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Abstract We consider Type IIB compactifications on an
isotropic torus T 6 threaded by geometric and non geometric
fluxes. For this particular setup we apply supervised machine
learning techniques, namely an artificial neural network cou-
pled to a genetic algorithm, in order to obtain more than sixty
thousand flux configurations yielding to a scalar potential
with at least one critical point. We observe that both sta-
ble AdS vacua with large moduli masses and small vacuum
energy as well as unstable dS vacua with small tachyonic
mass and large energy are absent, in accordance to the refined
de Sitter conjecture. Moreover, by considering a hierarchy
among fluxes, we observe that perturbative solutions with
small values for the vacuum energy and moduli masses are
favored, as well as scenarios in which the lightest modulus
mass is much smaller than the corresponding AdS vacuum
scale. Finally we apply some results on random matrix the-
ory to conclude that the most probable mass spectrum derived
from this string setup is that satisfying the Refined de Sitter
and AdS scale conjectures.

1 Introduction

One of the main aims of string theory is the construction of
realistic effective theories with a small cosmological constant
Λ within the perturbative regime. Motivated by the recent
series of conjectures around the construction of de Sitter (dS)
vacua and inflationary conditions [1–8] (see also [9–17]), the
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question about a possible microscopic origin of Λ has lately
received an increasing attention [18]. It is then worthwhile to
focus on specific flux configurations which can be related to
effective models with small energy values at extremal points
in moduli space.

In this context, one would be tracing back the origin
of a small Λ to some well-identified features of flux con-
figurations. This would certainly be very interesting since
fluxes drive many important physical phenomena, such
as: supersymmetry breakdown, symmetry breaking, axion
monodromy inflation and F-term monodromies. As it was
observed in [19–22], all these expected and desirable fea-
tures naturally arise in the so called flux-scaling scenarios,
where fluxes play a role in fixing the values of the vacuum
energy at extrema of the potential.

A promising scenario as they are, flux compactifications
must obey the quantum gravity conjectures if one hopes to
complete these models in the UV regime. In this work we
focus on the so-called refined de Sitter conjecture (RdSC)
which states that the construction of a stable dS vacuum is
excluded from a consistent quantum gravity theory (includ-
ing string compactifications). More specifically the RdSC
establishes a bound of the form

min ∇i∇ j V

V
≤ −c′, (1)

where V is a given effective scalar potential and i , j repre-
sent index coordinates in field space and c′ is a given constant
parameter. Besides the exclusion of stable de Sitter, the bound
also implies that some apparently plausible AdS vacua must
be discarded as well, depending on the actual value of the
constant c′ as shown in Fig. 1. The bound defines a line with
a slope determining the value of c′ for some specific model,
i.e., the upper bound on the quotient between the minimum
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Fig. 1 Agreement of given effective model with the refined de Sit-
ter conjecture defines 6 different zones. Three of them belong to the
Swampland. The angle θ defines the slope of the line dividing the regions

of the Swampland from the Landscape. In pink we represent AdS vacua
satisfying the BF bound defined by tan(θBF ) = −2/3

mass squared and the value ofV at an extremum for the poten-
tial. In Fig. 1 we can distinguish six different zones depend-
ing on whether the corresponding vacuum energy is positive
or negative and on whether the vacuum is stable or not. As
it was mentioned already, some AdS regions are excluded
as well, in particular, stable AdS vacua with small energy
and large moduli masses. The same is true for unstable dS
regions with a large vacuum energy and a small tachyonic
mass. Throughout this work we refer to unstable and sta-
ble vacua as solutions with or without tachyons respectively,
for both dS and AdS. Notice however, that for AdS vacua,
the instability can be alleviated provided the tachyon mass
squared is above the Breitenlohner–Friedmann (BF) bound
[23], i.e., for m2

tachyon ≥ −3|V0|/2. The region satisfying the
BF bound is highlighted in Fig. 1.

We concentrate on a simple well studied model consisting
on a Type IIB compactification on an isotropic torus in pres-
ence of orientifold 3-planes, threaded by the usual Ramond–
Ramond (RR) and Neveu–Schwarz–Neveu–Schwarz (NS–
NS) 3-form fluxes and by non-geometric (nG) fluxes as well
[24–30] (see Appendix A). The scalar potential has three
complex scalar fields: the complex structure (U ), the axio-
dilaton (S) and the Kähler modulus (T ). The simplicity of
this model lets us implement an algorithm to find as many
extrema as possible for the scalar potential. One of the goals
of the present work is to produce consistent and adequately
quantized flux configurations. This, in order to obtain a rea-
sonable sample of scenarios where one would be able to test
whether or not the stable AdS and non-stable dS zones are
excluded, in accordance or disagreement with the RdS con-
jecture.

We classify different flux configurations according to the
features of the scalar potential at the extremum under consid-
eration. For that purpose we use an artificial neural network1

(ANN), by means of which we are able to classify more than
sixty thousand different flux configurations and some rele-
vant features of the corresponding vacua. There is however
an important caveat here. It is necessary to provide the ANN
with concrete examples to be able to identify certain pat-
terns among the different fluxes, which in turn would lead to
some stable or unstable extremal point in moduli space. This
is the reason to use genetic algorithms previous to adapting
the neural network [9,10,31,39,42,43]. Since there is not a
single example of a stable dS, it is possible that the network
does not identify such cases and in consequence it will not
learn how to construct them. So, we expect not to find dS
stable extrema. Observe that this fact is only a consequence
of our algorithm and it is not reflecting a general feature of
our compactification model. However, we are not restricting
the possible AdS vacua to encounter since there are plenty
of examples of unstable and stable AdS extrema. By looking
for them employing the neural network, we expect to repro-
duce all possible situations. Therefore, this is a fruitful zone
to check for consistency with the RdS conjecture, and we
find that those zones excluded by it are indeed absent in our
classification, suggesting the validity of the conjecture or the
quantum gravitational consistency of the considered setup.

Based on recent results [13,25,44], in which the presence
of hierarchical values on fluxes induces a natural hierarchy
on moduli masses, for which there are concrete (supersym-

1 Implementation of different computational methods in high-energy
physics research has increased notably in the last few years. See e.g.
[31–41].
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metric and non-supersymmetric) vacuum solutions with a
small value for the cosmological constant Λ, we contem-
plate the possibility that hierarchical flux configurations lead
to scenarios with small values for the vacuum energy. We
observe that indeed, the values of the scalar potential at its
minimum are smaller than one when the flux configuration
possesses a hierarchy among their integer values. In this
sense we suggest that a possible microscopic explanation
for a small Λ in a quantum gravity theory such as string the-
ory, might rely on specific features of the flux configuration.
Moreover, we find that the smaller the string coupling, the
higher the probability to find a vacuum solution with a small
vaccum energy, suggesting that for the most probable sce-
narios, Λ ∼ exp(−Re(S)). This is another highlight of the
use of hierarchical flux configurations.

