. The t-dependence of the modulus
parametrization given by Eq. (20) can be used for extrapo-
lation to the higher values of |t | if the modulus is strongly
decreasing with increasing value of |t | in this region. The
care needs to be devoted to the allowed fitted values of free
parameters specifying the modulus in order to guarantee its
vanishing when |t | tends to infinity as required by validity of
corresponding dispersion relations.

1 Similar difficulties may be identified also in the relative phase αφ(s, t)
of WY given by Eq. (3).

In [73] (and even earlier in [74,75]) the following param-
eterization of hadronic phase has been used

ζN(s, t) = arctan
ρ0

1 − t
tdip

(21)

where tdip is the position of the dip in data and ρ0 =
ρ(t = 0). This parameterization a priori restricts allowed t-
dependences and reproduces the widely assumed dominance
of the imaginary part of FN(s, t) and vanishing of the imag-
inary part at t = tdip, see Sect. 1. The parameterization of
the phase has been used later in several other analyses of
experimental data, including [29] where it has been shown
that it leads to central behavior of elastic collisions in impact
parameter space. However, this parameterization of the phase
is not analytic in t ; not only due to the pole at t = tdip but
also due to the fact that the complex function arctan(z) is not
analytic at the points z = ±i (i being complex unit) [76].
Moreover, the parameterization of the phase (21) cannot ful-
fill conclusion of Martin’s asymptotic theorem [77] (derived
in 1997) requiring, under certain assumptions, the real part of
elastic hadronic amplitude to change sign at some low value
of |t |.

In [29] different and more general parameterization of
hadronic phase has been used for analysis of experimental
data (t0 = −1 GeV2)

ζN(s, t) = ζ0 + ζ1

(
t

t0

)κ

eνt (22)

enabling to include a fast increase of ζN(s, t) with increas-
ing |t | and, consequently, a peripheral behavior of elastic
hadronic scattering.

Natural question arises under which conditions both the
parameterizations of the modulus given by Eq. (20) and of the
phase Eq. (22) represent analytic function of complex vari-
able t as standardly required (see [78,79] and review [80]).
The parameterized modulus in Eq. (20) forms the real ana-
lytic function and its analytic properties are preserved also in
the case of complex variable t . However, the same statement
is not valid for the phase introduced by Eq. (22) due to the
power tκ in it. For complex variable t this power is analytic
at the point t=0 only if parameter κ is positive integer [76].
Thus the analyticity of the elastic hadron phase for complex
t is guaranteed only for positive integer values of parameter
κ . As the complex goniometric functions sin(x) and cos(x)
are analytic for complex variable x , both the real and imag-
inary parts of elastic hadron amplitude are analytic, too. It
means that the positive integer value of parameter κ guaran-
tees that the parameterization of elastic hadronic amplitude
given by Eqs. (20) and (22) is analytic for complex t . In [29]
this parameter was fitted.

The parameterization (22) is much more general and flex-
ible than (21) as it may reproduce very broad class of t-
dependent phases which may all fit measured data and lead
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to either central or peripheral behavior depending on the val-
ues of the free parameters - according to additional assump-
tions constraining FN(s, t) as it will be explicitly shown in
Sects. 4.3.2 and 4.3.3 (at 52.8 GeV) and Sect. 4.4 (at 8 TeV).

When FN(s, t) is not constrained only by the measured
differential cross section but also by some other constrains
one needs to solve in general the problem of bounded extrema
of the χ2 function, i.e., of the function of the n free param-
eters x = (x1, ..., xn) which may be solved with the help of
penalty functions technique. If at the minimum of the χ2 the
values of the free parameters x are limited at point x0 by some
condition g(x = x0) then one may add to the minimized χ2

function additional function [g(x)−g(x= x0)]2 ∗Cp, where
Cp is some conveniently chosen constant value (weight of
the penalty function). In the case of several limiting condi-
tions the resulting penalty function is given by the sum of
all individual penalty functions which is added to the orig-
inal χ2 during minimization. Performing the minimization
procedure one can significantly influence the way how the
position of the minimum can be achieved. When performing
several successive minimizations one has to decrease suc-
cessively the values of all the penalty constants Cp in such
a way that the position of the minimum is being preserved.
Using this approach the added value of total penalty function
Δχ2 may become finally very small compared to the value
of the original χ2.

4.3 Energy of 52.8 GeV

4.3.1 Data

At the energy of 52.8 GeV experimental data in broad region
of |t | ∈ 〈0.00126, 7.75〉 GeV2 taken from [81] have been
used, see the data points in Fig. 1.

4.3.2 Elastic hadronic amplitude as constrained in many
contemporary models and leading to central
behavior of elastic collisions

The first Fit 1 of data at 52.8 GeV has been performed with
the help of parameterization of FN(s, t) given by Eqs. (20)
and (22). The parameter κ = 3 has been taken to fit data at
52.8 GeV to keep analyticity of elastic hadronic amplitude at
all kinematically allowed values of t , see Sect. 4.2. To obtain
t-dependence of hadronic amplitude roughly corresponding
to many contemporary hadronic models of elastic scattering
we have required (as it is often assumed without sufficient
reasoning, see Sect. 5 in [24] and fig. 14 in [70]):

1. dominance of the imaginary part of FN(s, t) at broad
interval of t values in the forward region

2. vanishing of the imaginary part of FN(s, t) at (or around)
t = tdip

3. change of sign of the real part of FN(s, t) at |t | < |tdip|
(motivated by the asymptotic theorem of Martin [77])

These constrains of hadronic amplitude may be fulfilled
if the phase ζN(s, t) given by (22) passes through, e.g., the
two following points

[t1 = tdip, y1 = −π/2] (23)

[t2 = −3 GeV2, y2 = −π ] . (24)

In this case values of ν and ζ1 in Eq. (22) may be calculated
as follows

ν = ln

[
y2 − ζ0

y1 − ζ0

(
t1
t2

)κ] 1

t2 − t1
(25)

ζ1 = y1 − ζ0
(
t1
t0

)κ

eνt1
. (26)

It means that the hadronic phase given by Eq. (22) is strongly
constrained under the given conditions and it has only one
free parameter ζ0 which may be fitted to experimental data
together with other free parameters specifying the modulus
of FN(s, t).

