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Abstract We deal with the question of what it means to
define a minimal coupling prescription in presence of torsion
and/or non-metricity, carefully explaining while the naive
substitution ∂ → ∇ introduces extra couplings between
the matter fields and the connection that can be regarded
as non-minimal in presence of torsion and/or non-metricity.
We will also investigate whether minimal coupling prescrip-
tions at the level of the action (MCPL) or at the level of field
equations (MCPF) lead to different dynamics. To that end,
we will first write the Euler–Lagrange equations for matter
fields in terms of the covariant derivatives of a general non-
Riemannian space, and derivate the form of the associated
Noether currents and charges. Then we will see that if the
minimal coupling prescriptions is applied as we discuss, for
spin 0 and 1 fields the results of MCPL and MCPF are equiv-
alent, while for spin 1/2 fields there is a difference if one
applies the MCPF or the MCPL, since the former leads to
charge violation.

List of symbols

M n-dimensional space-time manifold.
� Interior product on M.
X Set of vector fields on M.
g A metric structure of M.
g Determinant of the metric g.
ε Generic volume form on M.
dVg Volume form associated to the metric g.

In a coordinate frame it reads dVg =√−gdxμ1 ∧ ... ∧ dxμn .
�ε Hodge dual operator associated to the vol-

ume form ε. It acts on differential forms on
M.

d Exterior derivative of differential forms on
M.

a e-mail: adria.delhom@uv.es (corresponding author)

δε Co-differential operator associated to the
volume form ε, defined by δε ≡ �εd�ε .

�ε D’Alambertian operator associated to the
volume form ε, defined by �ε ≡ dδε + δεd.

Divε Divergence operator onM. It can be defined
as in (1) or as Divε = �εd�ε .

∂ Formal symbol meaning a general partial
derivative of a tensor or spinor field with-
out the need for specifying a frame.

∂μ Partial derivative associated to the coordi-
nate frame {xμ} on M.

� Affine connection.
∇ Covariant derivative associated to an affine

connection �.
�μν

α Connection symbols associated to the affine
connection � (typically associated to the
tensorial representations).

∇M Covariant derivative of Minkowski space-
time. In a cartesian inertial frame it coincides
with ∂ .

∇g Covariant derivative associated to the Levi-
Civita connection of g.

C(g) Levi-Civita connection of g. Its connection
coefficients are given by Cμν

α .

i Collection of matter fields labelled by i , each

of them belonging to an arbitrary represen-
tation of the Lorentz group

� Scalar field.
ψ Spin 1/2 field.
Aμ Spin 1 field.
ϒ i

μ Connection coefficients of � in the repre-
sentation corresponding to the matter field

i .

(ϒ i
N R)μ Non-Riemannian piece of ϒ i

μ.

ϒ
ψ
μ Connection coefficients of � in the spin 1/2

representation.
(ϒg)

ψ
μ Piece of ϒ

ψ
μ containing only the Levi-Civita

part of �.
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(ω�)μ
ab Spin connection associated to the affine con-

nection �.
(ωg)μ

ab Spin connection associated to C(g), i.e. to
the Levi-Civita connection of g.

Tψ Term encoding the interaction between the
torsion tensor and a minimally coupled spin
1/2 field.

1 Introduction

General Relativity (GR) had an important impact in the devel-
opment of non-Euclidean geometries at the beginning of
the twentieth century [1,2]. Einstein followed the (by then
recent) developments of Riemann to shape his theory of grav-
ity, and rapidly the idea that spacetime must have a Rie-
mannian structure was naturally accepted despite the lack
of direct empirical evidence [3]. In recent years, a renewed
interest in determining whether the space-time geometry is
actually Riemannian or otherwise has emerged boosted, in
part, by the exploration of new gravity theories in the metric-
affine formalism. The first step forward in this direction was
already given by Cartan a few years after the birth of GR.
He suggested that the torsion tensor could be introduced in
the description of gravity, and he introduced the idea that it
should be related to the intrinsic angular-momentum of mat-
ter [4–7], but this idea was quickly forgotten given that the
spin of the electrons was not already discovered. Weyl, Ein-
stein, and others used Cartan’s idea and introduced torsion in
an unsuccessful attempt of unifying gravity with electromag-
netism [8–12]. In the mid 50’s of the past century, when try-
ing to describe the continuum limit of the micro-structure of
solids, the torsion tensor was found to be related to the density
of dislocation defects present in the micro-structure [13–18].
At the same time Kibble and Sciama [19–21] considered the
description of gravity as a gauge theory of the Poincaré group,
formulating the so called Einstein–Cartan–Sciama–Kibble
(ECSK) theory. Soon after the formulation of ECSK theory
as a gauge theory, Hehl and collaborators [22–27] worked out
its geometrical formulation,1 showing how the spin of par-
ticles was related to torsion in ECSK, being torsion sourced
by the spin-density [27,28,30]. The observable consequences
of torsion have been considered in several works, concluding
that they are generally suppressed by a high energy scale and
therefore practically unobservable at low energies, unless a
scenario with high density of spin is considered [28,30–33].
However, it has been pointed out that torsion could have
important role in early universe cosmology, as it could pre-
vent the Big Bang singularity [34]. Torsion-based theories
have also received much interest recently in the context of
teleparallel gravity and its functional extensions [35]. Up

1 Also see [29] for a generalization to a gauge theory of the affine group.

to date, the different attempts looking for the experimental
detection of torsion have given negative results [36].

Whereas the observable effects of torsion have been fairly
well studied in gravitational contexts, the other signature
of non-Riemannian geometry,2 which is non-metricity, has
not been analyzed as deeply (see [37] for a short review
of these results). However, there has recently been renewed
interest analysing several theories that feature non-metricity
and/or torsion, such as teleparallel and symmetric telepar-
allel theories [38–55], Ricci-based gravity theories (which
encompass f (R)) or Born-Infeld gravity) [56–66], or oth-
ers [76–80]. Some of these works put forward that gravity
theories with non-metricity can avoid the spacetime singu-
larities present in GR already at a classical level [81,82].
It has also been suggested that non-Riemannian geometries
could be successful in being a low-energy effective descrip-
tion of theories of quantum gravity, as they could be more
suited in accounting for features of a quantum-spacetime that
may exist at high energies [63,83–86]. Hence, that the exis-
tence of non-metricity should be experimentally probed at
different energy scales. In order to probe non-metricity, we
must first understand its experimental consequences. Recent
works on metric-affine theories of gravity show how non-
metricity could have important effects in scenarios with very
high energy-density, giving rise for instance to effective par-
ticle interactions or shifts in the energy levels of atomic sys-
tems [63,64], which can be used to constrain the energy
scale at which Ricci-based gravity theories depart form GR.
Nonetheless, it remains an open question whether Rieman-
nianity (i.e. absence of torsion and non-metricity) extends to
higher energy regimes or if it is a low energy limit of a more
general non-Riemanian spacetime structure.

Other current lines of research also investigate the possible
implications of spacetime non-metricity in classical trajecto-
ries or in the definition of geometric clocks assuming that test
bodies follow affine geodesics [87–89] . Nonetheless, this
assumption should be derived from the geometrical optics
approximation of the field equations that describe matter at a
fundamental level, and it is not yet clear how to do so (see [66]
for a discussion). In order to derive this limit, one must first
understand the different ways in which matter fields couple
to generic torsion and non-metricity tensors. Some possible
ways of coupling geometry and matter in Riemann–Cartan
space-times (including minimal coupling) have been studied
in [67–74], and see [29,75] for a discussion in more gen-
eral spaces. For minimally coupled scalar fields, it is well
known that the non-Riemannian pieces of the affine connec-

2 Here we use Riemannian to imply that the connection is metric-
compatible, and non-Riemannian for otherwise. Notice that Mathemati-
cians have another meaning for Riemannian, which is related to the
signature of the metric. Our metrics will be assumed to have Lorentzian
signature.
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tion do not couple directly in the field equations. This result
is not so clear for spin 1/2 fields. Indeed it is not trivial how
to generalize the Dirac equation to non-Riemannian space-
times3 in a minimal coupling spirit, as the minimal coupling
prescription applied to the Minkowskian spin 1/2 field equa-
tion (MCPF) gives a different result than when applied in
the Minkowskian spin 1/2 Lagrangian (MCPL) [90]. Also
recently, it has been claimed that the MCPF and MCPL give
different dynamics for matter fields in general in Riemann–
Cartan space-times [91]. Since in Riemannian space-times
both prescriptions lead to the same dynamics, the aim of this
work is trying to shed some light into the question posed in
[90,91] of whether the MCPF or the MCPL is generally bet-
ter suited to describe matter degrees of freedom in presence
of torsion and/or non-metricity. To that end, we will we will
try to shape or delimit the concept of minimal coupling for
matter fields of spin 0, 1/2 and 1. We will also show how both
MCPF and MCPL describe the same dynamics for scalar and
vector fields if applied consistently, contrary to the claims of
[91], and that the MCPF is not consistent with charge con-
servation for fermionic fields, thus addressing the question
raised in [90].