We also report that, by considering hierarchical fluxes, the
ANN classification shows that there is a higher probability
for the vacuum solutions to show a spectrum in which the
minimal stable modulus mass is greater than the scale of the
AdS vacuum. These vacua, in accordance to the AdS scale
conjecture cannot be uplifted to a stable dS vacuum.

In order to sustain the above observations on a more solid
basis, we compare the spectra of critical values obtained from
the mass matrix, with the spectra of a Gaussian orthogonal
ensemble (GOE) with a mean-value μ and standard deviation
σ . We observe that the mass matrix posseses similar charac-
teristics as a GOE namely, the probability for the mass matrix
eigenvalues to be non-negative coincides with that derived
from a GOE. Thus, we use the spectral results obtained from
random matrix theory applied to the squared mass eigenval-
ues to find that:

– Probability to find an unstable critical point is 106 times
higher than finding a stable one.

– 80% of all generated flux configuration fulfilling string
constraints as Tadpole cancelation and Bianchi identities
do not exhibit a hierarchy among their values, pointing
out the fact that it is not likely to obtain a hierarchical
flux configuration from random selection.

Although the last point suggests that it is very unlikely to
encounter a flux configuration with a hierarchy, if one departs
from a hierarchical flux configuration, the probability to
obtain an effective theory at the extremum of the scalar poten-
tial with some desired physical properties increases. This is:

– 70% of the constructed vacua are within the perturbative
regime.

– Among all vacua (stable critical points), 40% of them
have an (absolute) energy value smaller than unit.

– In 80% of all AdS vacua, the lightest moduli mass is
larger than the (absolute value of) vacuum scale.

Therefore, although all generated vacua seems to satisfy the
RdS conjecture we find that by restricting the construction
of these simple models to hierarchical flux configurations,
we increase the probability for the effective models to be
in the perturbative regime and to fulfill scale conjecture as
well. This suggests, at least for these simple toroidal models,
that the source of the Swampland constraints could rely on
specific features of flux configurations as the hierarchical
values among them.

Our work is organized as follows: In Sect. 2 we describe
generically and in simple terms the implementation of the
artificial neural network coupled to the genetic algorithm.
Technical issues concerning the structure of an ANN as well
as a basic example are given in Appendix A. In Sect. 3 we dis-
cuss the numerical results obtained by implementing the scan
over random and hierarchical flux configurations. Finally in
Sect. 4 we present our concluding remarks. The physical
description of the Type IIB flux compactification setup is
presented in Appendix B. Similarly, a toy example illustrat-
ing the possibility to have small vacuum energy values at an
extremum of the scalar potential is presented in Appendix B
as well.

2 Classification of vacua and search for extrema of the
potential

We are interested in classifying vacua constructed from dif-
ferent flux configurations. This is done in order to identify
flux patterns which could lead to some desired particularities,
such as: stability, a small value for the cosmological constant
or the existence of a dS critical point. For that we shall use
and implement an artificial neural network (ANN).2

The ANN architecture proposed in this paper is that of a
pattern recognition feedforward network organized in three
clusters of neurons: The input layer with 10 neurons, the
hidden layer consisting of 12 neurons for the case of free-
tachyon classification and 23 for the case of positive vacua
classification, and the output with 1 neuron. The activation
functions are chosen to be the hyperbolic tangent sigmoid
transfer function. In the input we encode the integral values
for the flux parameters consisting on a set of fluxes satis-
fying all string constraints, namely the Tadpole cancellation
condition and Bianchi identities. In our case we consider
non-geometric fluxes as well.

As previously mentioned, we concentrate on an isotropic
toroidal flux compactification (see Appendix B). Hence we
consider 4 integers parameterizing the R–R sector fluxes f

2 This section deals with some technical details and numerical analysis
(see Appendix A for details). For the reader interested in our conclusions
on the construction of string derived effective models we suggest to go
directly to Sect. 3.
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(with components fi , i = 1 · · · 4), 4 integers for the NS–NS
sector fluxes as well h (with components h j , j = 1 · · · 4),
and 6 for the non-geometric (nG) fluxes b (with components
bk, k = 1 · · · 6), adding up to the 14 nodes of the input.
The output is made of those vacuum solutions of the scalar
potential constructed from the corresponding flux compact-
ification. Extra criteria must be added to stimulate the ANN
searching. In our case we shall analyze two different criteria
to stimulate the ANN, namely by looking for stable or dS
critical points.

The use of the ANN requires a controlled training as a
first step. The training consists on feeding the ANN with
different flux configurations for which we know the exis-
tence of critical points as well as their corresponding fea-
tures, such as vacuum stability and the value of the scalar
potential at the critical point. The training data is obtained
by randomly generating different flux configurations satisfy-
ing the Tadpole cancelation condition and Bianchi identities.
We were able to generate about 40,000 different configura-
tions using Mathematica codes. After that, we implemented
a genetic algorithm (GA) in order to compute the moduli
VEVs at which the scalar potential has a critical point, the
corresponding scalar potential value at that point as well as
its corresponding Hessian matrix (determining the stability).

The training process serves to optimize the network
parameters (weights and biases) upon stepwise minimiza-
tion of a certain objective function, which we have chosen to
be the mean standard error (MSE, see Eq. A.2). For this pur-
pose, the training data is divided into three randomly selected
groups as follows: 80% of the data is used for the ANN train-
ing, 10% for validation (to avoid overfitting on the training
data), and 10% for a posterior test (to avoid overfitting on
the validation data).3 Thus it is expected from it to perform
well beyond the training data (it might even be able to iden-
tify possible patterns relating the flux configuration with the
existence of specific extrema of the resulting potential as well
as the features of the potential at those critical points).

Once the ANN is trained we proceed to feed it with a
variety of flux configurations. The ANN tells us which of
them allow or not for the existence of some critical point with
some required feature, i.e., it classifies the flux configurations
into two groups according whether they fulfill the selected
criteria or not. We confirm the results given by the ANN

3 Once the network is trained, the confusion matrix shows us that
the ANN was able to correctly characterize the data in 98.6% of the
cases. For 75.2% of the correct classification the output was positive
(no tachyons in the spectra) and for 23.3% of the correct classification
the output was negative (there was at least one tachyon). Besides, the
ANN made a wrong classification of the positive answer by 0.8% (the
ANN predicted at least one tachyon where there was no tachyon in the
spectra) and it made a wrong classification with negative answer with
an error of 0.6% (the ANN predicted no tachyons where there was at
least one tachyon in the spectrum).

by implementing the GA and calculating specific values at
the critical points in case we have them. A flow map of our
approach is shown in Fig. 2. More in detail, the sketch of our
procedure is as follows:

1. We collect the training data. These are flux configura-
tions fulfilling Tadpole cancellation condition and Bianchi
identities. We generate nearly 40,000 different configura-
tions. There are two training processes depending on the
type of training data:

(a) CASE A: training with random fluxes. The NS-NS,
RR and nG fluxes are picked at random.