Fit 1 has been quite straight forward (due to the fact
that t-dependence of the “standard” phase is strongly con-
strained). Fitted values of all the free parameters specifying
the elastic hadronic amplitude at 52.8 GeV are in Table 1. Fig-
ure 1 shows fitted elastic pp differential cross section dσC+N

dt

together with corresponding Coulomb dσC

dt and hadronic dσN

dt
differential cross sections. The phase ζN(s, t) corresponding
to the amplitude is pictured in Fig. 2 (dotted line). The diffrac-
tive slope B(t) calculated with the help of Eq. (6) is shown
in Fig. 3 (dotted line).

The corresponding elastic hadronic amplitudes for both
the fits have dominant imaginary parts in the large region of
t around forward direction which decrease with increasing
|t | and vanish in the diffraction dip (as commonly assumed),
see Fit 1 in Fig. 4b. The corresponding real parts of FN(s, t)
change sign at |t | ≈ 0.35 GeV2 as motivated by the asymp-
totic theorem of Martin, see Fit 1 in Fig. 4a.

Determined values of several physically interesting quan-
tities calculated from the fitted hadronic amplitude corre-
sponding to Fit 1 may be found in Table 1. The total hadronic
cross section σ tot,N has been calculated using the optical the-
orem (10), integrated elastic hadron cross section σ el,N using
Eq. (13) and inelastic σ inel as their difference (14).

Root-mean-squares of impact parameter values
√〈b2〉tot,

√〈b2〉el,
√〈b2〉inel determined with the help of Eqs. (42) to

(43) (see Sect. A.2) may be found also in Table 1. It holds
√〈b2〉el <

√〈b2〉inel, i.e., elastic collisions according to this
description should correspond in average to lower impact
parameters than average impact parameter corresponding to
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Fig. 1 Eikonal model of Coulomb-hadronic interaction fitted to measured elastic pp differential cross section at energy of 52.8 GeV in the interval
|t | ∈ 〈0.00126, 7.75〉 GeV2 corresponding to Fit 1, i.e., central picture of elastic pp scattering. Fit 2 leading to peripheral picture of elastic scattering
gives similar graphs
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Fig. 2 Elastic hadronic phases ζN(s, t) for central and peripheral pic-
tures of elastic pp scattering (Fits 1 and 2) at energy of 52.8 GeV

inelastic collisions (∼ 0.68 fm against ∼ 1.09 fm). Fit 1 will
be, therefore, labeled as “central”. This centrality of elas-
tic collisions may be further seen from the profile functions
DX(b) (X=tot, el, inel) calculated at finite collision energy√
s as explained in Sect. A.2, see Fig. 5a corresponding to

Fit 1. The elastic profile function Del(b) has Gaussian shape
with a maximum at b = 0. Some other b-dependent functions
corresponding to Fit 1 and characterizing hadron collisions
in b-space, see Sect. A.2, are shown in Fig. 6a.

4.3.3 Possibility of peripheral behavior of elastic scattering

The second Fit 2 of the same differential cross section data
have been performed similarly as in Sect. 4.3.2, with the help
of the same parameterization of FN(s, t) given by Eqs. (20)
and (22) but without the additional, unjustified and widely
used constrains on hadronic amplitude expressed by condi-
tions (25) and (26) (and leading to central behavior of elastic
collisions).

0 1 2 3 4

t GeV2

0

5

10

B
(t
)

Fit 1 (central)

Fit 2 (peripheral)

Fig. 3 t-dependence of elastic hadronic diffractive slopes B(t) calcu-
lated with the help of Eq. (6) and corresponding to Fits 1 and 2 at energy
of 52.8 GeV

To obtain peripheral behavior of elastic collisions, to
demonstrate this possibility, it has been required for the corre-
sponding root-mean-square impact parameter values to hold
√〈b2〉el >

√〈b2〉inel and Del(b) to have its maximum at
some non-zero impact parameter b. However, the fit has not
been unique. We have, therefore, further required value of
√〈b2〉el to be around 1.95 fm. If all these additional condi-
tions bounding the values of fitted free parameters have been
added then unambiguous fit has been obtained. In this case it
has been necessary to solve non-trivial problem of bounded
extrema as explained at the end of Sect. 4.2. Table 1 contains
the results of Fit 2. It holds

√〈b2〉el >
√〈b2〉inel as required.

The table contains also the final values of penalty functions
Δχ2 which are small compared to the χ2 values.

Differential cross sections dσN

dt , dσC

dt and dσC+N

dt corre-
sponding to the peripheral Fit 2 are very similar to those
shown in Fig. 1. The diffractive slope B(t) for the Fit 2
calculated with the help of Eq. (6) is shown in Fig. 3; its
t-dependence is very similar to diffractive slope correspond-
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Table 1 Comparison of several hadronic quantities characterizing pp
elastic scattering at energy of 52.8 GeV and 8 TeV. Values of free
parameters specifying elastic hadronic amplitude FN(s, t) have been

obtained by fitting experimental data under different assumptions using
the eikonal model approach

Particle types [GeV] pp pp pp pp√
s 52.8 52.8 8000 8000

Fit 1 2 1 2
Case central peripheral central peripheral
Form factor effective effective effective effective