The structure of the paper is as follows. We will start in
Sect. 2 with a discussion on what does minimal coupling
mean and why the naive recipe of replacing ∂ by ∇ is not
really a minimal coupling prescription when torsion and/or
non-metricity do not vanish. In Sect. 3 we will derive a gen-
eralised form of the Euler–Lagrange (EL) equations for arbi-
trary spin matter fields in a space-time with generic torsion
and non-metricity tensors. As a byproduct of the derivation of
the Euler–Lagrange equations, we will see how non-metricity
and torsion do not affect the functional form of conserved
matter currents and charges, which have the same functional
dependence on the matter fields as in the Riemannian case.
Then, in Sect. 4, we will see how applying a naive MCPF to
the Klein–Gordon equation leads to field equations which are
not equivalent to the generalised Euler–Lagrange equations
for scalar and vector fields, while applying the MCPF as we
defined leads exactly to the generalised EL equations. We will
see how for spin 1/2 fields, even if the our MCPF is applied
to the Dirac equation, the resulting equation is not equivalent
to the one obtained by the generalised EL equations through
our MCPL (if one uses the hermitian Minkowskian action).
Indeed, while the generalised EL equations obtained through
the MCPL are perfectly consistent to describe a spin 1/2 field
with interactions that conserve an internal charge, the equa-
tions resulting from applying the MCPF leads to violation of
this conservation. Thus, if charge conservation is assumed,
the only valid minimal coupling prescription for spinor fields
in presence of torsion and/or non-metricity is the MCPL. We

3 See [74] for a generalization of the Dirac equation to the framework
of gauge theories of the affine group.

will also explicitly show how non-metricity decouples from
minimally coupled matter fields, although physical effects
related to non-metricity could occur due to its non-trivial
relation with the space-time metric (see [63,64]). Finally, we
add some concluding remarks in Sect. 5.

2 What is minimal coupling?

It is now convenient to discuss the meaning of minimal cou-
pling and the subtleties behind the naive prescription com-
monly used to implement it. Usually, the minimal coupling
prescriptions (both MCPF and MCPL) are implemented by
the following rule of thumb: Wherever you find a partial
derivative ∂ or a Minkowski metric ηin flat space-times,
substitute them by the appropriate covariant derivative ∇
and space-time metric g. This sentence provides a recipe
that works well in absence of torsion and/or non-metricity,
although it is misleading about what a minimal coupling pre-
scription actually is, and it can lead to wrong results when tor-
sion and/or non-metricity are non-vanishing. Indeed a more
precise understanding of the minimal coupling prescriptions
can be achieved by arguing in the following way. As nicely
argued in [92], the operator ∂ acting on tensor fields is frame
dependent, i.e. different coordinate systems have associated
a different ∂ operator. Therefore ∂ will yield non-coordinate-
invariant objects when applied over any tensor or spinor
field. Hence, given that physical theories must be coordinate
independent, we must not employ a particular ∂ operator in
the construction of physical theories. Nonetheless, there are
other derivative operators such as the covariant derivative
∇, the exterior differential d, the co-differential δ, or suit-
able combinations of these that are the same operators in all
coordinate systems, and therefore yield coordinate invariant
objects when applied to tensor or spinor fields.4 This makes
∂ inappropriate in the construction of physical theories even
in flat space-times, since it will be a different operator in
two non-inertially-related frames. Since usually field theo-
ries are formulated first in a Minkowskian context and in
inertial coordinate frames, the symbol ∂ is commonly used,
although one should recall that even in this case the derivative
operators appearing in the action and field equations are ∇, d,
δ or appropriate combinations of them like the wave operator
dδ + δd. Thus, strictly speaking, an MCPF or MCPL pre-
scription will be a minimal coupling prescription if it keeps
track of the differential operators that are used in Minkowski
space-time and uses the same operators in a general space-
time. This can be summarised in the following rule of thumb:

4 Note that d and δ are defined only for p-form fields, and not general
tensor or spinor fields. Also note that d is defined in any differentiable
manifold without adding extra structure, δ requires a volume form on
the manifold, and ∇ requires a connection on the manifold.

123



728 Page 4 of 17 Eur. Phys. J. C (2020) 80 :728

Substitute ηby gand use the same differential operators in
Minkowski and in general space-times (in the sense of using
∇, d, δ or the appropriate combination that is also used in
the Minkowskian case).

The origin of the naive recipe for the minimal coupling
prescriptions stems from its usefulness in Riemannian space-
times, which can be argued as follows. For spinor fields there
is no ambiguity in which is the operator employed since d
or δ are not well defined in this case. For scalar and vector
fields (0- and 1-form fields respectively) the combinations5

in which ∂ appears in the respective actions are such that sub-
stituting ∂ by ∇ gives the same result as using the d operator
when the space-time is Riemannian. Thus for the MCPL and
in Riemannian space-times the naive ∂ → ∇ gives the right
answer. While this is also true for scalar fields if we apply
the MCPF in Riemannian space-times, as we will see later,
there is already a difference if we apply the MCPF as ∂ → ∇
for vector (1-form) fields: the wave operator that governs the
kinetic term of the field equations in Minkowski space-time
can be written6 as �η = ημν∂μ∂ν , and thus it would be gener-
alised to the operator gμν∇g

μ∇g
ν which gives a different result

from the correct wave operator �g = dδg+δgd when applied
to (1-form) fields (see Sect. 4.3 for details). Thus although
the naive MCPF could lead to ambiguities in the vector field
description, the naive MCPL prescription of replacing ∂ by
∇ in the Minkowskian Lagrangians works perfectly well in
Riemannian space-times. In the Riemannian case, this pre-
scription is also known as universal coupling [3], and it is
also worth to note that this universal coupling is a consistency
requirement for any unitary and Lorentz invariant theory con-
taining a massless spin 2 particle in its spectrum [93,94].

Nonetheless, as we will see later in detail, when we have
other geometrical objects than the metric (such as an inde-
pendent affine connection), both MCPF and MCPL fail in
being minimal coupling prescriptions for vector fields in non-
Riemannian space-times if implemented through the naive
rule ∇ → ∂ . This can be understood as follows: If following
the naive MCPL we forget that the field-strength of the vector
field is defined by F ≡ dA and look only at its expression
in some coordinate system Fμν = 2∂[μAν], then the naive
MCPL given by substituting ∂ → ∇ in the vector action will

5 For the spin 1/2 field equation in Minkowski, the kinetic term usually
written with ∂ should actually be understood as the ∇ operator of the
purely inertial connection (since d or δ are not well defined for spinors),
while in bosonic equations the usual kinetic term is given by the wave
operator �ε ≡ dδε + δεd , δε = �εd�ε is the codifferential operator
associated to the volume form ε, and �ε stands for the Hodge operator
associated to ε. �ε is also named d’Alambertian, Laplace–Beltrami
operator, or form-Laplacian.
6 Any metric defines a canonical volume form by the square root of its
determinant. We will use the notation g = |det(g)| and η = |det(η)|.
Thus any subindex g or η in operators that depend on a volume form is
interpreted as the operator that results from replacing ε by such volume
form in the corresponding definition.

lead us to a wrong definition offield-strength F̃μν = 2∇[μAν]
which introduces an extra non-minimal coupling between
torsion and the vector field, as opposed to just applying the
MCPL as we have defined, i.e. by keeping explicit track of
the use of the d operator in the vector Lagrangian. When
trying to use the MCPL, the naive substitution of ημν∂μ∂ν

by gμν∇μ∇ν instead of the use of the correct wave operator
δd + dδ (which in Minkowski space is given by ημν∂μ∂ν)
introduces non-minimal couplings to the torsion and non-
metricity tensor for both scalar and vector fields. For scalar
fields, given that only first order derivatives appear in the
action, there can be no naive MCPL since ∂� = d� = ∇�

by definition. However, the naive MCPF does give rise to
non-minimal couplings between the scalar field and the tor-
sion and non-metricity tensors.

3 MCPL in non-Riemannian space-times:
Euler–Lagrange equations and conserved currents

As it is common to work with actions and field equations
written in terms of fields and their first covariant derivatives,7

let us first derive the Euler–Lagrange (EL) equations in terms
of the affine covariant derivative ∇. To that end, it will be
useful to express the divergence operator associated with the
metric in terms of the affine covariant derivative ∇ employed
in the action. This relation will allow us to employ Stokes’
theorem in order to derive the generalised EL equations and
the conserved currents and charges associated to continuous
symmetries of the action.