(b) CASE B: training with hierarchical fluxes. Fluxes
used for training are no longer chosen at random.
Instead, the flux values in one of the closed sectors
are higher than the rest, e.g. integer valued NS–NS
fluxes are between one and four orders of magnitude
larger than R–R and nG fluxes.

2. We use our trained network as a classifier for nearly 1.4
million flux configurations. In order to find some interest-
ing statistics we have also selected two different criteria
for the outcome data:

(a) Criterion I: a stable critical point for the scalar poten-
tial. This means that the ANN looks for patterns on
the flux configuration such that the scalar potential
has a minimum. This can be either AdS or dS.4

(b) Criterion II: a dS critical point. This means that the
network is asked to determine whether a given flux
configuration exhibits a dS critical point, regardless
of whether it is a maximum, a minimum or a saddle
point.

3. We implement a genetic algorithm (GA) to compute spe-
cific values for the vacua on the classified flux configura-
tions.

In the following we describe our results by dividing them in
terms of the flux configuration input set.

2.1 Case A: random fluxes

ANN training

After randomly generating 40,000 sets of fluxes satisfying
the tadpoles and the Bianchi identities, we implement a GA
to determine which of them contain critical points. We find
4034 critical points out of which there are 298 AdS solutions
without tachyons, 139 dS with Tachyons and the remainder

4 Minkowski vacua are excluded since, by construction the ANN is not
trained to obtain such vacua.
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Fig. 2 Flow chart of the vacua
search procedure. One starts
with a given flux configuration
as an input for the neural
network. The outcome is
whether or not the fluxes under
consideration lead to a scalar
potential in the effective theory
with critical points. If the
outcome is positive, then one
employs the genetic algorithm
in order to find the critical
point(s) and the corresponding
field values at which the various
moduli get fixed

are tachyonic AdS. The results are used to train a network
neural classification which assigns a value, e.g., 1 or 0 as
an output, depending on whether or not a given property is
satisfied by the flux under consideration.

As mentioned above we have selected two different cases
according to the feature we want the ANN to find: (1) A stable
critical point, this is, a minimum regardless the value of the
vacuum energy or (2) A critical point with a positive value of
the scalar potential at such point. This would be a dS critical
point, regardless its stability. For the first case, the ANN clas-
sifies flux configurations into three groups: Those generating
a scalar potential with a stable critical point, those generat-
ing a scalar potential with unstable critical points and finally
those generating a scalar potential without critical points.
Similarly, for the second criterion, the classification of fluxes
after feeding the ANN consists on a group of fluxes generat-
ing a dS extremal point, those with an AdS critical point, and
finally, those generating a scalar potential without a critical
point.

Results

After training the ANN we feed it with nearly a million dif-
ferent flux configurations satisfying the Tadpole and Bianchi
constraints. In the following we summarize our findings.

Criterion I. Stable critical points Out of the roughly one
million cases in the input, the ANN selects 66,000 sets of
fluxes as candidates to generate a scalar potential with a min-
imum. In order to verify this, we use the GA and find that out
of the 66,000 configurations, there are 20,779 with critical
points and only 9872 without tachyons (see footnote 3). It
is interesting to compare with the original training data, out
of 40,000 flux configurations we obtained 298 stable critical
points, a naive estimate can lead us to the expectation of 7450
stable critical points had we simply run the AG over one mil-
lion flux configurations. Employing the ANN coupled to the
GA we obtain an amount of minima in the same order of mag-
nitude (slightly higher). From this observation we conclude
that besides the advantage of the ANN + GA being much

less time consuming than the GA alone, we obtain roughly
the same quality in the final outcome, therefore making this
approach very suited for Landscape studies. The distribution
of minima is presented in Fig. 3a. Finally let us recall that no
dS minimum was found, although there are many unstable
dS extremal points.

Criterion II. dS extremal points For this case the ANN
favored a total of 50,000 sets of fluxes as possible candi-
dates to contain a dS extremum. The GA confirms that out of
those 50,000, only 4944 different flux configurations gener-
ate a scalar potential with an extremal point. Moreover, only
140 of them lead to a minimum, i.e., an extremal point free
of tachyons. For all of the stable minima we find that they
occur at negative values of the scalar potential, i.e., they are
AdS minima. The rest of them correspond to unstable 2744
dS and 2200 AdS extremal points. The results of this classifi-
cation are shown in Fig. 3b.5 Notice that contrary to training
with Criterion I (9872 cases without tachyons), the number
of stable vacua fund using Criterion II (140 cases without
tachyons) is less than the one obtained by the use of GA on
aleatory fluxes (298 cases without tachyons).

It is important to emphasize that from the total set of crit-
ical points, no stable dS vacua was found no matter what
criterion we have used. For instance, with Criterion I, the
number of dS (180 cases) is considerably smaller than those
obtained in Criterion II (2744 cases). Also with Criterion II
the number of dS critical points increases as expected, in
spite of an observed overall decrease in the number of stable
points. This numerical analysis shows a correlation between
the presence of tachyons and the number of actual dS critical
points as suggested by the RdS Swampland Conjecture, at
least for the isotropic torus with fluxes.

The ANN flux classification improves our capacity to find
vacua and in consequence to explore the String Landscape
or the Swampland. This follows from the analysis plotted in
Fig. 4 where we show the number of vacua, stable or not,

5 Here we are analyzing only stable critical points out of those generated
by the ANN through Criterion II.
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Fig. 3 Histogram of the stable vacua with random fluxes generated by
the GA (blue bars) and by the ANN + GA (yellow bars). Intersection
of blue and yellow bars appears as gray bars. Left: criterion I. Right:

criterion II. This data represents the first step in the training of the ANN
and corresponds only to the free tachyon vacua

versus the value of the scalar potential at the critical point.
We notice that for the case of AdS, the number of vacua is
increased by the use of the ANN compared to those obtained
by GA for the Case I. However the same is not true for Case
II. On the other hand, the number of dS vacua increases by
the use of the ANN in both cases, although neither of them
contain a stable dS vacuum. See Fig. 4 for more details. By
looking at the order of magnitude on the number of vacua
found by the use of the ANN, we conclude that Case I is
much more efficient than Case II.