electromagnetic electromagnetic electromagnetic electromagnetic

ζ0 0.0762 ± 0.0017 0.0825 ± 0.0017 0.121 ± 0.018 0.148 ± 0.016

ζ1 −2.605 1974 ± 37 −12.02 281 ± 11

κ 3 3 2 2

ν [GeV−2] 1.028 8.23 ± 0.14 1.304 5.68 ± 0.20

a1 12149.8 ± 9.2 12202.3 ± 9.3 66.58 ± 0.12 66.79 ± 0.11

a2 [GeV−2] 10705 ± 29 10767 ± 33 163.06 ± 0.73 170.39 ± 0.39

b1 [GeV−2] 5.905 ± 0.017 5.868 ± 0.017 8.291 ± 0.038 8.137 ± 0.026

b2 [GeV−4] 3.677 ± 0.063 3.445 ± 0.060 9.27 ± 0.23 7.58 ± 0.16

b3 [GeV−6] 1.678 ± 0.041 1.520 ± 0.038 14.85 ± 0.34 12.15 ± 0.25

c1 58.8 ± 1.4 60.4 ± 1.9 1.57 ± 0.14 2.047 ± 0.067

c2 [GeV−2] −5.4e-6 ± 2.9 −6.3e-8 ± 2.3 −3.14 ± 0.33 −2.46 ± 0.14

d1 [GeV−2] 0.901 ± 0.050 0.907 ± 0.041 2.75 ± 0.077 2.688 ± 0.019

χ2/ndf 345/206 303/204 234 / 131 368 / 129

Δχ2 0 4.0 0 16

ρ(t=0) 0.0763 ± 0.0017 0.0827 ± 0.0016 0.122 ± 0.018 0.149 ± 0.016

B(t=0) [GeV−2] 13.515 ± 0.035 13.444 ± 0.036 21.021 ± 0.085 20.829 ± 0.055

σ tot,N [mb] 42.694 ± 0.033 42.861 ± 0.034 103.44 ± 0.35 104.12 ± 0.31

σ el,N [mb] 7.469 7.539 27.6 28.0

σ inel [mb] 35.22 35.32 75.9 76.1

σ el,N/σ tot,N 0.1750 0.1759 0.267 0.269

dσN/dt (t=0) [mb.GeV−2] 93.67 94.51 555 566
√〈b2〉tot [fm] 1.026 1.023 1.28 1.27
√〈b2〉el [fm] 0.6778 1.959 0.896 1.86
√〈b2〉inel [fm] 1.085 0.671 1.39 0.970

Dtot(b=0) 1.29 1.30 2.01 2.04

Del(b=0) 0.530 0.0342 0.980 0.205

Dinel(b=0) 0.762 1.27 1.03 1.84
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Fig. 4 The real and imaginary parts of elastic hadron scattering amplitude corresponding to Fits 1 and 2 at 52.8 GeV
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ing to Fit 1 (i.e., central pictures of elastic pp scattering).
However, t-dependence of the phase ζN(s, t) obtained in the
Fit 2 is very different from the dependence corresponding to
Fit 1 already at small values of |t |, see Fig. 2.

It may be interesting to note that the peripheral Fit 2 ful-
fill conclusion of Martin’s asymptotic theorem [77], even
if it has not been explicitly required. Figure 4 contains the
t-dependences of fitted real and imaginary parts of elastic
hadronic amplitudes corresponding to Fits 1 and 2. In the
peripheral case the corresponding real part changes its sign
at |t | ≈ 0.2 GeV2 and the imaginary parts at |t | ≈ 0.1 GeV2.

For the total mean impact parameter
√〈b2〉tot value of

∼ 1.02 fm has been obtained. As to the numerically greater
value ∼ 1.96 fm of

√〈b2〉el in the peripheral case it is given
by the second term in Eq. (41) representing the influence of
the phase; inelastic

√〈b2〉inel being correspondingly lower.
The profile functions DX(b) for the peripheral Fit 2 is

shown in Fig. 5b. Additional b-dependent functions corre-
sponding to the Fit 2 and further characterizing hadron col-
lisions in dependence on impact parameter are shown in
Fig. 6b. It may look like that functions Im h1(b) = 0 and
g1(b) = 0 at the same b-values around 2.5 fm, 4 fm and at
even higher values, see Fig. 6b. This would lead to viola-
tion of the unitarity given by Eq. (34) (if function K (s, b)
is neglected). The two functions are equal to zero in these
regions but not at the same value of b; the unitarity is con-
served at all values of b. Given that the function g1(b) at any
value of b in any of the performed fits is calculated on the
basis of Eq. (34) there is no reason to violate the unitarity.

It may be seen from Table 1 and Figs. 5 and 6 that even if
data may be fitted in the central and peripheral cases equally
well in terms of χ2/ndf value the corresponding behavior
of proton collisions in impact parameter space is completely
different. In the discussed peripheral case one may obtain
elastic profile function Del(b) having its maximum at some
b > 0. The non-zero function c(s, b) discussed in details
in Sect. A.2 and shown in Fig. 6 enables to define non-
oscillating and non-negative profile functions. In the central
case the function c(s, b) plays much less significant role.

4.3.4 Comparison to the simplified model of WY

The results obtained in Sects. 4.3.2 and 4.3.3 may be now
compared to the results obtained earlier on the basis of the
simplified WY formula (9) also at the energy of 52.8 GeV.
The values of quantities σ tot,N, ρ(t=0) and B(t=0) in Table
1 may be compared to similar values

σ tot,N = (42.38 ± 0.27) mb,

ρ(t=0) = (0.078 ± 0.010),

B(t=0) = (13.1 ± 0.2) GeV−2;
(27)

determined in [82] (see also [83]). However, the simplified
WY complete amplitude (9) has been applied to only in the
very narrow region |t | ∈ 〈0.00126, 0.01) GeV−2, while the
Fits 1 and 2 have been performed in much broader measured
region of |t | ∈ 〈0.00126, 7.75〉 GeV2 including also the dip-
bump structure. While in Eq. (9) it has been assumed that
ζN(s, t) and B(t) are t-independent these quantities are t-
dependent in the Fits 1 and 2, see the graps in Figs. 2 and 3.

Figure 3 clearly shows that diffractive slope is not constant
in the analyzed region of t ; therefore one of the assumptions
used in derivation of simplified WY complete amplitude (9)
is not fulfilled, see Sect. 2. It may be interesting to note that
in the case of elastic hadronic amplitude in the model of WY
with t-independent hadronic phase the real part of FN(s, t)
does not change sign at any value of t ; the conclusion of the
asymptotic theorem of Martin is not fulfilled.

The simplified WY approach can be hardly used for the
correct analysis of experimental dσ

dt data and studying t-
dependence of elastic hadronic amplitude and correspond-
ing b-dependent characteristics of hadrons on the basis of
experimental data.