3.1 The divergence operator

Let M be an n-dimensional smooth oriented manifold with
volume n-form ε = f dxμ1 ∧ · · · ∧ dxμn in some chart. The
divergence operator associated to ε acting on vector fields
A ∈ X(M) is the function Divε : X(M) → C∞(M)

defined by [95]8

Divε(A)ε ≡ d(A�ε), (1)

which in a coordinate chart xμ reads

Divε(A) = 1

f
∂μ( f Aμ). (2)

This definition is completely general, as it only requires
the differential structure of M and a general volume form

7 Note that d and δ can also be written in terms of ∇ and the torsion
tensor to recast the Lagrangian in this form.
8 Some authors write the inner product A�ε as iAε
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defined on it;9 neither a metric tensor g nor an affine structure
� on M are necessary.

The interest of this operator relies in that it satisfies a
generalised divergence theorem, i.e. it relates a vector field
defined in a volume V with its flux through the boundary ∂V .
As shown in [95], from Stokes’ theorem one finds
∫
V
Divε(A)ε =

∫
∂V

A�ε; (3)

where V is the n-volume enclosed by ∂V . This is the gener-
alised divergence theorem for n-dimensional manifolds.

Now, if a metric structure g is introduced, there is a canon-
ical choice for the volume n-form: ε ≡ dVg = g1/2dxμ1 ∧
· · · ∧ dxμn (see footnote 6). In this case, in Lemma 16.30
of [95], it is proven that10 ι∗S(A�dVg) = g(A, n)dVg̃ , where
n is the unit normal to ∂V and dVg̃ is the induced volume
form on ∂V by g. Therefore, when a metric is present (and
is chosen to define the volume element), the right hand side
of (3) can be interpreted as the flux normal to the boundary
enclosing V . Thus the generalised divergence theorem (3)
can be seen as a generalised Gauss’ law
∫
V
Divg(A)dVg =

∫
∂V

g(A, n)dVg̃, (4)

which relates the divergence of a vector field A inside a closed
volume V with the integration over ∂V of the component of
A normal to ∂V .

Note that a metric g also induces a canonical affine struc-
ture (or affine connection) � = C(g) on M which is said to
be compatible with it: the so called Levi-Civita connection of
g. However, the affine structure on M needs not be compat-
ible with g, and it is generally independent of it. Indeed, one
can have a manifold with an affine structure but no metric
structure. We say that a manifold where g and � are com-
patible is a Riemannian11 manifold (M, g, C(g)); and one
where � and g are independent is a non-Riemannian man-
ifold (M, g, �). In the following, we will generally work
in a non-Riemannian manifold with the canonical volume
element associated to its metric.

Any affine structure � defines (and is defined by) a covari-
ant derivative ∇, which is completely specified by its con-
nection symbols �μν

α . The action of ∇ on (the components

9 It turns out that this can also be written as Divε(A) = δε A, which can
also be straightforwardly generalised to p-forms as Divε(�) = δε� for
any p-form �.
10 Here ι∗S(A�dVg) is the restriction of the (n-1)-form A�dVg to the
boundary ∂V [95].
11 Note that mathematicians call a Riemannian manifold one with an
affine structure compatible with the metric and with a metric of Rieman-
nian signature. We will use Riemannian and non-Riemannian referring
only to the (non-)compatibility of the connection and the metric and not
to the signature of g, as it is often done in gravitational physics.

of) an n-form12 f and a vector field Aμ is given by

∇μ f = (∂μ f − �μα
α f ).

∇μA
α = ∂μA

α + �μν
αAν

(5)

Therefore using (2) Div(A) can also be written as

Divε(A) = 1

f
∇μ( f Aμ) − Sμα

αAμ, (6)

where Sμν
α ≡ −2�[μν]α is called the torsion of the affine

connection, and it identically vanishes in Riemannian mani-
folds. Note that (5) and (6) are true whether M has a metric
structure or not.

In a non-Riemannian manifold, it is always possible to
perform a decomposition of the connection symbols in the
form �μν

α = Cμν
α + Lμν

α + Kμν
α; where

Cμν
α ≡ 1

2
gαβ

(
2∂(μgν)β − ∂βgμν

)
,

Lμν
α ≡ 1

2

(
2Q(μν)

α − Qα
μν

)
,

Kμν
α ≡ 1

2
gαβ

(
2S(μ|β|ν) − Sμνβ

) ;

(7)

and where Qαμν ≡ −∇αgμν is the so-called non-metricity
tensor, which identically vanishes in Riemannian manifolds,
Lμν

α is the distortion tensor, and Kμν
α is called contortion

tensor (see e.g. [96]). Here Cμν
α are the Christoffel symbols

of g, which are the connection symbols of the Levi-Civita
connection C(g).

From (7) and the second equation in (5) (identifying the
volume form f with13 g1/2), it is possible to show that
∇μ

(
g1/2

) = − 1
2 Qμα

αg1/2. Using this identity, from (6) one
finds the following relation

Divg(A) = ∇μA
μ −

(
1

2
Qμα

α + Sμα
α

)
Aμ, (8)

which is the sought relation between the divergence opera-
tor, the covariant derivative, and the non-metricity and torsion
tensors of M. For Riemannian manifolds, where Qμνα and
Sμν

α vanish by definition, (8) reduces to the usual expres-
sion Div(A) = ∇g

μAμ as it must be, where ∇g
μ is the covari-

ant derivative associated to the Levi-Civita connection of the
metric g.

12 Remind that, since the space of n-forms in an n-dimensional man-
ifolds is of dimension 1, any n-form is proportional to the trivial one
dx1 ∧ · · · ∧ dxn , and therefore is specified only by one component (the
proportionality factor). This component is sometimes called a tensor
density of weight +1.
13 Note that this discussion could also be done in the tetrad formalism
simply by writing the volume in terms of the determinant of the tetrads
instead of that of the metric without changing the results.
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Notice also that from the definition of Cμν
α in (7) it is

possible to get the following useful relation

g−1/2∂μ(g1/2Aμ) = ∂μA
μ + Cνμ

ν Aμ ≡ ∇g
μA

μ. (9)

Since from the definition of divergence operator we have (2),
we have also generally that

Divg(A) = ∇g
μA

μ; (10)

Therefore, we end up with the result that in any manifold
where the volume element is given by the metric, no matter
what the affine structure is, the identity (10) holds, which can
be summed up in the following equation:

Divg(A) = ∇μA
μ −

(
1

2
Qμα

α + Sμα
α

)
Aμ = ∇g

μA
μ

(11)

for any (M, g,∇). From the above discussion one can infer
that, in a non-Riemannian manifold, the relation between the
divergence operator (given by the metric structure) and the
covariant derivative of the manifold is not the same as in a
Riemannian manifold due to the fact that the affine structure
has no relation with the volume form, and torsion and non-
metricity have to be taken into account. On the other hand, in a
Riemanian manifold, given that ∇ = ∇g, the affine structure
and the volume element are indeed related, which translates
into a direct relation between the divergence operator and
covariant derivative of the manifold.

3.2 Euler–Lagrange equations of a minimally coupled
theory in non-Riemannian spacetimes

Clarifying the relation between the divergence operator and
the affine structure will be useful to derive the generalised
EL equations for any minimally coupled matter Lagrangian
(although it can also be done without using the above rela-
tions). To do so, we start by applying the MCPL to the usual
Minkowski Lagrangian as explained in Sect. 2, so that we
start with a functional L(
i , ∂
i ) that defines the following
action:

Sm
[

i ,∇μ
i

] =
∫
V

dVgL[
i ,∇μ
i ], i = 1, . . . , N ;
(12)

where L[
i ,∇μ
i ] is a scalar and {
i } is the collection
of matter fields. Let us point out that, if d instead of ∇ is
employed in the construction of Sm , as is the case for vec-
tor fields, we can always re-write them as covariant deriva-
tives plus some extra terms proportional to the torsion tensor.
Therefore (12) is rather general, since any minimally coupled
matter action can be recast in such form.