2.2 Case B: hierarchy on fluxes

ANN training

In this case the ANN is trained by an input of flux con-
figurations with a clear hierarchy on their integer values.
This hierarchy means that the integer values parameteriz-
ing one of the sectors, e.g. NS–NS, R–R or nG are between
one and four orders of magnitude bigger than the fluxes in the
other sectors. As in Case A, all flux configurations satisfy the
usual constraints of tadpole cancellation and Bianchi identi-
ties with no D-branes. We explore 3 hierarchies among the
fluxes: f, h � b, h, b � f and f, b � h. The inequalities
imply that all the flux components of one kind differ by at
least one order of magnitud from all the flux components of
the other kind (i.e. for the first type ∀i, j,k fi � bk, h j � bk).

A hierarchy on the integer values associated to all fluxes
in turn establishes a hierarchy on the masses associated to the
modulus. This is, if we take for example the R-R fluxes to
be larger than the others f � h, b, we expect in this model,
that the complex structure modulus would be the heaviest
modulus MU � MS, MT [44]. Next we write the expected
hierarchies between the moduli masses that are obtained by
setting one of the explored hierarchies among the fluxes:

Case K : f, h � b → MU , MS � MT ,

Case CS : h, b � f → MS, MT � MU ,

Case AD : f, b � h → MT , MU � MS . (2)

The classification as in the previous case is done by
demanding the ANN to identify flux configurations which
generate a scalar potential with a stable critical point.6 Since
the flux configuration presents a hierarchy, all the critical
points are also related to a spectrum with a lightest moduli.
Notice that for this case we are not training the ANN to find
critical points with a positive value for the scalar potential.
This follows from our experience in case A in which the dS
criterion (Criterion II) did not produce much more vacua,
as desired. In Fig. 5 and Fig. 6 stable and critical points are
analyzed.

Results

The histograms obtained after ANN’s classification are
shown in Fig. 5. As observed, selecting a specific hierarchy
on the flux configuration affects the distribution of vacua:

– If we take, for instance, both R–R and NS–NS larger than
nG fluxes ( f, h � b), we obtain the lightest mass to be
that of the Kähler modulus MT . In this case we notice a
clustering of the number of stable vacua around a given
value for the cosmological constant well below the peak
obtained for randomly selected fluxes, with a mean value
of the cosmological constant lower than its value on the
randomly selected vacua.

– If we take the complex structure as the lightest modulus
( h, b � f ), we observe an increase in the number of
stable AdS vacua with a greater dispersion. However, for
the case in which the lightest modulus is the axio-dilaton
( f, b � h), we do not notice an improvement on the

6 We have discarded an analisys for Criterion II once we conclude it is
not efficient when applied to hierarchical fluxes.
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(a) (b)

(c) (d)

Fig. 4 Histogram of critical points with random fluxes obtained by the
ANN + GA (yellow bars) and those randomly found by the GA (blue
bars). Intersection appear as grey bars. a AdS vacua, criterion II, b dS
vacua, criterion II, c AdS vacua, criterion I, d dS vacua, criterion I.
Notice that the a differs from the others in that the amount of solutions

found by the GA alone and the ANN + GA are comparable, this reflects
the fact that in this case the training set for the ANN was smaller. In
contrast with Fig. 3, these histograms include the cases where at least
exists one tachyonic state

amount of stable vacua in relation with a random flux
configuration input.

In Fig. 6 we present the corresponding histograms related
to different hierarchies on the moduli masses. Notice that for
all cases the histograms seem to follow a normal distribu-
tion. Figures (a) and (b) indicate the distribution of vacua
for the case in which the Kähler modulus is the lightest one
MS, MU � MT (case K) against the value −negative or
positive− of the scalar potential at that point. Figures (c), and
(d) correspond to the case in which the axio-dilaton modu-
lus is the lightest one MT , MU � MS (AD case) ; whereas
Figures (e) and (f) refer to the case in which the complex-
structure moduli is the lightest one MT , MS � MU (CS
case).

The ANN classification shows a greater abundance of AdS
critical points for this Case B than for Case A. Besides, the
critical points for the K and CS cases respectively, have a
mean value for the scalar potential lower than the value on
the AD case. Conversely, the abundance of dS critical points
is reduced in the K and CS cases in comparison with Case A.

3 Surveying the landscape of vacua

Upon correlation of different features for the vacua we
obtained, we draw three important observations, which we
present in order.

3.1 Perturbative regime is associated to a small minima of
the scalar potential

A careful comparison of critical points shows that the largest
values of the scalar potential at the corresponding critical
point are related to non-perturbative regime (Re S 
 1),
and thus cannot be trusted. This can be seen in Fig. 7 where
we have plotted all AdS and dS vacua (not necessarily sta-
ble) obtained by the ANN against the string coupling value
(real part of the axio-dilaton at the critical point). We there-
fore observe that those flux configurations associated with
very small values for the string coupling, i.e., describing an
effective perturbative model, are related to small values for
the cosmological constant, suggesting a relation of the form
Λ = ± exp (−Re S).
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(a) (b)

(c)

Fig. 5 Distributions of vacua obtained for hierarchical fluxes: a Kähler
(K), b complex structure (CS) and c axio-dilaton (AD) as the lightest
modulus. The critical points obtained by the ANN + GA are given in

yellow bars, and those randomly found by the GA are given in blue bars.
This data represents the free tachyon spectrum classification of fluxes
with hierarhcy

3.2 Compatibility with the refined dS conjecture

The smallest eigenvalue of the ∇i∇ j operator, denoted
min ∇i∇ j V , corresponds to the mass of the lightest mod-
ulus (which in the case of an unstable vacuum is tachyonic).
Using the vacua distribution of the values of the potential at
the critical point (Λ) versus the smallest modulus mass, we
graphically observe that the vacua obtained populates only
a half of that plane: essentially all the data lies below the
line V = − 1

c′ minm2 + c′′ for some for c′′ < 0. As men-
tioned before, the slope of the line is related to c′ parameter.
In Fig. 8, vacua obtained in Case A are represented by red
(Criterion I) and blue (Criterion II) points, while green (case
K) and yellow (case CS) points represent those obtained in
Case B.

From this analysis we conclude the following:

– The dispersion shows a structure in the vacua correspond-
ing to straight lines. Different vacuum solutions in the
same line belong to a set of fluxes related to a particular
solution of Bianchi Identities and Tadpole conditions.

– Straight lines do not pass through the origin, instead they
are displaced a small amount parametrized by c′′. This is

related to the fact that we look for solutions in which the
second derivative for the scalar potential is different from
zero.

– The hierarchies move the critical points towards the ori-
gin. This implies that, by demanding a hierarchy on
the flux configuration input, the minima of the scalar
potential becomes smaller, and according to our previ-
ous observation Sect. 3.1 a smaller string coupling is also
obtained.

– Notice that this classification indeed reproduces the
expected plot shown in Fig. 1, indicating not only the
absence of stable dS vacua, but also the absence of some
stable AdS and the presence of some unstable dS limited
by a straight line.