4.4 Energy of 8 TeV

4.4.1 Data

Elastic pp differential cross section has been recently mea-
sured at the LHC by TOTEM at 8 TeV in the region
0.000741 ≤ |t | ≤ 0.2010 GeV2 [70] which contains
Coulomb-hadronic interference region. Nearly exponential
elastic pp differential cross section at the same energy has
been measured by TOTEM [69] in the region 0.027 < |t | <

0.2 GeV2. These two data sets may be combined and contin-
uously extended by renormalized 7 TeV TOTEM data cor-
responding to the region 0.2 < |t | < 2.5 GeV2 [68] which
contains dip-bump structure. This compilation of data will
be denoted as “8 TeV data” in the following (only statistical
errors will be taken into account), see Fig. 7. The extension by
the renormalized 7 TeV data is only an approximation (may
be improved when measured data at 8 TeV in this region
are available). This is also one of the reason why we have
been more interested in overall character of an elastic colli-
sion model fitted to data rather than in discussion of “precise”
numerical values of some quantities. Measured elastic pp dif-
ferential cross section at 52.8 GeV and 8 TeV may be found
in Figs. 1 and 7. There is clearly visible energy difference
and one may ask what we can learn from it.

4.4.2 The eikonal model

The pp data at 8 TeV have been analysed in very similar way,
using the eikonal model, as it has been done in Sect. 4.3 in the
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Fig. 5 Proton-proton profile functions D(b) at energy of 52.8 GeV determined on the basis of Eqs. (38), (35) and (44). Full line corresponds to
total profile function, dashed line to elastic one and dotted line to inelastic one
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Fig. 6 Function c(s, b) and several other functions characterizing pp collisions in dependence on impact parameter at the energy of 52.8 GeV
corresponding to the central and peripheral fits
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Fig. 7 Eikonal model of Coulomb-hadronic interaction fitted to measured elastic pp differential cross section at energy of 8 TeV in the interval
|t | ∈ 〈0.000741, 2.5) GeV2 corresponding to Fit 1, i.e., central picture of elastic pp scattering. Fit 2 leading to peripheral picture of elastic scattering
gives similar graphs
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Fig. 8 Elastic hadronic phases ζN(s, t) for central and peripheral pic-
tures of elastic pp scattering (Fits 1 and 2) at energy of 8 TeV
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Fig. 9 t-dependence of elastic hadronic diffractive slopes B(t) calcu-
lated with the help of Eq. (6) and corresponding to Fits 1 and 2 at energy
of 8 TeV

case of pp data at 52.8 GeV. Two fits of data under different
constrains have been performed.

In Fit 1 at 8 TeV reproducing similar t-dependence of elas-
tic hadronic amplitude FN(s, t) as it is assumed in many con-
temporary models of elastic hadronic scattering, the phase
ζN(s, t) has been required to pass through point

[t2 = −1 GeV2, y2 = −π ] (28)

instead of (24). To obtain a stable fit at 8 TeV leading to
peripherality of elastic collisions (Fit 2) we have required
√〈b2〉el to be around 1.85. The parameter κ = 2 has been
used at 8 TeV to keep analyticity of elastic hadronic ampli-
tude, see Sect. 4.2. Values of free fitted parameters, together
with corresponding values of several hadronic quantities,
may be found in Table 1 for both the Fits 1 and 2.

Hadronic phase ζN(s, t) and diffractive slope B(t) fitted
to experimental data under different conditions are shown in
Figs. 8 and 9. It may be seen from Table 1 that quantities
B(t=0) and ρ(t=0) at 8 TeV are higher than at 52.8 GeV.

The real and imaginary parts of elastic hadronic amplitude
determined in each fit may be found in Fig. 10. Both the Fits 1

and 2 at 8 TeV fulfill conclusion of the Martin’s asymptotic
theorem [77], similarly as at lower energy of 52.8 GeV.

b-dependent profile functions corresponding to effective
electromagnetic form factors at 8 TeV are shown in Fig. 11;
other b-dependent functions further characterizing pp col-
lisions in dependence on impact parameter are pictured in
Fig. 12. One may see big differences between the central
case and the peripheral case shown in Figs. 11 and 12.

The eikonal model analysis of experimental data explained
and performed in this paper has been prepared and already
used for analysis of pp elastic scattering data by the whole
TOTEM collaboration, see the very first results of similar
analysis of 8 TeV data in the Coulomb-hadronic interfer-
ence region measured by TOTEM in [70]. Numerical values
of some quantities such as σ tot,N, σ el,N, σ inel, B(t = 0) or
ρ(t=0) determined in this section are slightly different from
those published in [70]. There are several subtle differences
between both the analyses. First of all we have fitted (approx-
imate) data in broad region of |t | values including the dip-
bump structure as our aim was to determine, at least approx-
imately, t-dependences of elastic hadronic amplitude in the
widest possible t-range and corresponding b-dependences
of profile functions - full physical picture under given set
of assumptions. In [70] the data were fitted in much nar-
rower t-region without the dip-bump structure with focus on
determination of only some quantities (see [70] for details).
Our parameterization of hadronic modulus differs, therefore,
from the one used in [70]. As to t-dependence of hadronic
phase in peripheral case we have used technique of penalty
functions in order to find a few different solutions under given
constrains while in [70] the t-dependence was chosen in quite
fixed form (an ansatz) and then it was demonstrated that the
corresponding elastic hadronic amplitude has given proper-
ties (leads to peripheral interpretation of elastic collisions in
b-space). In our analysis only statistical errors of data points
were taken into account while in [70] also systematical errors
were considered.

It is evident that describing in one model the Coulomb-
hadronic interference region together with the dip-bump
structure in measured data (i.e., non-trivial t-dependence) is
more difficult than fitting, e.g., only (quasi)exponential part
of data. Fit of data in broader region of t-values typically
leads to higher values of reduced χ2. One may expect that
lower values of reduced χ2 then shown in Table 1 may be
obtained by using more flexible parameterization of mainly
the modulus of hadronic amplitude. The purpose of the fits
performed in this paper has been to study mainly conceptual
questions related to different interpretation possibilities of
(elastic) pp collisions and corresponding assumptions.
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4.4.3 Comparison to the simplified model of WY

The values of quantities σ tot,N, ρ(t = 0), and B(t = 0) at
8 TeV in Table 1 determined on the basis of the eikonal model
(under different assumptions) may be compared to the values
obtained on the basis of the simplified WY formula (9)

σ tot,N = (102.0 ± 2.2) mb,

ρ(t=0) = (0.05 ± 0.02),

B(t=0) = (19.42 ± 0.05) GeV−2;
(29)

discussed in [70]. Hadronic phase ζN(s, t) and diffrac-
tive slope B(t) in the simplified approach of WY are t-
independent at all values of t . In the performed fits they
are strongly t-dependent, see Figs. 8 and 9. In the simpli-
fied model of WY the real and imaginary parts of elastic
hadronic amplitude are purely exponential in t while in the
eikonal model describing full measured region of t-values
they have different t-dependence, see Fig. 10.