The field equations are obtained, as usual, by applying
the extremal action principle and then solving the variational
problem δSm = 0 for some arbitrary variations of the mat-
ter fields δ
i vanishing at the boundary of V . Notice though
that given variation of the field δ
i naturally introduces also
a variation in its partial derivative δ(∂
i ), and the variational
problems that one is used to solve are in terms of the field vari-
ables {
i , ∂
i }. Since by definition ∇μ
i ≡ ∂μ
i −ϒ i

μ
i ,
where ϒ i

μ are the connection coefficients in the representa-
tion of 
i , we can re-write the above action in terms of the
independent variables {
i , ∂μ
i } and proceed with standard
variational methods. By explicitly substituting ∇μ
i by its
expression in terms of {
i , ∂μ
i } we can recast (12) as a
function of the variables {
i , ∂μ
i } instead of {
i ,∇μ
i },
thus having

S̃m
[

i , ∂μ
i

] =
∫
V

dVgL[
i ,∇μ
i (
i , ∂μ
i )]

=
∫
V

dVgL[
i , ∂μ
i − ϒ i
μ
i ], (13)

where the tilde here emphasizes that the functional form of
Sm changes when we consider it as a functional of the new
variables. Now we can employ the standard methods of vari-
ational calculus to solve δ S̃m = 0 for an arbitrary variation
δ
i that vanishes at the boundary of V , which leads to

δ S̃m =
∫
V

dVg

[(
∂L
∂
i

− ∂L
∂(∇μ
i )

ϒ i
μ

)
δ
i

+
(

∂L
∂(∇μ
i )

)
δ(∂μ
i )

]
= 0, (14)

where we have used that

∂(∇μ
i )

∂
i
= −ϒ i

μ,
∂(∇ν
i )

∂(∂μ
i )
= δμ

ν. (15)

We now want to invert the change of variables by writ-
ing ∂μ
i as a function of the old independent variables
{
i ,∇μ
i }, which is by definition given by ∂μ
i = ∇μ
i+
ϒ i

μ
i . Then, we can write an arbitrary variation of ∂μ
i

as a function of an arbitrary variation of the old variables:
δ(∂μ
̃i ) = δ(∇μ
i ) + ϒ i

μδ
i . Plugging this expression in
the above equation, we end up with
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δSm =
∫
V

dVg

[
∂L
∂
i

δ
i + ∂L
∂(∇μ
i )

δ(∇μ
i )

]
= 0, (16)

which by means of (8) can be recast into

δSm

=
∫
V

dVg

[
∂L
∂
i

− ∇μ

(
∂L

∂(∇μ
i )

)

+
(

1

2
Qμα

α + Sμα
α

) (
∂L

∂(∇μ
i )

)]

δ
i +
∫
V

dVgDivg

(
∂L

∂(∇μ
i )
δ
i

)
= 0. (17)

Since the last term is a boundary term by the generalised
Gauss’ law (4), it vanishes for variations δ
̃i = δ
i vanish-
ing at the boundary of V . Thus, the above equation leads to
the non-Riemannian version of the covariant Euler–Lagrange
equations, which reads

∂L
∂
i

− ∇μ

(
∂L

∂(∇μ
i )

)

+
(

1

2
Qμα

α + Sμα
α

) (
∂L

∂(∇μ
i )

)
= 0. (18)

Note that while in the Riemannian limit we recover the usual
covariant Euler–Lagrange equations, in the general case there
are, apparently, explicit couplings between the non-metricity
and torsion tensors and the matter fields. However, these
apparent couplings are indeed compensated by taking into
account that the covariant derivative of the second term in
(18) is not the one associated to the Levi-Civita connection
of g. To show this, we can use (7) and split the covariant
derivative in front of the second term of (18), thus re-writing
the non-Riemannian Euler–Lagrange equations (18) as

∂L
∂
i

− ∇g
μ

(
∂L

∂(∇μ
i )

)
−

(
∂L

∂(∇μ
i )

)
(ϒ i

N R)μ = 0, (19)

where (ϒ i
N R)μ is the non-Riemannian part of the connec-

tion in the representation corresponding to 
i (i.e. the piece
of ϒ i

μ that features torsion and non-metricity) and ∇g is
the Riemannian covariant derivative. Here we can see how
the explicit couplings to non-metricity and torsion that are
present in (18) actually cancel out and do not contribute to the
dynamics, and the only possible source of non-Riemannian
couplings comes from the (ϒ i

N R)μ, and from ∇μ
i in the
derivatives of the Lagrangian. This could not have been other-
wise because of the following reason: Since in the action (12)
the only possible non-Riemannian couplings appear through
the (ϒ i

N R)μ
i term in the ∇μ
i variables, the only non-
Riemannian terms that can show up in the field equations
will also enter through (ϒ i

N R)μ. From this result follows the
conclusion that whether a minimally coupled (in the sense

of MCPL) matter field couples or not to the non-Riemannian
features of a general space-time depends only on the form of
the connection in its corresponding spin representation. As
we will see later, in the case of spin 0 and 1 fields, all the
explicit couplings between non-metricity and torsion disap-
pear form the field equations if the minimal coupling pre-
scriptions that we have outlined are applied correctly. On the
other hand, in the case of spin 1/2 fields, a residual interac-
tion with the totally antisymmetric part of the torsion tensor
remains for the MCPL, and a more complicated coupling to
the traces of torsion and non-metricity occurs for the MCPF.
This coupling will be seen to source a charge violating cur-
rent.

3.3 Conserved currents and charges

As a by-product of the derivation of (18), we can also
investigate whether the functional form of the Noether cur-
rents/charges associated to matter fields will be modified by
non-metricity or torsion corrections. For completeness, let us
briefly explain the geometrical meaning of a conserved cur-
rent. By definition, a conserved vector current over a space-
time M equipped with a volume form ε is a vector field
J ∈ X(M) that satisfies

Divε(J) = 0 (20)

overM. This definition is valid for Riemannian as well as for
non-Riemannian spacetimes, and it has an intuitive geomet-
rical meaning as will be clarified below. Notice that provided
that the volume form is chosen to be the one given by the
metric, in Riemanninan spacetimes condition (20) is equiv-
alent to ∇μ Jμ = 0, while in non-Riemannian spacetimes it
cannot be written simply as ∇μ Jμ = 0. The importance of
the condition (20) relies in that it allows one to define a scalar
quantity QJ on every spatial hypersurface of a Cauchy foli-
ation of the given space-time such that QJ is invariant under
time-translation (i.e. change of spatial hypersurface). This is
why a vector satisfying Divε(J) = 0 is called a conserved
current, and QJ is its associated conserved charge.

In order to clarify the geometrical meaning of the con-
dition (20), let us first precisely formulate the existence of
such conserved charge QJ in a space-time with volume form
given by the metric. Consider coordinates (x0 = t, xi ) and
a foliation of spacetime given by the one-parameter family
of space-like 3-surfaces �t normal to ∂t . Consider also a 3-
ball σ t defined in every �t by (xi xi )1/2 � R, with R an
arbitrarily big constant. Define the closed 4-volume B(t1, t2)
enclosed by σ t1 , σ t2 and C; where C is the union of the bound-
aries of each σ t for t ∈ (t1, t2) (see Fig. 1 for clarification).
Any vector field J defines a charge Qt

J at each �t given by

Qt
J = lim

R→∞

∫
σ t

J tdVg̃ , (21)
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Fig. 1 Illustration of the different parts ofB and ∂B. The black oriented
vector basis define the orientation of ∂B.

where J t = g(J, ∂t ), ∂t is the unit normal to σ t and dVg̃ is
the volume form induced on �t by dVg . Using Gauss’ law
(4), decomposing ∂B as14 ∂B(t1, t2) = (−σ t1 + C + σ t2),
and for configurations of 
 such that J t vanishes quickly
enough at spatial infinity15 we find

∫
B
Divg(J)dVg = Qt2

J − Qt1
J . (22)

This is valid for any value of t1 and t2; and in particular,
for infinitesimally small values of δt = t2 − t1 we find

LtQJ|t=t1δt = (
Qt2

J − Qt1
J

) =
∫
B
Divg(J)dVg.

Therefore a charge defined by a conserved vector current
remains constant under time-evolution, i.e. we say it is con-
served. The arguments within this section are independent
of the choice of connection �, which remarks the impor-
tance of the condition Divg(J) = 0 instead of any condition

14 The sign infront of σ t1 is required for ∂B(t1, t2) to have the standard
induced orientation from V(t1, t2) [95].
15 The precise requirement is that 
 vanish quickly enough with
increasing R so that the integral over C vanishes when R → ∞.

involving any covariant derivative, which points out that the
expression “conserved with respect to a connection”, usu-
ally found in the literature, can be misleading. Indeed, these
arguments depend only on the choice of the volume form, and
do not depend on the metric itself. Therefore, a more correct
expression could be conserved with respect to a volume form,
or a metric.

From the above discussion, it is now clear that the con-
dition (20) implies that the change in the amount of charge
QJ enclosed in the 3-volume σ t1 is given exactly by the flux
of the current J through the 4-volume B, i.e. the amount of
charge that exits σ t

1 in the time interval t2 − t1. Therefore,
total charge cannot be created or destroyed if condition (20)
holds.