– The vacuum points lie very close to the origin in
Fig. 8 representing critical points with a small nega-
tive vacuum energy and with a small value for m2

i j ,
indicating that very close to the minimum there could
be conditions on the scalar potential for which the
AdS scale conjecture could be violated. It is then
important to study how probable is to find such solu-
tions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Distributions of vacua for hierarchical fluxes. a AdS vacua, case
K, b dS vacua, case K, c AdS vacua, case AD, d dS vacua, case AD,
e AdS vacua case CS, f dS vacua, case CS. All dS vacua are unstable.
The critical points obtained by the ANN+GA are given in yellow bars,

and those randomly found by the GA are given in blue bars. In contrast
with Fig. 5 these histogram includes the vacua that contains at least one
tachyon

3.3 AdS scale separation

Let us now classify the scale separation between stable AdS
vacua ΛAdS and the squared mass corresponding to the light-
est modulus for all models constructed from a Case A con-
figuration. This study allows us to directly see, as shown in
Fig. 9, that by using a configuration of hierarchical fluxes it
is more probable to find a hierarchy among moduli masses.
Limited to our model we can say that the most probable sce-
nario involves a maximum difference of masses of order of
magnitude 3 where the difference is given by

Δm2 = maxm2 − minm2. (3)

Notice that an exponential Δm2 as present in a KKLT model
is discarded in our case, probably due to the fact that we are
considering a hierarchy among fluxes of an order of mag-
nitude between 1 and 4 which in turn is a consequence of
Bianchi and Tadpole constraints [25].

The AdS swampland scale conjecture asserts that it is not
possible to separate the size of the AdS space and the mass
of its lightest mode beyond a certain limit, this is
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Fig. 7 Value of the scalar
potential versus the string
coupling at the critical point for
all analyzed cases produced by
the ANN + GA. Red and Blue
points correspond to vacua
classified in Case A, while
yellow and green dots are related
to Case B where a hierarchy of
the flux configurations is
assumed. It is observed that the
smaller the string coupling the
smaller the value for the
cosmological constant Λ

Fig. 8 Distribution diagram of
the values of the extrema for the
scalar potential RdSC. Red and
blue points represent critical
points obtained through the
classification of randomly
selected flux configurations
(Case A) whereas green and
yellow points correspond to
critical points obtained by
assuming hierarchical fluxes
(Case B)

(
minm2

)
L2

AdS ≤ c, (4)

where c is constant of order 1, and L2
AdS ∼ Λ−1

AdS. This
conjecture is motivated from the point of view of the KKLT
scenario, in the sense that any uplifting mechanism (from a
supersymmetric stable vacua) does not destabilize the Kähler
moduli as far as the potential well is parametrically narrow
in comparison with the energy gap that needs to be filled by
the uplifting mechanism. For the KKLT scenario, indeed this
criteria is not fulfilled and thus it raises the question of its
validity [45].

We analyze this conjecture (see Fig. 10) observing that
both hierarchical and non-hierarchical fluxes lead to vacua
with minm2/ΛAdS roughly of order 10 at most. Thus, as
argued by [45] in most of the studied cases, any attempt to
uplift the AdS vacua may destabilize the lightest modulus.

We also note a clustering of vacua for hierarchical fluxes for
minm2/ΛAdS ≤ 1 compared to the non-hierarchical vacua
which peak around minm2/ΛAdS ∼ 7. One can argue that all
of the vacua obtained are in agreement with the AdS Scale
Separation Conjecture, even when the ones with larger values
of the quotient m2/ΛAdS might create some tension with it.

In summary, by assuming a hierarchy on the flux config-
uration among different sectors (NS–NS, R–R and NG) it is
more probable for the generated vacua to have small values
for the vacuum energy and a small value for the string cou-
pling. Also, scenarios constructed with hierarchical fluxes
exhibit a higher probability for the lightest modulus to be
much smaller than the cosmological constant.

However, among all possible flux configurations, having
a hierarchical one is not a likely scenario in a random set of
flux configurations. By the use of random matrix theory we
are in conditions to analyze this assertion.
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(a) (b)

(c)

Fig. 9 Probability histograms for the scale separation between the
heaviest and the lightest mode. Different histograms correspond to the
case when a given modulus is the lightest: a Kähler (T), b complex

structure (U) and c axio-dilaton (S). Yellow bars refer to hierarchical
flux configurations while blue bars refer to non-hierarchical ones

Fig. 10 Histogram of the scale separation between the lightest modu-
lus and the corresponding value of the cosmological constant in Planck
units min(m2/ΛAdS). Yellow bars correspond to hierarchical fluxes
while blue bars correspond to non-hierarchical fluxes

3.4 Relation to random matrix theory

The refined swampland criterion implies that for a dS vacuum
the lowest eigenvalue of the mass matrix shall be negative
and thus unstable. Indeed, if the RdSC is not satisfied, there
exist an instability which leads to a breakdown of entropic

arguments [5]. This line of thought leads us to consider some
sort of information/probabilistic feature of the dS conjecture
and its refinement. Within this context, it was found [46] that
using random functions as scalar potentials, the dS conjecture
as well as the refined dS conjecture are the result of the most
probable scenario. However, the connection with real vacua
coming from dimensional reduction in string theory was not
clear.

As already mentioned, after combining genetic algorithms
and neural networks, we realize that there is a low probability
of finding critical points. In Fig. 11 we present the histogram
of the probability density distribution of the critical points
obtained by all flux configurations. This distribution presents
a mean value of 0 and a standard variation σ =0.35. Besides,
assuming identical and independent distributed (i.i.d.) entries
coming from a Gaussian distribution, the probability density
function (PDF) of the eigenvalue λ-spectrum of the mass
matrix can be calculated by [47] (for a kindly check of the
calculations see [48])

ρ(λ) = N
σ

N/2−1∑
k=0

exp

[
λ2

2σ 2

]
(R2k(λ)Φ2k+1(λ)

−R2k+1(λ)Φ2k(λ)) ,

(5)
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Fig. 11 Density distribution for all the eigenvalues of the mass matrix

where N = N !|âN |2N/2−1

NZ , â is a constant that depends on N ,
Z is a normalization factor analogous to the partition function
(see [47]) and N is the rank of the mass matrix. The functions
Φk(λ) are given by

Φk (λ) = 1

σ

∫ ∞

−∞
dλ′Rk

(
λ′) exp

[
λ′2

2σ 2

]
sign

(
λ − λ′) , (6)

with Rk being essentially Hermite polynomials:

R2k (λ) =
√

2

π1/42k(2k)!!H2k (λ) ,

R2k+1 (λ) =
√

2

π1/42k(2k)!!
[−H2k+1 (λ) + 4kH2k+1 (λ)

]
.