5 Conclusion

The measurement of elastic pp differential cross section dσ
dt

represents main source of experimental data for the analysis
of elastic processes of protons. The goal of contemporary
theoretical description consists in separation of the Coulomb
effect from data to determine elastic hadronic amplitude
FN(s, t) from which conclusions concerning structure and
interactions of colliding hadrons should be derived and fur-
ther tested. There has not been any actual theory until now
which would consistently determine its corresponding t-
dependence on the basis of measured elastic differential cross
section at all measured values of |t | (including both the
Coulomb-hadronic region at very low values of |t | and the
dip-bump region at higher values of |t |) - except the eikonal
model approach.

In the past the simplified approach of West and Yennie
has been made use of for separation of Coulomb and hadron
interactions. However, this method is not theoretically con-
sistent and is not in sufficient agreement with the measured
data. It contains many limitations as it has been discussed in
Sect. 1. It has been applied to the analysis of the data only
in a very narrow region of momentum transfers in forward
direction and the influence of Coulomb scattering at higher
values of momentum transfers has been always neglected by
definition. The elastic scattering at higher values of momen-
tum transfer has been always described phenomenologically
as purely hadronic scattering on the basis of assumptions not
consistent with the ones used in the approach of WY. Such
an inconsistent dual description of data in the description of
elastic hadron collisions can be hardly justified.

It is assumed in the approach of WY that the relative phase
αφ(s, t) is a real quantity (it is defined as imaginary part of
another complex function). It has been proved mathemati-
cally in [58] the relative phase αφ(s, t) given by the integral
formula (3) is a real quantity only if the elastic hadronic phase
is t-independent at all kinematically allowed t values. Oth-
erwise the relative phase becomes a complex quantity and
WY formula looses its physical sense. The WY approach
cannot be, therefore, used for analysis of experimental data
with arbitrary t-dependence of hadronic phase.

The eikonal model approach, based on the complete elastic
scattering amplitude FC+N(s, t) fulfilling Eqs. (15) to (17),
provides more reliable basis for analysis of elastic collisions
of (charged) hadrons. In principle it is established on the
fact that the common influence of the Coulomb and hadronic
elastic scattering can be reliably described by the sum of
the Coulomb and elastic hadronic potentials (eikonals) and
without any a priori limitation on t-dependence of the elastic
hadronic amplitude. However, analyses of experimental data
have shown that the complex hadronic component FN(s, t)
cannot be uniquely established. Only its modulus is strongly
determined on the basis of measured elastic differential cross
section. The t-dependence of its phase has been only par-
tially constrained when Coulomb-hadronic interference (the
region of very small |t |) has been taken into account.

In the majority of published analyses of experimental data
the corresponding freedom has been, however, strongly lim-
ited by the choice of amplitude parameterization. The imag-
inary part has been usually assumed to be dominant in a
great interval of t and vanishing in the region around diffrac-
tive minimum; with the real part determining the non-zero
value of differential cross section in the diffractive minimum;
see, e.g., the earlier papers [73,75,84–89], [90–92] and also
recent papers [5–10,12–19,22,93,94]. Description of elas-
tic hadronic amplitude corresponding to these widely used
assumptions has been fitted to experimental data at energy
of 52.8 GeV and 8 TeV in Sects. 4.3.2 and 4.4. The so-called
central behavior in impact parameter space has been then
obtained in such a constrained case; elastic processes being
more central (i.e., existing for very small b even at b = 0)
than inelastic ones. Transparent protons during elastic pro-
cesses may be, however, hardly brought to agreement with
the existence of inelastic processes in which many particles
may be formed.

Much more general parameterization of the hadronic
amplitude FN(s, t) has been used in Sects. 4.3.3 and 4.4. A
rather steep rise of phase ζN(s, t) with increasing |t | already
at very small values of |t | has been allowed. It has been pos-
sible to obtain strongly peripheral impact parameter profile
for elastic processes; the imaginary part (dominant at t = 0)
going quickly to zero with rising |t | (Im FN(s, t) = 0 at
t � −0.1 GeV2, at 52.8 GeV and 8 TeV).
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Fig. 10 The real and imaginary parts of elastic hadron scattering amplitude corresponding to Fits 1 and 2 at 8 TeV
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Fig. 11 Proton-proton profile functions D(b) at energy of 8 TeV corresponding to Fits 1 and 2 and determined on the basis of Eqs. (38), (35) and
(44). Full line corresponds to total profile function, dashed line to elastic one and dotted line to inelastic one
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Fig. 12 Function c(s, b) and several other functions characterizing pp collisions in dependence on impact parameter at energy of 8 GeV corre-
sponding to the central (Fit 1) and the peripheral (Fit 2) picture of elastic scattering
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Similar analysis of experimental data with the help of the
eikonal model (see Eqs. (15) to (17)) has been done already
earlier in [29]. In [29] only electric form factors have been
taken into account. It has been shown in the present paper that
addition of magnetic form factors does not lead to significant
change of determined amplitude FN(s, t). For the purpose
of this analysis integral I (t, t ′) defined by Eq. (17) has been
calculated analytically for one suitable parameterization of
the form factors, see appendix C. In Sect. 4 we have deter-
mined t-dependences of elastic hadronic amplitude under
different constrains and showed that all the solutions may be
constructed as analytic, while in [29] used parameterizations
have not been analytic. All the performed fits at older energy
of 52.8 GeV and newer energy of 8 TeV discussed in detail
in Sect. 4 are analytic, satisfy condition of unitarity and the
real parts of all elastic hadronic amplitudes change sign at
low value of |t | as motivated by the asymptotic theorem of
Martin [77].