We can now proceed to investigate wether the func-
tional form of Noether matter currents should be modified to
account for non-Riemannian features. Noether currents have
proven to be very useful tools for analyzing and extracting
physical information of field theories. They have been used
in the context of extended gravity by the use of the so called
Noether symmetry approach (see for instance [97–100]); and
they lie at the very definition of physical charges. Noether
currents are defined from a symmetry of an action, and are
conserved if the corresponding symmetry is realised. Let us
try to understand whether torsion or non-metricity play any
role in the physics associated to Noether currents and charges

Given an action like (12) and a transformation of the mat-
ter fields δ
i which is a continuous symmetry of that action,
we can work out the functional form for the Noether current
associated to this symmetry by the following argument. The
first term in (17) vanishes for fields satisfying their equations
of motion (18). Since δ
i is associated to a continuous sym-
metry of the action (12), we have δSm = 0, hence, the second
term in (17) must also vanish, yielding

Div

(
∂L

∂(∇μ
i )
δ
i

)
= 0.

Therefore, as stated by the Noether theorem [101], a contin-
uous symmetry of the matter action implies the existence of
an associated conserved current J ∈ X(M) defined by

Jμ = ∂L
∂(∇μ
i )

δ
i , (23)

and its corresponding conserved charge given by (21). A cur-
rent defined from a Lagrangian as in (23) is called Noether
current, and the corresponding charge is called Noether
charge. Physical charges are the Noether charges associated
to some continuous global symmetry of the matter action.
For instance, the electric and color charges are associated to
the global U (1)EM and SU (3)C symmetries of the Standard
Model action. The above equation (23) shows that Noether
currents (and charges) have the same functional form in Rie-
mannian and non-Riemannian spacetimes in terms of the
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covariant derivative of the matter fields. In other words, non-
metricity and torsion do not change the functional form of
the currents and charges. However there could in principle
be implicit corrections entering through ∇μ
i . However, we
will see that in the case of scalar and spinor fields, there are
no corrections due to the fact that ∇μ
i enters linearly in the
action. By using the above results, we will also show later that
the requirement of charge conservation in non-Riemannian
space-times will serve as a discriminator between the MCPF
and MCPL for spin 0 and 1/2 fields.

4 Minimally coupled matter fields in non-Riemannian
geometries

In this section we will employ the results previously derived
and work out the examples of minimally coupled scalar,
spinor and vector fields, focusing on the viability or distin-
guishability of the MCPF and MCPL prescriptions, both in
its naive version and in the version that we have defined. Also
we will show whether they couple minimally to non-metricity
and torsion for the different versions of each prescription. As
it will become apparent later, the explicit couplings between
minimally coupled matter fields and non-metricity disap-
pear from the field equations in all the examples when the
MCPF and MCPL as we have defined are applied. However
it could still induce non-trivial modifications to the dynamics
of matter fields through their coupling to the metric: Since
non-metricity is a tensor related to both, metric and affine
connection, a coupling to the metric can encode some non-
metric effects, as suggested in [63,64]. Also, if our MCPF
and MCPL are applied, torsion does not couple either to min-
imally coupled scalar and vector fields, although its totally
antisymmetric part does couple to minimally coupled spin 1/2
fields. On the other hand, we will see how the naive MCPF
and MCPL generally lead to non-minimal couplings between
matter fields, and the torsion and non-metricity tensors.

4.1 The minimally coupled scalar field

The action of a complex scalar field can be written in
Minkowski space-time with any of the operators ∂ , d and
∇, since they are all the same when acting on scalar fields.
However, the wave operator �g of the Klein–Gordon equa-
tion is defined only for p-forms, so that for simplicity we will
view � as a 0-form. However, in order to be able to use the
generalised EL equations (18), we will write the action in
terms of ∇μ�. Thus, by applying the MCPL, the action of a
complex scalar field in a general background geometry reads
as

S� =
∫
V

dVg
[
gμν∇μ�†∇ν� − m2�†�

]
. (24)

The field equations that follow after using (18) are

��� + �μ∇μ� + m2� = 0,

���† + �μ∇μ�† + m2�† = 0,
(25)

where we have defined ��� ≡ gμν∇μ∇ν� and the non-
Riemannian current

�μ ≡ Qα
αμ − 1

2
Qμ

α
α − Sμ

α
α
. (26)

This is in apparent contradiction with the expectations that
neither non-metricity, nor torsion couple to a minimally cou-
pled scalar field, given that they do not appear in the action
(24). Nonetheless, by using again the decomposition of the
affine connection (7) it follows that

��� = �g� − gμν
(
Lμν

α + Kμν
α
)∇αφ

= �g� − �μ∇μ�, (27)

with �g = dδg + δgd (see footnote 5), and where the same
identity holds for �†. Using (27), the above field equations
(25) can be re-written as

(�g + m2)� = 0,

�†(
←−� g + m2) = 0,

(28)

which, as expected, show that minimally coupled scalar fields
do not couple to torsion and non-metricity explicitly. A more
clever way to find this result is by noticing that, since for
scalar fields ∇μ� = ∂μ�, we have that the connection coef-
ficients for the scalar representation vanish, i.e. ϒ�

μ = 0, and
in particular (ϒN R)�μ = 0 for scalar fields. Thus the scalar
field equations as written in (19) are directly given by

∂L
∂�

− ∇g
μ

(
∂L

∂(∇μ�)

)
= 0 or

∂L
∂�

− Div

(
∂L

∂(∇μ
i )

)
= 0,

(29)

which lead directly to (28) without passing through (25). This
trick does not work, however, for fields of arbitrary spin, since
the quantity (ϒN R)iμ need not vanish in other representations,
or seen it otherwise, ∂L/(∂∇μ
) will no longer be a vector
field and then the last terms of (18) are not the divergence
operator acting on ∂L/(∂∇μ
).

Now let us analyse what happens if we apply the MCPF
as described in Sect. 2 directly to the field equations. The
scalar field equations in Minkowski space-time written in a
frame-independent way are:

(�η + m2)� = 0,

�†(
←−� η + m2) = 0.

(30)

where �η = dδη + δηd (see footnote 5). The MCPF as
we have defined it tells us to replace �η by �g , leading
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to the same field equations as our MCPL, given by (28).
Therefore, we conclude that, if applied as we have defined
them, both MCPF and MCPL give the same results for scalar
fields. The naive MCPL, in this case, will also be consistent
with the above equations, since ∇� = d� for any affine
connection, and there are only first order derivatives of the
scalar field in the action (24). However, if we had applied the
naive MCPF in the scalar field equation, substituting �η =
ημν∂μ∂ν by �� = gμν∇μ∇ν�, we would have arrived to
the field equations

(�� + m2)� = 0,

�†(
←−� � + m2) = 0.

(31)

which using (27) can be written as

[
�g − �μ∇g

μ + m2
]
� = 0

�†
[←−� g − �μ←−∇ g

μ + m2
]

= 0,
(32)

where �μ is the non-Riemannian current (26). It is clear
that, in the case of applying the naive MCPF leads to a non-
minimal coupling between the scalar field and the torsion and
non-metricity tensors through the current �μ, and therefore
this cannot be regarded as a minimal coupling prescription
in the sense defined in Sect. 2.

Let us now see what happens with charge conservation if
we apply MCPL as we have defined it or the naive MCPF. In
Riemannian space-times both the naive MCPF and our ver-
sion of the MCPL give rise to identical dynamics for scalar
fields. Since the action obtained by the MCPL for a complex
scalar field has a global U (1) symmetry,16 it will have asso-
ciated a conserved current given by (23). Hence, the scalar
field that evolves as given by our MCPL as well as the naive
MCPF will both obey charge conservation. However, the fact
that in non-Riemannian space-times the dynamics for scalar
fields is different for our MCPL and the naive MCPF spoils
the above argument. In this case, the MCPL still leads to an
action with a global U (1) symmetry (24), and therefore the
usual conserved scalar current can be derived from the scalar
action (24) by applying the Noether current formula (23),
thus obtaining

Jμ
� = i

(
�†(∇μ�) − (∇μ�†)�

)
, (33)

which is still conserved for both the MCPL and MCPF as we
have defined them, as can be seen by taking the divergence of
J� and using (28). However, if one follows the naive MCPF,
since it differs in general from that with dynamics given by

16 The symmetry group need not be U (1), it can be any Lie group if
the scalar is a multiplet in the corresponding representation

the MCPL in presence of torsion and/or non-metricity, the
above current will generally not be conserved. Indeed, by
taking the divergence of (33) and using the naive MCPF
field equations (32), we arrive to

Divg(J�)
∣∣
MCPF = �μ J

μ
�, (34)

which shows that for a complex scalar field described by the
naive MCPF, the non-Riemannian current that couples it to
non-metricity and torsion spoils the potential U (1) symme-
try of the scalar field.17 This argument applies in a straight-
forward manner for any complex scalar fields which are in
a given representation of some Lie group (not only U (1)).
Given that the Standard Model (SM) requires for its con-
struction that the Higgs field Lagrangian be globally invari-
ant under SU (2)×U (1), the naive MCPF prescription would
enter in contradiction with the SM in presence of a (strong
enough) torsion and/or non-metricity background. Since we
do not have experimental data on how do matter fields behave
in the presence of non-Riemannian features, there is no way
to favour MCPF or MCPL over other non-minimal coupling
prescriptions. However, one expects the SM to work per-
fectly well if tiny non-metricity and/or torsion corrections are
included, therefore pushing the naive MCPF to an uncom-
fortable corner when applied to complex scalar fields. Note
that the breaking of charge conservation will happen in gen-
eral for any non-minimal coupling prescription that is applied
directly to the field equations, since that would generically
break the U (1) invariance enjoyed by the scalar action.