(7)

Thus, although we do not know to which probability den-
sity distribution the entries of the mass matrix belong, we
shall assume that a Gaussian distributions comes as a good
approximation, and it serves as a limiting case (see solid line
of Fig. 11 which represents the PDF given by Eq. 5). We
expect that a much amount of data would make closer our
mass eigenvalues PDF comes from a GOE spectrum. Hence,
the rest of our analysis relies on this assumption.

Now, if the mass matrix is interpreted as a random matrix
with identically and independently distributed entries with
Dyson index 1, this is a Gaussian orthogonal ensemble (GOE)
with real entries, it is quite unlikely to get only positive eigen-
values. This well known result from random matrix theory
(RMT) follows from the fact that extreme eigenvalues of a
GOE obey the Tracy–Widow statistics and that any fluctua-
tion in the lower limit is suppressed by a power N−1/6 for N
be the rank of the matrix [49] (as shown in Fig. 12). Thus let
us put the RdSC in terms of a RMT.

The eigenvalues of a random matrix are expected to be
distributed around zero, however, for large N it has been
proved that the minimum eigenvalue tends to −√

2N while

the maximum to
√

2N . As we said, fluctuations of extreme
eigenvalues falls as N−1/6, and thus allowing a possibility
for the minimum eigenvalue to acquire a value different from
−√

2N . The distribution of fluctuation around −√
2N is

shown by the shadow region in Fig. 12. For a large value
of N it seems that

(min∇i∇ j V )RM ≤ α, (8)

where the subindex RM stands for a random mass matrix
and α a number to be determined. It is expected that in such
scenarios (eigenvalue probability distribution), the probabil-
ity for the minimum eigenvalue to be negative increases as N
increases. Actually, as proved in [49], the probability for the
minimum eigenvalue to be bounded by a number t is given
by

P (min λ > t) = exp

[
− 1

24

∣∣∣
√

2N 1/6(t + √
2N )

∣∣∣
3
]

. (9)

Notice that for t > 0(< 0) P reduces (increases). In our case
in which the eigenvaluesλ are related to the mass eigenvalues,
i.e. λ → Eig (∇i∇ j V ) we can chose t to be the proportional
to the potential at the minimum. In that case we see that for
N = 6,

P
(
min ∇i∇ j V > c′V

)

= exp

[
− 1

24

∣∣∣
√

2 · 61/6(c′V + 2
√

3)

∣∣∣
3
]

, (10)

Thus for a dS vacua, P is very small and the larger the
value for V at the minimum, the smaller the probability for
the lightest moduli to be positive. dS vacua seem to be very
less favored than unstable critical dS points. Similarly, for an
AdS vacuum, the probability for having all positive eigenval-
ues is much higher than the corresponding for a dS extreme
point and it raises as the absolute value of the vacuum energy
grows (see Fig. 12). We then conclude that the most probable
configurations satisfy the bound

min∇i∇ j V ≤ −c′V, (11)

in agreement with the RdSC.
Notice as well that the probability expression also asserts

that the ratio between the minimum squared mass in a sta-
ble AdS vacuum and the AdS scale larger than one, this is,
min m2/ΛAdS < 1 is more favored. Hence the AdS scale
conjecture is also encoded in this probabilistic interpretation.
Taking all our observations together, we conclude that:

In an effective model constructed from a perturbative flux
compactification (at least for an isotropic toroidal one) the
probability for the minimum mass eigenvalue to be larger
than the corresponding vacuum energy Λ is given by
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Fig. 12 Statistics for the extreme value statistics for the GOE. The blue
line represents the probability density function forthe eigenvalues. The
horizontal axis represent the eigenvalues of the mass matrix, whereas
the vertical axis represents the probability density function of those
eigenvalues. For the case of AdS, the RdS conjecture is interpreted as the

probability to find the minimum below zero, i.e., P
(
min ∇i∇ j V < c′V

)
(red lines) which is easily achieved. For the case of dS vacua, the RdS
conjecture translates into the probability of all eigenvalues to be posi-
tive and above the c′V vertical line, i.e., P

(
min ∇i∇ j V < c′V

)
which

is in general hard to be achieved (green lines)

exp

[
− 1

24

∣∣∣
√

2 · 61/6(Λ + √
12)

∣∣∣
3
]

.

This implies that the most probable mass configurations with
positive value of the cosmological constant are those which
contain negative mass states in its spectrum. For the case
of a negative value of the cosmological constant, the most
probable scenario implies the presence of Tachyons. Notice
that this implies that the most probable effective models are
those precisely satisfying the RdS and the AdS conjectures.

4 Final comments

In this work we have implemented a vacuum search through
an Artificial Neural Network coupled to a Genetic Algorithm.
We report more than 60,000 flux configurations yielding to
a scalar potential with at least one critical point. We use a
simple model consisting on type IIB string theory flux com-
pactification on an isotropic torus including non-geometric
fluxes. With the data obtained by this classification we can
test – in terms of probabilities – some of our model’s features
in the light of recent Swampland conjectures.

Our main conclusion is that, at least for the studied model,
generic flux configurations produce different vacua with two
clear features:

– The refined dS conjecture is fulfilled and the relation
min ∇i∇ j V ≤ −c′V with c′ of order 1 is graphically
proved in Fig. 1. Notice the absence of certain stable
AdS as well as some unstable dS vacua.

– A statistical correlation is observed favoring a small value
for the cosmological constant in models exhibiting a
small string coupling.

Our results show a clear increase in probability to find vacua
with a smaller than unit cosmological constant (and in conse-
quence within the perturbative regime) if they are constructed
from a hierarchical flux configuration, meaning a flux config-
uration in which the integer quantized values for the different
sectors, including non-geometrical fluxes, differ by at least
one order of magnitude. The construction of different vacua,
stable or not, from a hierarchical flux compactification leads
to the following facts:

– The value of the corresponding cosmological constant is
small and in consequence within the range of a perturba-
tive effective theory. The probability to obtain such vacua
increases by selecting the RR sector with the highest flux
values, which in turn makes the complex structure moduli
the heaviest.

– The probability to have an AdS stable vacuum in which
the lightest modulus is much smaller than the correspond-
ing cosmological constant increases.