Analysis of data presented in this paper with the help of
the eikonal model has been prepared and already used for
analysis of pp elastic scattering at the LHC energies, see
the very first results of similar analysis of 8 TeV data in the
Coulomb-hadronic interference region measured by TOTEM
in [70]. Similar analysis of experimental data under different
assumptions may be performed at any other (high) energy
and the results further studied. It is possible to say (against
earlier conviction) that there is not any reason against more
realistic interpretation of elastic processes when protons are
regarded as compact (non-transparent) objects.

The results presented in this paper have helped to identify
and better understand several open questions and problems
in description of elastic pp collisions. They are discussed in
Sect. 7 in [24], see also Sect. 6 in [67].

Acknowledgements We would like to thank to profs. M. M. Islam,
A. Martin, O. Nachtmann and V. A. Petrov for stimulating discussions
concerning various aspects of elastic pp scattering.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: Experimental data
of elastic proton-proton scattering measured in the past are analyzed
in the manuscript under different assumptions to better understand the
whole collision process and properties of the colliding particles. The
results are compared and the conclusions are made.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.
Funded by SCOAP3.

A Appendix: Impact parameter representation of
elastic scattering amplitude

A.1 Infinite collision energy

Elastic hadronic amplitude FN(s, t) is standardly trans-
formed into impact parameter representation of elastic scat-
tering amplitudehel(s, b) introduced with the help of Fourier-
Bessel (FB) transform:

hel(s, b) = 1

4p
√
s

0∫

−∞
FN(s, t)J0(b

√−t)dt; (30)

J0(x) being the Bessel function of the zeroth order. The elas-
tic scattering amplitude hel(s, b) has been then required to
fulfill the unitarity equation

Im hel(s, b) = |hel(s, b)|2 + ginel(s, b) (31)

with the inelastic impact parameter profile ginel(s, b) being
defined similarly as the FB transform of the inelastic overlap
function G inel(s, t) fulfilling the unitarity relation [95,96]
(see also [97])

Im FN(s, t) = p

4π
√
s

∫

dΩ ′FN∗
(s, t ′)FN(s, t ′′)

+G inel(s, t), (32)

being valid at any s and kinematically allowed value of t .
The function G inel(s, t) represents summation of all pos-
sible inelastic states including integration over all remain-
ing kinematical variables specifying corresponding produc-
tion amplitude; dΩ ′ = sin ϑ ′dϑ ′dΦ ′, t = −4p2 sin2 ϑ

2 ,

t ′ = −4p2 sin2 ϑ ′
2 , t ′′ = −4p2 sin2 ϑ ′′

2 and cos ϑ ′′ =
cos ϑ cos ϑ ′ + sin ϑ sin ϑ ′ cos Φ ′. Variables ϑ , ϑ ′ and ϑ ′′ are
angles connected with the variables t , t ′ and t ′′ in the center
of mass system.

Formulas (30) and (31) have represented the starting basis
practically in all phenomenological model analyses at finite
energies where the impact parameter representation of elastic
hadronic scattering amplitudes has been made use of, in spite
of the fact that the formulas have been derived at infinite
(asymptotic) energies only (see, e.g., [73,75,84–89]).

A.2 Finite collision energy

Consistent mathematical formalism of the elastic scattering
amplitude in the impact parameter representation at finite
energies has been studied by several authors, for more details
see appendix A in [24] where mainly work of Islam [97] has
been discussed in greater detail. In the following only the
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main points and formulas, which are needed for data analysis
in Sect. 4, are summarized.

Elastic scattering amplitude hel(s, b) atfinite energies may
be deffined using the FB transform

hel(s, b) = h1(s, b) + h2(s, b)

= 1

4p
√
s

0∫

tmin

FN(s, t)J0(b
√−t)dt

+ 1

4p
√
s

tmin∫

−∞
λ(s, t)J0(b

√−t)dt

(33)

where first termh1(s, b) corresponds to integration over kine-
matically allowed values of t , see Eq. (18). Similarly, one
may introduce inelastic b-dependent amplitude ginel(s, b) =
g1(s, b) + g2(s, b) using FB transform of G inel(s, t) at finite
energies.

According to [41,54–56,63] non-negative (non-oscillating)
total and inelastic profile functions at finite energies may be
defined if a convenient real function c(s, b) is introduced and
unitarity equation is written in the form

Im h1(s, b) + c(s, b) =|h1(s, b)|2 + g1(s, b)

+ K (s, b) + c(s, b) . (34)

Function K (s, b) appearing at finite energies in unitarity
equation represents only small correction, it may be eval-
uated at any energy for given FN(s, t). It is then possible
to define at finite energies total, elastic and inelastic profile
functions DX(s, b)

Del(s, b) ≡ 4 |h1(s, b)|2, (35)

Dtot(s, b) ≡ 4 (Im h1(s, b) + c(s, b)), (36)

Dinel(s, b) ≡ 4 (g1(s, b) + K (s, b) + c(s, b)). (37)

and rewrite the unitarity condition in b-space in the form

Dtot(s, b) = Del(s, b) + Dinel(s, b). (38)

The shape of Dtot(s, b) and Dinel(s, b) might be then mod-
ified by the function c(s, b) to become non-negative; the
shape of elastic profile remains the same. The function c(s, b)
should, however, fulfill some additional conditions. Values
of the total and inelastic cross section given by

σX(s) = 2π

∞∫

0

bdb DX(s, b) (39)

should be preserved. The other physical quantities which
should be preserved are the mean squared values of the total
and inelastic impact parameters, i.e., function c(s, b) should

not change the quantities 〈b2〉tot and 〈b2〉inel defined as

〈b2〉X =
∫ ∞

0 b2 2πbDX(s, b)db
∫ ∞

0 2πbDX(s, b)db
. (40)

According to [63] the mean squares of total, elastic and
inelastic impact parameter defined by Eq. (40) may be deter-
mined directly from the hadronic amplitude FN(s, t) in t
variable without being necessary to know the corresponding
profile function or the function c(s, b). It is possible to write
for the mean squared value of elastic impact parameters

〈b2〉el =〈b2〉mod + 〈b2〉ph

=4
∫ 0
tmin

dt |t | ( d
dt

∣
∣FN(s, t)

∣
∣
)2

0∫

tmin

dt
∣
∣FN(s, t)

∣
∣2

+
4

0∫

tmin

dt
∣
∣FN(s, t)

∣
∣
2 |t | ( d

dt ζ
N(s, t)

)2

0∫

tmin

dt
∣
∣FN(s, t)

∣
∣2

(41)

and for the total mean squared value

〈b2〉tot

= 4

(
d
dt

∣
∣FN(s, t)

∣
∣

∣
∣FN(s, t)

∣
∣

− tan ζN(s, t)
d

dt
ζN(s, t)

)∣
∣
∣
∣
∣
t=0

.