4.2 The minimally coupled spin 1/2 field

Let us now examinate the case of spin 1/2 fields. Contrary
to the spin 0 case, the only derivative operator that acts on
spinors and is covariant under arbitrary changes of basis is ∇
(see e.g. [102,103]). Thus we conclude that the Minkowskian
action is written, in a frame independent way, in terms of
the covariant derivative ∇ of the purely inertial connection
(which satisfies ∂ = ∇ in any inertial frame). Thus, applying
the MCPL as stated in Sect. 2 for the two different actions
that are commonly used in the literature to describe spinor
fields in Minkowski space-times we are lead to

Sψ =
∫
V

dVg

[
i

2

(
ψ̄γ μ(∇μψ) − (∇μψ̄)γ μψ

) − ψ̄mψ

]
,

(35)

S̃ψ =
∫
V

dVg
[
ψ̄

(
iγ μ∇μ − m

)
ψ

]
, (36)

17 There is an exception if both torsion and the non-metricity are trace-
less, since the non-Riemannian current �μ vanishes in this case and
both MCPF and MCPL as we have defined them are equivalent to the
naive MCPF, recovering theU (1) symmetry for the naive MCPF in this
particular case.
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where ∇μψ = ∂μψ−ϒ
ψ
μ ψ and ∇μψ̄ = ∂μψ̄+ψ̄ϒ

ψ
μ . There

is a subtlety here: we must first specify a form for the spinor
connection ϒ

ψ
μ . Generally, the spinor connection is defined

in terms of the spin connection ωμ
ab as

ϒψ
μ = 1

2
(ω�)μ

abσab. (37)

where σab = 1
4

[
γa, γb

]
are the generators of the Lorentz

group in the spin representation [96,104]. Thus ϒ
ψ
μ is com-

pletely specified once a choice for spin connection is made.
In Riemannian space-times, there is a canonical lift of the
Levi-Civita connection to the spin bundle which leads to a
unique choice for the spin connection given by

(ωg)μ
ab ≡ ηacebν

(
∂μec

ν + ec
αCμα

ν
)

(38)

where Cμα
ν is the Levi-Civita connection of g, eaμ are the

tetrads defined by gμν = eaμebνηab, eaμ are its inverses
eaμeaν = δμ

ν and we also have that γ μ = eaμγ a where
γ a are the flat Dirac gamma matrices. The tetrads can be
understood as relating a coordinate frame to a field of frames
in the tangent bundle in which the metric looks Minkowskian.
The affine connection can still be lifted in non-Riemannian
space-times in a similar manner as in Riemannian space-
times, leading to the cannonical spin connection given by

(ω�)μ
ab ≡ ηacebν

(
∂μec

ν + ec
α�μα

ν
)
. (39)

However as pointed out in [104], such lift is not sensitive to
some of the irreducible components of the non-metricity ten-
sor, and one could in principle choose a non-canonical spin
connection by adding terms related to non-metricity and/or
torsion by hand (see for instance [104,105]). Since we are
concerned with minimal coupling, we will consider only the
canonical piece of the spin connection, since any extra terms
would change the form of (ϒN R)

ψ
μ potentially adding non-

minimal interactions.
Going back to the minimal coupling discussion, we can

see that in Riemannian space-times (where ∇ = ∇g), both
actions (35) and (36) are equivalent since they only differ in
a boundary term which is oblivious for the field equations:

S̃Rψ = SRψ +
∫
V

dVgDivg(Jψ/2) with Jμ
ψ = iψ̄γ μψ,

(40)

and where the superindex R stands for the Riemannian.
Notice that Jψ is the Noether current (23) corresponding
to a global U (1) (or other Lie group) symmetry of the spinor
action (35). While S̃R

ψ is the traditional form of the action for

spin 1/2 fields, the reason why SR
ψ is sometimes employed in

Riemannian space-times is because it is explicitly hermitian
(see e.g. [106,107]). However, in presence of torsion and/or
non-metricity the two actions (35) and (36) for spin 1/2 are
not dynamically equivalent anymore, since they are no longer
related by a boundary term, satisfying instead the relation

S̃ψ = Sψ +
∫
V

dVgDivg(Jψ/2) −
∫
V

dVg
(
σμ J

μ
ψ

)
, (41)

where again we have defined a non-Riemannian current

σμ ≡ Q[αμ]α + Sαμ
α = �μ − 1

2
Qαμ

α, (42)

which differs from the non-Riemannian current �μ that
appears in the scalar field case (26) in a trace of the non-
metricity tensor. Since both actions are not equivalent, we
must take care of using (35) in non-Riemannian space-times,
since it is the hermitic while (36) is not. However, we will see
that there are further consistency reasons to choose (35) over
(36). To this end let us derive the field equations for ψ and ψ̄

that each of both actions describe. Beginning with (35) and
making use of (18) we arrive to the field equations

[
iγ μ∇μ + i

2

(
(∇μγ μ) + γ μσμ − 1

2
Qαμ

αγ μ

)
− m

]
ψ = 0,

ψ̄

[
i
←−∇ μγ μ + i

2

((∇μγ μ
) + γ μσμ − 1

2
Qαμ

αγ μ

)
+ m

]
= 0,

(43)

where, since the gamma matrices have two spinorial indices
and a Lorentz one, their covariant derivative is given by
∇μγ α = ∂μγ α +�μν

αγ ν +[γ α,ϒ
ψ
μ ] (see e.g [108]). Using

(39), we can compute ϒ
ψ
μ and then, by using the algebraic

properties of the Dirac gamma matrices,18 we can compute
the covariant derivative of the gamma matrices, finding

∇μγ α = −1

2
gαβγ ν

(
∂μgνβ − �μν

ρgρβ − �μβ
ρgνρ

)

≡ 1

2
Qμν

αγ ν. (44)

Plugging this result into the spinor field equations (43) we
have that the action (35) leads to the following equations

[
iγ μ∇μ + i

2
γ μσμ − m

]
ψ = 0,

ψ̄

[
i
←−∇ μγ μ + i

2
γ μσμ + m

]
= 0.

(45)

Let us point out that these field equations were already found
in [90] from the standard Riemannian equations in an alter-
native manner. Repeating the same procedure now with the
non-hermitian action (36), we are led to the field equations

[
iγ μ∇μ − m

]
ψ = 0,

ψ̄
[
i
←−∇ μγ μ + iσμγ μ + m

]
= 0.

(46)

18 We are using the conventions γ μ† = γ 0γ μγ 0, with γ 0† = γ 0 and

γ 02 = I. Notice the subtlety that this γ 0 is not γ μ with μ = 0, but it
has the same matrix form (see e.g. [107])
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A quick consistency check of both sets of field equations, (45)
and(46), can be made by investigating if the on-shell relation
between ψ̄ and ψ is compatible with the group theoretical
definition of adjoint spinor ψ̄ = ψ†γ 0. For that purpose, let

us call (ψ̄, ψ) and (ψ̄, ψ) to a pair of arbitrary solutions of
(45) and (46) respectively. Consider taking the adjoint of the
equation satisfied by ψ :

ψ†
[
−i(

←−
∂μ − ϒψ

μ

†
)γ μ† − i

2
σμγ μ† − m

]
= 0. (47)

Using the standard properties of the Dirac matrices, and

the form of �μ given by (39), we can show that ϒ
ψ
μ

† =
−γ 0ϒ

ψ
μ γ 0, which leads to

(
ψ†γ 0

) [
i
←−∇ μγ μ + i

2
σμγ μ + m

]
= 0; (48)

where
(
ψ†γ 0

) ←−∇ μ ≡
(
ψ†γ 0

) (←−
∂μ + ϒ

ψ
μ

)
. Notice that the

above equation is identical to the equation satisfied by ψ̄ ,
thus consistently suggesting the identification ψ̄ = ψ†γ 0.
Repeating the same procedure for the field equations defined
by the action (36), by taking the adjoint of the field equation
satisfied by ψ (i.e. the fist of (46)) we arrive at

(
ψ†γ 0

) [
i
←−∇ μγ μ + m

]
= 0; (49)

which clearly differs from the equation satisfied by ψ̄ (i.e.
the second of (46)) due to the terms involving the non-
Riemannian current σμ. Therefore, the group-theoretical def-
inition of ψ̄ = ψγ 0 is not consistent with the dynamics
given by the action (36) unless non-metricity and torsion
vanish, when both (35) and (36) become dynamically equiv-
alent. These findings imply that, in non-Riemannian space-
times, the MCPL has a consistent implementation only when
applied to the Minkowskian version of the action (35) and
not that of (36). Thus, if generic non-minimal couplings
between the spinor fields and torsion and/or non-metricity
are considered, subtleties of this kind may arise if one does
not apply the minimal prescriptions properly and to the cor-
rect Minkowskian action.