We also observe by the use of random matrix theory that
stable vacua are much less probable than unstable ones. Actu-
ally, in a random selection of fluxes which present a Gaussian
distribution of mass eigenvalues, the more probable vacuum
solutions are those which precisely fulfill the Swampland
conjectures, namely the Refined de Sitter and the Ads scale
ones. This suggests that the origin of the Swampland con-
straints, at least for the models we have studied, is proba-
bilistic.
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Finally we notice that the possibility to select a hierar-
chical flux configuration from a random set of different flux
configurations, is very low, indicating that for a hierarchi-
cal flux configuration to be the source of effective models, a
high-energy process must be the cause of fixing values for
the fluxes. We leave this important issue for a future work.
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Appendix A: Artificial neural network

Artificial neural networks (ANNs) are algorithms inspired in
the biological learning process. The use of machine learn-
ing techniques to solve classification problems has attracted
more attention in the last years [33,37,39,50–53]. The
machine learning techniques allows to search in large amount
of data for specific patterns and thus, it provides an exhaustive
check in a short time.7

7 For instance, in [37] using data mining the authors are able to look for
suitable heterotic compactifications that selects an appropriate line bun-

In the following we describe in simple terms, the structure
of an ANN. Each neuron in the hidden layer is connected with
all the neurons in the neighboring clusters through a weight
factor. The weighted interconnection is quantified by

alj = σ

(∑
k

wl
jka

l−1
k + blj

)
, (A.1)

where the sum is over all neurons in the k level in the l − 1
layer, the weights wl connects each l-th layer of neurons, bl

is the bias factor and alj is the response/entrance of the ANN,
for instance at l = 1, a represents the input data and at l = n
(last layer) a represents the output of the ANN. The function
σ(·) is the activation function which is a sigmoid function
that introduces the non-linearities to the ANN. The weights
and bias factors are determined in such a way that the mean
relative error defined as

MSE = 1

n

n∑
i=1

(an − tn)
2 , (A.2)

is diminished, where an is the response of the ANN an the t is
the target value. The numerical values are determined using
the Levenberg-Marquardt optimization, which is a determin-
istic algorithm for non-linear systems that is able to find local
minima in a iterative manner. This optimization requires to
minimize the regularized function

f (w) = 1

2
(ri )

2 + 1

2
γ k(wk+1

i − wk
i )

2, (A.3)

where ri = ai (w)−ti is the residual and γ k is a regularization
parameter which is chosen through the trust region approach
[54]. Thus, at each step the weights are determined by solving
the equation

(
Jil(w

k)Jl j (w
k)−γ kδi j

) (
wk+1

j − wk
j

)
=−Jil(w

k)rl(w
k),

(A.4)

for wk+1 at each iteration, where the index k represents the
k-iteration and Ji j = ∂i r j is the Jacobian of the residual.

Appendix A.1: An example of an ANN

To clarify the algorithm to compute the output on a ANN,
in this section we present an explicit example of how a sin-
gle perceptron is trained in order to reproduce the bolean
product operation. Recall that this binary operator requires
as input data two bits and calculates an output binary data

dle to produces a phenomenological motivated extension of the standard
model.
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Fig. 13 Representation of a single Neuron. For this example the input
is described by the vector (a0

1 , a0
2), associated to the neuron are the

weights w11, w12 and the bias b0
1, with y = wT .a0 + b0

1. With the
neuron output a1

1 = σ(y) i.e. the activation function evaluated at y

(see Fig. 13). The training set employ the four possibilities
for the bolean product, namely, 0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0
and 1 · 1 = 1.

Thus, for the single perceptron case, we initialize the
weights of the network, for instance w0

11 = 0.5, w0
12 = 1.5

and for the bias b0
1 = 3. For concreteness let us consider as

activation function the logistic sigmoid function

σ(y) = 1

1 + exp (−y)
, (A.5)

and for the first case let us consider the bolean product (0·0 =
0), the argument of the activation function is

yi =
∑
j

w1
i j a

0
j = 3, (A.6)

and thus the activation function is σ(3) = 0.95. This result
tell us that for the selected weight values the neuron gets
activated with an answer of 1. However, the correct answer
shall be 0 (since we are evaluating the 0 · 0 = 0 case, and we
have obtained high error for the first bolean operation. Now,
computing the remaining cases we get

y0 = w1
01a

0
1 + w1

02a
0
1 + b0 = 0.5 · 0 + 1.5 · 0 + 3 = 3.00

→ σ(3.00) = 0.95,

y0 = w1
01a

0
1 + w1

02a
0
1 + b0 = 0.5 · 0 + 1.5 · 1 + 3 = 4.50

→ σ(4.50) = 0.98,

y0 = w1
01a

0
1 + w1

02a
0
1 + b0 = 0.5 · 1 + 1.5 · 0 + 3 = 3.55

→ σ(3.55) = 0.97,

y0 = w1
01a

0
1 + w1

02a
0
1 + b0 = 0.5 · 1 + 1.5 · 1 + 3 = 5.05

→ σ(5.05) = 0.99, (A.7)

geometrically it is possible to see that in a a0
0 vs a0

1 plot,
the region is divided into two regions, namely, if the value of
the function y j > 0 the neuron is activated and for y j < 0 the
neuron is de-activated as it is shown in Fig. 14. Thus, for the
selected weights all the neuron is activated in all the training
cases and the MSE given by Eq. A.2 is 0.698, which is too

Fig. 14 Solution for the case of the AND gate. The x axis represents
the first bit of the AND gate whereas the y axis the second bit. Thus,
the yellow regions defines the region where the bolean product is 0
whereas the blue region represents the region where the bolean product
is 1. The sharp changes between the region 0 and 1 is a consequence of
the neuron activation

high to be acceptable. This step know as forward propaga-
tion allow us to compute the error for the randomly selected
weights. The next step is to modify the random selected
weights in order to reduce the MSE. The simplest way to do
it is by implementing the batch gradient descent algorithm,
which calculates the gradient of maximum descent for some
objective function. Thus, we want to know how the gradient
changes the objective function as a the weights changes, this
is done by applying the rule of chain as

∂MSE

∂w0 j
= ∂y j

∂w0 j
· ∂ f

∂y j
· ∂MSE

∂ f
, (A.8)

where we shall use w03 = b0. Thus, the new value of the
weights, can be computed by resting the gradient from the
previous value

w j = w j − α
∂MSE

∂w0 j
, (A.9)

where α is known as the learning rate and is an parameter
between 0 and 1 (for this case we shall take 1). Thus, after the
first iteration, this algorithm allows us to update the weights
as, w0

01 = 0.48, w0
02 = 1.48 and for the bias b0

1 = 2.95 with a
MSE of 0.695. This algorithm usually has a low convergence
ratio, since it takes a big number of steps to achieve a desired
convergence criteria however for this toy model example a
MSE <0.002 is achieved at 2000 iterations. Thus, once the
desired MSE is obtained, the updated weights take the values
w0

01 = 5.49, w0
02 = 6.45 and the bias b0

1 = −8.28 with an
MSE of 0.002. Thus, a forward calculation shall make the
ANN to reproduce the bolean product operation as

y0 = w1
01a

0
1 + w1

02a
0
1 + b0 = 5.49 · 0 + 6.45 · 0 − 8.28
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= −8.28 → σ(−8.28) = 0.00,

y0 = w1
01a

0
1 + w1

02a
0
1 + b0 = 5.49 · 0 + 6.45 · 1 − 8.28

= −1.83 → σ(−1.83) = 0.05,

y0 = w1
01a

0
1 + w1

02a
0
1 + b0 = 5.49 · 1 + 6.45 · 0 − 8.28

= −2.79 → σ(−2.79) = 0.05,

y0 = w1
01a

0
1 + w1

02a
0
1 + b0 = 5.49 · 1 + 6.45 · 1 − 8.28

= 3.66 → σ(3.66) = 0.93.