(42)

The inelastic mean squared value is then given by

〈b2〉inel = σ tot,N(s)〈b2〉tot − σ el,N(s)〈b2〉el

σ inel(s)
(43)

if the cross sections are determined using the optical theo-
rem (10) and Eqs. (13) and (14).

The b-dependent profile functions may be determined
in the following way. We may chose Gaussian shape of
total profile function Dtot(b) corresponding to the commonly
assumed one [55]

Dtot(b) = ã2 e−ã1b2
(44)

where ã1 and ã2 are some parameters which may be
expressed using Eqs. (39) and (40) as (see integral formu-
las 3.461 in [98])

ã1 = 1

〈b2〉tot , (45)

ã2 = σ tot,N

π〈b2〉tot . (46)

The total profile function Dtot given by Eq. (44) may be,
therefore, determined from values of σ tot,N and 〈b2〉tot using
optical theorem (10) and Eq. (42), i.e., from t-dependent elas-
tic amplitude FN(s, t). It means that using FB transform (33)
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of FN(s, t) and Eq. (38) the total, elastic and inelastic profile
functions (and also the corresponding c(s, b) function) may
be determined for a given FN(s, t). This approach is used in
Sect. 4 where the hadronic amplitude FN(s, t) is determined
on the basis of experimental data using the eikonal model
description of Coulomb-hadronic interference discussed in
Sect. 3.1.

B Electromagnetic proton form factors determined
from elastic ep scattering

The proton cannot be taken as point-like object, which rep-
resents a modification of the simple Coulomb interaction as
its charge is distributed in a larger space. The shape of this
distribution and its influence on the corresponding interac-
tions is commonly characterized by elastic electromagnetic
form factors. They have been standardly determined from
elastic electron-proton scattering on the basis of Rosenbluth
formula [99] describing measured differential cross section.
The formula contains electric form factor GE(t) and mag-
netic form factor GM(t) which depend only on the square of
exchanged momentum transfer and which should satisfy the
initial conditions

GE(0) = GM(0)/μp = 1; (47)

here μp ≈ 2.793 is the proton magnetic moment divided by
nuclear magneton.

From early measurements of the elastic ep scattering at
lower energies it has been deduced that electric GE(t) proton
form factor can be described by the dipole formula (11) and
the magnetic one by

GD
M(t) ≈ μpG

D
E (t) . (48)

Borkowski et al. [100,101] analyzed elastic ep scatter-
ing data at several energies with the help of the Rosenbluth
formula where the t-dependencies of both the electric and
magnetic form factors have been parametrized by the formu-
las

GB
E(t) =

4
∑

j=1

gE
k

wE
k − t

, (49)

GB
M(t) = μp

4
∑

j=1

gM
k

wM
k − t

(50)

inspired by the vector dominance model. The original val-
ues of the parameters gE,M

k and w
E,M
k (being different for

both the electric and magnetic form factors) may be found in
[101]; the corresponding electric and magnetic form factors
may be denoted as GBO

E (t) and GBO
M (t). Different shapes of

Table 2 New values of refitted parameters specifying electromagnetic
proton form factors in Borkowski’s parameterization, see Eqs. (49) to
(51). The parameters are expressed in units of GeV2

k 1 2 3 4

gE
k 0.1344 5.014 −7.922 2.747

wE
k 0.2398 1.135 1.530 2.284

gM
k 0.2987 27.73 −28.15 0.1274

wM
k 0.3276 1.253 1.276 6.361
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Fig. 13 Proton electric form factors GE(t)

electromagnetic form factor parametrizations have been pro-
posed by Arrington et al. [102,103] (denoted as GAR

E (t) and
GAR

M (t)) and Kelly [104] which has been applied by Puckett
[105] (denoted as GPU

E (t) and GPU
M (t)), too.

Extending the measurements of the proton electric and
magnetic form factors to higher values of |t | has offered a
chance for a better description of the influence of electro-
magnetic proton structure in the elastic pp collisions at high
energies. However, this approach may be considered as fully
entitled assuming that the electric and magnetic form fac-
tors determined from an analysis of elastic ep scattering are
identical with the form factors involved in a description of
pp elastic scattering. This assumption should be tested in the
future.

The relatively recent determination of t-dependent elec-
tric and magnetic form factors has been done by Arring-
ton et al. [103] (see also [102,106]) in the relatively broad
region of −t ∈ (0.007, 5.85) GeV2. In this region we may
express (refit) the form factors using the parameterizations of
Borkowski given by Eqs. (49) and (50). The refitted param-
eters are in Table 2; the corresponding electric and magnetic
form factors may be denoted as GBN

E (t) and GBN
M (t); they

allow to perform some analytical calculations and are used
for data analysis in Sect. 4. The mentioned electric and mag-
netic form factors (in different parameterizations) GAR

E,M(t),
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Fig. 14 Proton magnetic form factors GM(t)/μp having very similar
t-dependences

GPU
E,M(t), GBO

E,M(t), GBN
E,M(t) and GD

E,M(t) are shown for com-
parison in Figs. 13 and 14.