Since we know that within the MCPL only the action (35)
is valid, let us now investigate whether spin 1/2 fields couple
explicitly to non-metricity and/or torsion within this action.
As already pointed out in Sect. 3 for an arbitrary spin field,
the only couplings between the spin 1/2 field and the non-
Riemannian terms that arise in a minimal coupling prescrip-
tion come from the form of the spinor connection. Here we
will again proceed by using (7) to split the ∇μψ term in (45)
into its Riemannian and non-Riemannian pieces. Assuming
the canonical spin connection (39) we can use decomposition
of the spacetime connection (7) to find

γ μ∇μψ =
[
γ μ∇g

μ − Tψ − 1

2
σμγ μ

]
ψ

(∇μψ̄)γ μ = ψ̄

[←−∇ g
μγ μ + Tψ − 1

2
σμγ μ

] (50)

where the Riemannian covariant derivatives act on spinor

fields as ∇g
μψ =

(
γ μ∂μ − (ϒg)

ψ
μ

)
ψ and on adjoint spinor

fields as ψ̄
←−∇ g

μ = ψ̄
(←−
∂μ + (ϒg)

ψ
μ

)
; and where we have

defined

(ϒg)ψμ = 1

2
(ωg)μ

ab
σab (51)

Tψ = − i

8
εabcd Sabcγdγ5. (52)

Notice that Tψ is the well known interaction between the
spinor fields and the totally-antisymmetric part of the tor-
sion tensor [27]. Using (50), the field equations for ψ and ψ̄

derived from the right spinor action (35), which are given by
(45) become

[
iγ μ∇g

μ − iTψ − m
]
ψ = 0,

ψ̄
[
i
←−∇ g

μγ μ + iTψ + m
]

= 0.
(53)

Notice that only the Levi-Civita part of ωμ
ab and the totally

antisymmetric part of the torsion appear in (53). The non-
metricity tensor and the other Lorentz-irreducible pieces of
the torsion tensor do not couple (explicitly) to spin 1/2 field if
the canonical spin connection (39) is assumed. As in the case
of the scalar field, a careful analysis of the action (35) (again
decomposing the spinor connection in its Levi-Civita, torsion
and non-metric parts) shows that the action only contains the
Levi-Civita part of ωμ

ab and the totally antisymmetrized tor-
sion tensor. Hence, no coupling to other pieces of the torsion
tensor or to the non-metricity tensor should appear in the field
equations either.

Let us now analyze the applicability of our version of the
MCPF to spin 1/2 fields. The Minkowskian field equations
for a free spin 1/2 field and its adjoint written in a frame
independent way are

[
iγ μ∇M

μ − m
]
ψ = 0 ,

ψ̄
[
i
←−∇ M

μ γ μ + m
]

= 0,
(54)

where ∇M stands for the covariant derivative of Minkowski
space-time, i.e. the one associated to a purely inertial connec-
tion (which vanishes in any inertial reference frame). Follow-
ing the MCPF, the non-Riemannian version of the equations
is
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[
iγ μ∇μ − m

]
ψ = 0 ,

ψ̄
[
i
←−∇ μγ μ + m

]
= 0.

(55)

As we already computed, the adjoint of the first equation
in (55) leads to the second equation of (55) if the iden-
tification ψ̄ = ψ̄†γ 0 is made, which is perfectly consis-
tent with the group-theoretical definition of ψ̄ . Therefore the
MCPF procedure is, in principle, also consistent to describe a
field belonging to the spin 1/2 representation of the Lorentz
group. Let us thus investigate the different couplings between
spin 1/2 fields and the geometry if the MCPF, instead of the
MCPL, is applied. We can use (50) to re-write (55) as

[
iγ μ∇g

μ − iTψ − i

2
σμγ μ − m

]
ψ = 0,

ψ̄

[
i
←−∇ g

μγ μ + iTψ − i

2
σμγ μ + m

]
= 0,

(56)

which shows how within the MCPF, the non-Riemannian cur-
rent σμ defined in (42) introduces a direct coupling between
spin 1/2 fields, torsion and non-metricity, therefore failing
in being a minimal coupling prescription, as was the case
for scalar fields. Experimentally probing this kind of cou-
plings could help in elucidating wether the MCPF or the
MCPL is more suited to describe spin 1/2 fields in non-
Riemannian space-times. Nevertheless, following the same
reasoning as for complex scalar fields, if we assume MCPF
dynamics for spinor fields, which is given by (56), a direct
calculation shows that conservation of the fermionic current
Jμ
ψ = iψ̄γ μψ is spoiled by the non-Riemannian current σμ,

having

Divg(Jψ)
∣∣
MCPF = σμ J

μ
ψ , (57)

which could lead to charge violation through the non-
Riemannian current σμ. In contrast the MCPL action for
spinor fields (35) is U (1) invariant, which ensures conser-
vation of Jψ on-shell. Given that the global Standard Model
symmetries is paramount in our current understanding of the
universe, we can conclude that as for scalar fields, the MCPF
is again pushed to an uncomfortable corner for describing
spin 1/2 field dynamics in presence of torsion and/or non-
metricity. We believe that this solves the question raised
in [90,91] (or at least shows a physical way to distinguish
between both prescriptions) regarding whether the MCPF or
MCPL is more appropriate for describing fermions in non-
Riemannian spacetimes, favoring the MCPL if charge con-
servation is to be satisfied. Thus, assuming that charge con-
servation holds, the correct description for minimal coupling
prescription for spin 1/2 fields in non-Riemannian space-
times is the MCPL, which leads to the action

Sψ =
∫
V

dVg

[
i

2

(
ψ̄γ μ(∇μψ) − (∇μψ̄)γ μψ

) + ψ̄mψ

]
.

(58)

Notice that, contrary to the findings of [91], the above action
(which is their equation I.4 if we assume vanishing non-
metricity) actually gives a consistent minimally coupling
prescription for spin 1/2 fields, since it leads to the correct
minimal coupling field equations

[
iγ μ∇g

μ − iTψ − m
]
ψ = 0,

ψ̄
[
i
←−∇ g

μγ μ + iTψ + m
]

= 0,
(59)

and the covariant derivative needs no modification to achieve
a consistent minimal coupling for spin 1/2 fields. Let us
finally comment on the different role played by torsion in
teleparallel theories and other theories such as the ECKS
theory. In the later the torsion tensor is related the spin of
the matter sources and it does not propagate new degrees of
freedom, its sole role being to source a four-fermion contact
interaction [19]. However, in the teleparallel framework cur-
vature and non-metricity are set to zero and torsion is the only
non-vanishing geometrical object which encodes relevant
information about the propagation of gravitational degrees
of freedom. Thus, while the torsion coupling to fermions
given by ϒ

ψ
S only encodes contact interactions in the con-

text of theories like the ECKS, in the teleparallel framework
it could contain an additional coupling to the gravitational
field which might be worth exploring in future works.

4.3 The minimally coupled vector field

Let us now finish by study whether the different minimal cou-
pling prescriptions for massless vector fields make sense.19

Since the Minkowskian action for massless vector fields is
constructed only with the gauge invariant 2-form F = dA,
which is a frame independent object, following the MCPL as
stated in Sect. 2, the action for a minimally coupled gauge
field in an arbitrary non-Riemannian space-time is given by

SA = −1

4

∫
V

dVggμαgνβFμνFαβ, (60)

with Fμν = (dA)μν . In order to apply the EL equations (18)
to the above action, we need to re-write it as a functional of
{A,∇A}. We can do this by using the relation between the
exterior derivative and the covariant derivative, thus finding

SA = −1

4

∫
V

dVggμαgνβ
[
4∇[μAν]∇[αAβ]

−4(∇[μAν])Sαβ
σ Aσ + Sμν

ρSαβ
σ Aρ Aσ

]
. (61)

19 The following argumentation applies trivially to massive vector
fields.
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With the action written in this form, we can directly apply
(18) and obtain the field equations for the massless vector
field in non-Riemannian spaces following the MCPL, which
are

∇μF
μν −

(
1

2
Qμα

α + Sμα
α

)
Fμν + 1

2
Sαβ

ν

Fαβ = 0. (62)

Again, by using (7), we can decompose the covariant deriva-
tive in its Riemannian and non-Riemannian parts, finding the
identity