(A.10)

which approximately is the desired result. Notice that for this
toy model we employ all the available data to train the ANN
and there are no remaining data for the validation. However,
for a more complicated training set, a subset is not used in
the training and a validation set is used.

Appendix B: Isotropic toroidal compactifications with
non-geometric fluxes

In this appendix we describe a type IIB string theory com-
pactification with non geometric fluxes on an isotropic T 6

torus. The effective 4D N = 1 theory can be obtained in
terms of a superpotential given by

W = P1(U ) − i SP2(U ) + iT P3(U ), (B.11)

with U, S and T being the complex structure, axio-dilaton
and Kähler moduli respectively. P1(U ), P2(U ) and P3(U ) are
polynomia depending on U and their coefficients are given
in terms of NS–NS h j , R–R fi and non geometric bk fluxes
respectively. The polynomia depend on the fluxes as follows

P1 = f1 + 3I f2U − 3 f3U
2 − I f4U

3,

P2 = h1 + 3I h2U − 3h3U
2 − I h4U

3,

P2 = 3b1 + I (2b2 + b3)U − (2b4 + b5)U
2 − I b6U

3.

(B.12)

This structure of the superpotential, where the fluxes h and
b determine the relevance of S, T to the scalar potential
dependence respectively, suggests that the hierarchy between
moduli masses can be reached by implementing hierarchies
among the fluxes. The Kähler potential reads

K = − ln(S + S∗) − 3 ln(U +U∗) − 3 ln(T + T ∗). (B.13)

We decompose the scalar fields in terms of their real and
imaginary components as: U = u + iv, S = s + ic and
T = t + iτ , where u, v, s, c, t, τ are real fields.

The corresponding scalar potential can be computed in
terms of K and W and is given by

V = eK
(
|DIW |2K I J − 3|W |2

)
. (B.14)

This potential has extremal values when SUSY is preserved
in an AdS or Minkowski vacuum. When SUSY is not pre-
served, it is possible to have extrema for all the different
values of V0. The appearance of these extrema follows from
the presence of fluxes including non-geometric fluxes, which
could stabilize the Kähler moduli T . However, different flux
configurations produce different type of vacua whose char-
acteristics are also constrained by the tadpole on the NS–NS
and RR fluxes. One important aspect in the construction of
vacua solutions is to obtain physical consistency. This implies
having a positive larger than one value for s = 1/gs . This
requirement ensures that the perturbative approximation for
IIB string compactification on the isotropic torus is valid.

Since we search for SUSY vacua, it follows that all Kähler
derivatives must vanish, i.e.

DUW = DSW = DTW = 0. (B.15)

Appendix B.1: Small cosmological constant: a toy example

We present an analysis concerning some SUSY solutions in
order to elucidate the possible existence of some generic con-
ditions on the flux configuration which leads us to effective
models in which for an AdS vacuum not only s > 1 but also
|V0| 
 1. Our goal is to obtain some insights about the char-
acteristics of different flux configurations, which can assure
the construction of such desirable vacua.

In the following we take a particular path in order to con-
struct a supersymmetric solution with all moduli stabilized.
First of all we observe that DTW = 0 implies that Kähler
moduli are fixed to

t = 3

2
and τ = −1

2

p̃3

p3
= 1

2
, (B.16)

where P2, P3 �= 0 is assumed at any point of the complex
structure at which the polynomial are evaluated with p3 =
− p̃3. We are then forced to find some value U0 for which
this is valid for non-trivial polynomial. We shall come back
to this point. Meanwhile, DSW = 0 implies, once we take
the above constraint fixed by DTW = 0,

c = 1

2

p2 + p̃2

p2 − p̃2
, (B.17)

while s is kept unfixed. We shall fix it by minimizing the
scalar potential with respect to s. Finally, DUW = 0 fixes
U = U0 as a solution of the equation8

2u
∂P2

∂U
− 3P2 = 0. (B.18)

8 More constraints would involve a sharing solution with a similar equa-
tion for P1(U ). See Ref. [44].
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However, as shown in [44], rootsU0 for the above polynomial
implies that P3(U0) = 0. In order to keep a SUSY solution
we shall then assume that

lim
U→U0

p̃3(u0, v0)

p3(u0, v0)
= −1, (B.19)

with τ(u0, v0) = 1/2. In this case the potential has the form

V (s) = − 3

27u3
0t

3
0

(
2Im(P2ω

∗) + s|P2|2 + |ω|2
s

)
, (B.20)

where ω(u0, v0) = (p1 + c0 p2) + i( p̃1 + c0 p̃2). It follows
that the string cuopling is fixed at the value

s2
0 = |ω|2

|P2|2 (u0, v0), (B.21)

at the minimum of the scalar potential. At this point, our
interest focuses in finding general conditions on the flux
configuration upon which |V0| < 1 while s0 > 1. For the
latter, observe that an easy and direct way to assure a small
string coupling is to have |ω| > |P2| which can easily be
obtained by considering a hierarchy on the flux configuration
among RR, NS-NS and non-geometric fluxes. Since these
fluxes enter as the real coefficients on the polynomial Pi (U0)

it follows that if RR fluxes are larger than NS–NS, which in
turn are larger than non-geometric fluxes, one can obtain that
|ω| > |P2| for ω and P2 evaluated at U0.

To obtain a small value for V at the minimum, observe
that

V0 = − 1

23u3
032

(Im(P2ω
∗) + |ω||P2|), (B.22)

which by taking same order fluxes among the same type of
fluxes (e.g., all RR fluxes are the same order but larger than all
NS–NS, which are of the same order among them), one can
assure that Im(P2(U0)ω

∗(U0)) be smaller than unit. Hence
we can expect a small value for |Vmin | if ω and |P2| atU = U0

are also smaller than one. As shown in [44], ω ∼ O(1) in
flux units. This implies that

V0 ∼ −O(1)

u3
0s0

. (B.23)

In effect, having a hierarchy on different type of fluxes, one
can obtain in a generic form, at least for the SUSY solutions
we have considered, a perturbative effective theory with a
very small negative cosmological constant for u0 > 1/s0.
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