The effective electromagnetic form factor squared (τ =
−t

4m2 )

G2
ef f (t) = 1

1 + τ

[

G2
E(t) + τ G2

M(t)
]

(51)

appearing in the Rosenbluth formula has been introduced in
[65] for analysis of elastic pp scattering. One may define
effective electric form factor squared as

G2
E,ef f (t) = 1

1 + τ
G2

E(t) (52)

and effective magnetic form factor as

G2
M,ef f (t) = τ

1 + τ
G2

M(t) . (53)

The graphs of the effective electric form factor G2
E,ef f (t),

the effective magnetic form factor G2
M,ef f (t) and effective

electromagnetic form factor G2
ef f (t) corresponding to the

GBN
E (t) and GBN

M (t) (i.e., Borkowski’s parameterization with
the newly determined values of free parameters) are shown
in Fig. 15. For the comparison also the electric form factor
(GBO

E (t))2 used in [29] is shown.
Fig. 15 shows that the t-dependence of the effective elec-

tromagnetic form factor G2
ef f (t) in Eq. (51) is different from

that one appearing in original Borkowski’s et al. parameteri-
zation (49) which has been used in analysis of experimental
elastic pp data in [29]. One may ask what the difference in the
result is if magnetic form factor is included. In next section
it will be, therefore, shown how to generalize the approach
in [29] to take into account either the effective electric or the
effective electromagnetic form factor in the eikonal model
description of elastic pp collisions.

C Analytical expression of integral I (t, t ′)

It has been mentioned in Sect. 3.1 that the integral involving
the electromagnetic proton form factors (17) may be calcu-
lated analytically for conveniently parameterized form fac-
tors. It is sufficient to integrate only over a finite region of
momentum transfers in formula (15) since the whole inte-
gral is multiplied by the elastic hadronic amplitude FN(s, t)
the modulus of which decreases very strongly at high |t |
(see Figs. 1 and 7). The used limited integration region of
momentum transfers allows us to use some simpler formulas
for the ep form factors enabling us much simpler analytical
calculation.

In [29] the integral I (t, t ′) was analytically calculated only
for electric form factor parameterized according to (49). The
same analytical formulas for this integral have been used in
[64]. The integral may be analytically calculated for effective
electromagnetic form factor given by Eq. (51) if the corre-
sponding electric and magnetic form factors are given by Eqs.
(49) to (50). Due to the fact that both the effective form fac-
tors have more complicated t-dependences the corresponding
formulas will be a little bit more complicated than that ones
in [29].

The analytical calculation of the new form of the inte-
gral I (t, t ′) in Eq. (17) has been calculated with the program
Mathematica [107] and equals to the sum of two contribu-
tions coming from the electric and magnetic form factors
which contain now some kinematical factors (rp = −τ/t =
1/(4m2))

I (t, t ′) = −
⎡

⎣

4
∑

j,k=1

gE
j g

E
k WE

jk(t, t
′) IE

jk(t, t
′)

+ rpμp
2

4
∑

m,n=1

gM
m gM

n WM
mn(t, t

′) IM
mn(t, t

′)

⎤

⎦ .

(54)

The contribution of electric form factor in this equation is
given as follows. For j �= k it holds

IE
jk(t, t

′) =2π

[

(U − 1)3

√
U (U − R)(U − PE

j )(U − PE
k )

+ (R − 1)3

√
R(R −U )(R − PE

j )(R − PE
k )

+ (PE
j − 1)3

√

PE
j (PE

j −U )(PE
j − R)(PE

j − PE
k )

+ (PE
k − 1)3

√

PE
k (PE

k −U )(PE
k − R)(PE

k − PE
j )

⎤

⎦ ,

(55)
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M (t) (see Eqs. (51) to (53)) and compared to (GBO

E (t))2

while for j = k one has

IE
j j (t, t

′) = 2π

[

(U − 1)3

√
U (U − R)(U − PE

j )2

+ (R − 1)3

√
R(R −U )(R − PE

j )2

+ (PE
j − 1)2

2(U − PE
j )2(R − PE

j )2(PE
j )3/2

[

U
(

R + 5RPE
j − 3PE

j (PE
j + 1)

)

+PE
j

(

−3R(PE
j + 1) + PE

j (5 + PE
j )

)] ]

.

(56)

The quantities U , R and PE
j are the functions of t and t ′

variables defined as

U = (
√−t + √−t ′)2

(
√−t − √−t ′)2

, (57)

R =1 + rp(
√−t + √−t ′)2

1 + rp(
√−t − √−t ′)2

, (58)

PE
j =wE

j + (
√−t + √−t ′)2

wE
j + (

√−t − √−t ′)2
. (59)

Similarly the quantity WE
jk is also the function of t and t ′

variables and equals

WE
jk(t, t

′) =
[

[wE
j + (

√−t − √−t ′)2][wE
k + (

√−t − √−t ′)2]

×[√−t − √−t ′]2[1 + rp(
√−t − √−t ′)2]

]−1
.

(60)

The contribution of magnetic form factor is represented
by the second term in Eq. (54). The integral form �= n equals

to

IM
mn(t, t

′) = 2π

[

(PM
m − 1)2

√

PM
m (PM

m − R)(PM
m − PM

n )

+ (R − 1)2

√
R(R − PM

m )(R − PM
n )

+ (PM
n − 1)2

√

PM
n (PM

n − R)(PM
n − PM

m )

]

(61)

and for m = n it equals

IM
mm(t, t ′) =2π

[

(R − 1)2

√
R(R − PM

m )2

+ (PM
m − 1)

[

PM
m (PM

m + 3) − R(3PM
m + 1)

]

2 (PM
m )3/2(R − PM

m )2

]

.

(62)

The quantities PM
m and WM

mn are the functions of t and t ′
variables and equal

PM
m = wM

m + (
√−t + √−t ′)2

wM
m + (

√−t − √−t ′)2
(63)

and

WM
mn =

[

[wM
m + (

√−t − √−t ′)2][wM
n + (

√−t − √−t ′)2]

[1 + rp(
√−t − √−t ′)2]

]−1
.

(64)

Then the complete elastic scattering amplitude in the
eikonal model describing the common influence of Coulomb
and hadron scattering in one-photon exchange approach
which is valid up to the terms linear in α is generally given
by Eqs. (15) to (17) with the quantity I (t, t ′) given by Eqs.
(54) to (64). This newly derived form of the complete elastic
scattering amplitude, enabling to study influence of different
form factors, will be used for the analysis of pp elastic scat-
tering data at given energy at all measured values of t in a
consistent way in Sect. 4.
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