∇μF
μν = ∇g

μF
μν +

(
1

2
Qμα

α + Sμα
α

)
Fμν

−1

2
Sαβ

νFαβ, (63)

which plugged back on the field equations (68) leads to the
well known

∇g
μF

μν = 0 . (64)

which can also be written as

δgF = 0 . (65)

or in terms of the vector field

δgdA = 0. (66)

Since neither d nor δg know about the affine structure, the
result is that as happens for scalar fields, vector fields that are
minimally coupled according to our version of the MCPL do
not couple explicitly either to torsion and/or to non-metricity
explicitly.20 Let us now see what happens if we take the naive
prescription ∂ �→ ∇ too seriously. This leads by the naive
MCPL to the non-Riemannian Lagrangian

SA = −
∫
V

dVggμαgνβ∇[μAν]∇[αAβ]. (67)

Note that whereas the action (60) obtained by applying our
version of the MCPL is invariant under projective transfor-
mations �μν

α → �μν
α + ξμδα

ν , while the above action
resulting of applying the naive MCPL is not. Projective sym-
metry has been recently proven to be relevant in order to avoid
ghost degrees of freedom in the construction of metric-affine
theories of gravity [65,66,110]. Also, as it is well known,
this non-minimal coupling also breaks the gauge invariance
of the spin-1 kinetic term in a non-trivial torsion background.
Last but not least, this coupling could also introduce poten-
tial violations of the equivalence principle, given that the
trajectories of the photons in the eikonal limit would suffer
deviations from the geodesic ones due to a torsion-induced
fifth force. Given that no violations of gauge invariance or

20 Minimally coupled vector fields can also feel non-metricity-related
effects through the metric, see [63,64])

deviations from geodesic trajectories have been detected so
far, this prescription is pushed to an uncomfortable corner
when compared to experimental data [111–115]. Further-
more, since it introduces a coupling between the vector fields
and the torsion which is not present in our proposal for min-
imal coupling, we argue that this is not a minimal-coupling
prescription according to our definition (see sec. 2). Let us
nonetheless derive the field equations corresponding to the
above action (67) in order to see explicitly the appearances
of these couplings that do not appear when our minimal cou-
pling prescription is employed. By using again (18) in the
naive MCPL action, we arrive to the field equations

∇μF
μν −

(
1

2
Qμα

α + Sμα
α

)
Fμν = 0, (68)

which after splitting the covariant derivative can be recast
into

∇g
μF

μν − 1

2
Sμα

νFμα = 0 , (69)

or also

δgF − 1

2
Sμα

νFμα = 0 or δgdA − 1

2
Sμα

ν(dA)μα = 0.

(70)

Again, since neither d nor δg know about the affine struc-
ture, there can be no cancellation of the torsion terms, and
therefore the naive MCPL leads to a non-minimal coupling
between A and the torsion tensor, which makes the naive
MCPL fail as a minimal coupling prescription.

Let us now investigate the MCPF and naive MCPF pre-
scriptions. When written in a frame independent way, the
source free vector field equations in Minkowski space-time
are

δηF = 0, F = dA (71)

where δη is the codifferential operator associated to the
Minkowski metric η (see footnote 5), and in coordinates it
reads (δηF)μ = ∂αFαμ and Fμν = ∂[μAν]. Applying the
MCPF as defined in Sect. 2, in a general space-time we must
use the codifferential operator associated to the space-time
metric g, so that according to the MCPF the vector field equa-
tions in a general space-time read

δgF = 0, F = dA (72)

and in coordinates it is satisfied (δgF)ν = ∇g
μFμν , thus

having again that the MCPF is consistent with the MCPL even
in presence of non-metricity and/or torsion. In the Lorenz
gauge, which in Minkowski space-time is characterised by
δηA = 0 and in general space-times is characterised by In the
Lorenz gauge, characterised by δgA = 0, the field equations
are

�ηA = 0 and �gA = 0, (73)
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respectively. Since we are in the Lorentz gauge, then �gA =
(dδg +δgd)A = δgdA, thus recovering the same field equa-
tions as with our MCPL (66). The last equation can also
be written in the familiar form ∇g

μ∇gμAα + Rg
α

μAμ = 0,
where Rg

α
μ is the Ricci tensor associated to g. Let us now

see what would have ended up with had we applied the naive
MCPF. Given that the Minkowskian field equations in any
coordinates read

∂μF
μν = 0, Fμν = 2∂[μAν] (74)

by the naive prescription ∂ → ∇, the naive MCPF would
have lead us to the non-Riemannian field equations

∇μ F̃
μν = 0 , F̃μν = 2∇[μAν] (75)

which after using (63) and the identity F̃μν = Fμν +Sμν
αAα

can be written as

∇g
μF

μν + ∇g
μ(SμναAα)

+
(

1

2
Qμα

α + Sμα
α

)
(Fμν + SμναAα)

−1

2
Sαβ

ν(Fαβ + Sαβγ Aγ ) = 0. (76)

or

2∇g
μ∇g[μAν] + ∇g

μ(SμναAα)

+
(

1

2
Qμα

α + Sμα
α

)
(2∇g[μAν] + SμναAα)

−1

2
Sαβ

ν(2∇g[αAβ] + Sαβγ Aγ ) = 0. (77)

In the Lorentz gauge, which by the naive MCPF would be
characterized by ∇μAμ this looks as

�g A
ν − ∇gν

[(
Sαμ

μ + 1

2
Qαμ

μ

)
Aα

]
+ ∇g

μ(SμναAα)

(78)

+
(

1

2
Qμα

α + Sμα
α

)
(2∇g[μAν] + SμναAα)

− 1

2
Sαβ

ν(2∇g[αAβ] + Sαβγ Aγ ) = 0. (79)

We can see that this equations features several non-
minimal coupling terms between torsion and non-metricity,
thus showing one more time how the naive MCPF is not a
minimal coupling prescription in the sense defined in Sect. 2.

5 Outlook

We have here dealt with the issue of minimal coupling
between matter fields and the geometry in presence of tor-
sion and/or non-metricity. Since this is a confusing issue in
the literature, we first gave a definition of what we understand
as a minimal coupling prescription and what should not be

regarded as such. Thus, in a heuristic sense, minimal coupling
prescriptions are those that change as little as possible the dif-
ferentiable operators appearing in the matter field equations
and/or actions. Therefore, to implement a minimal coupling
prescription consistently, one should pay attention to what
differential operator that one is using in the Minkowskian
theory, which is never ∂ since it is a different operator in non-
inertially related frames (see Sect. 2), but rather d, δ or ∇;
and be consistent when going to a general space-time in using
the same operator. We note that this prescription reduces to
the usual one in Riemannian space-times [3], but it is differ-
ent from the naive prescription ∂ → ∇ in non-Riemannian
space-times in that it does not introduce the additional non-
minimal interactions between matter and geometry that arise
when the naive recipe is employed. Indeed, as we showed,
if one implements the minimal coupling prescriptions in this
way, the MCPF and MCPL are equivalent for spin 0 and 1
fields , while only the MCPL gives a consistent minimal cou-
pling prescription for spinor fields. This results are in contra-
diction with [91] due to the fact that the naive ∂ → ∇ substi-
tution is applied there to implement MCPF and MCPL in their
respective naive versions. In the spin 1/2 case we also showed
that charge is conserved only for the MCPL prescription, thus
giving a possible way out to the dilemma found in [90] about
whether one should use MCPF or MCPL for spin 1/2 fields
in non-Riemannian space-times. As a by-product, we also
showed how the non-hermitian action (36) that is commonly
used in Riemannian space-times to describe spinor fields is
not equivalent to the hermitian one in presence of torsion
and/or non-metricity, while in Riemannian space-times both
give the same dynamics. As anticipated in Sect. 2, we also
showed that the naive MCPL and naive MCPF typically fail
in being minimal coupling prescriptions for all matter fields,
the exception being the naive MCPL for the scalar field. This
exception is due to the fact that only first order derivatives
of the scalar enter in the action, and for scalar field the oper-
ators d and ∇ are by definition the same operator. We hope
that this discussion can thus be useful regarding the issue of
coupling matter fields to torsion and/or non-metricity (see
e.g. [51,79,80]). As a final remark, let us add on how to
understand this under the lens of the two frames that arise in
several metric-affine modifications of GR. Namely, in some
curvature-based modifications to GR, there are the Jordan
and Einstein frames in which one can formulate the theory
and if the matter is minimally coupled in one, it will not be
in the other. However, one should note that the meaning of
minimal coupling here is not the same one that we are dis-
cussing. While we have discuss minimal coupling between
matter fields and the affine connection, the non-minimal cou-
plings that appear on passing from one frame to the other do
not involve the affine connection, and they only introduce
new interactions between the fields of the matter sector.
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