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Abstract We present a model calculation of transverse-
momentum-dependent distributions (TMDs) of gluons in the
nucleon. The model is based on the assumption that a nucleon
can emit a gluon, and what remains after the emission is
treated as a single spectator particle. This spectator particle
is considered to be on-shell, but its mass is allowed to take
a continuous range of values, described by a spectral func-
tion. The nucleon-gluon-spectator coupling is described by
an effective vertex containing two form factors. We fix the
model parameters to obtain the best agreement with collinear
gluon distributions extracted from global fits. We study the
tomography in momentum space of gluons inside nucleons
for various combinations of their polarizations. These can be
used to make predictions of observables relevant for gluon
TMD studies at current and future collider facilities.

1 Introduction

Transverse-Momentum-dependent parton Distributions
(TMDs) have been a subject of intense study in the last years
(see Ref. [1] for a recent review). Whereas several results
have been obtained concerning quark TMDs, much less is
known about gluons.

Gluon TMDs have been classified for the first time in
Ref. [2] and later also in Refs. [3–5]. Their factorization, evo-
lution and universality properties have been investigated in
Refs. [6–10]. Possible ways to access gluon TMDs in exper-
iments have been proposed in the literature [11–25]. Recent
discussions on TMD factorization in quarkonium production
have been presented in Refs. [26–28].
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At low x , the so-called unintegrated gluon distribution
(UGD) has been the subject of intense investigations since
the early days. A first definition for the UGD was given in
the Balitsky–Fadin–Kuraev–Lipatov (BFKL) approach [29–
32]. Its precise relation to the small-x limit of the unpolar-
ized gluon TMD was established only recently [33,34]. An
overview of the available literature on unpolarized and helic-
ity gluon TMDs at low x can be found in Ref. [35] (and
references therein). Some very recent theoretical and phe-
nomenological studies are discussed in Refs. [36–40].

Accessing gluon TMDs is one of the primary goals of
new experimental facilities [41–44]. In this exploratory con-
text, it is particularly useful to develop models for gluon
TMDs. Models can be employed, for example, to expose
qualitative features of gluon TMDs, confirm or falsify gen-
erally accepted assumptions, make reasonable predictions for
experimental observables, or guide the choice of functional
forms to be used in gluon TMD fits.

Quark TMD models have been widely used for these pur-
poses in the past (see, e.g., Refs. [3,45–57]). Effective models
of the UGD can be found in Refs. [58–63]. Predictions based
on some of these models have been compared to experimental
data for the exclusive diffractive vector-meson leptoproduc-
tion atHERA [64–68] and for the inclusive forward Drell–Yan
dilepton production at LHCb [69–71]. Conversely, very lit-
tle has been done for gluon TMDs at intermediate x . Model
calculations of these functions have been discussed only in
Refs. [3,72,73].

In this work, we present an extension of our spectator-
model calculation of quark TMDs [50] to unpolarized and
polarized (T -even) gluon TMDs, effectively incorporating
also small-x effects. The model is based on the assumption
that a nucleon can emit a gluon, after which the remain-
ders are treated as a single spectator particle. The nucleon-
gluon-spectator coupling is described by an effective ver-
tex containing two form factors. At variance with our pre-
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vious work, the spectator mass can take a continuous range
of values described by a spectral function. We determine
the parameters of the model by reproducing the gluon unpo-
larized and helicity collinear parton distribution functions
(PDFs) obtained in global fits.

The paper is structured as follows. In Sect. 2, we high-
light the main features of our spectator model. In Sect. 3,
we describe how we fix the model parameters by getting the
best possible agreement with collinear gluon PDFs obtained
in global fits. In Sect. 4, we show our model results for all
the T -even gluon TMDs. Finally, in Sect. 5 we draw our
conclusions and discuss some outlooks.

2 Formalism

We represent a generic 4-momentum a through its light-cone
components [a−, a+, aT ], where a± = a · n∓ and n± are
light-like vectors satisfying n2± = 0 and n+ · n− = 1. Fol-
lowing Ref. [50], we work in the frame where the nucleon
momentum P has no transverse component, i.e.,

P =
[
M2

2P+ , P+, 0
]

, (1)

where M is the nucleon mass. The parton momentum is
parametrized as

p =
[
p2 + p2

T

2x P+ , x P+, pT

]
, (2)

where evidently x = p+/P+ is the light-cone (longitu-
dinal) momentum fraction carried by the parton. For the
nucleon state |P, S〉 with momentum P and spin S, the
gauge-invariant gluon-gluon correlator reads [2]

�μν,ρσ (x, pT ; S) = 1

x P+

∫
dξ−dξT

(2π)3 eip·ξ

×〈P, S|Fρσ
a (0)Uab(0, ξ) Fμν

b (ξ)|P, S〉|ξ+=0 , (3)

where (here, and in the following) a summation upon
repeated (color) indices is understood. The field tensor Fμν

a

is related to the gluon field Aμ
a by Fμν

a = ∂μAν
a − ∂ν Aμ

a +
g fabc A

μ
b Aν

c , with fabc the structure constants of the color
SU(3) group and g the strong coupling. The symbolUab(0, ξ)

denotes the gauge-link operator

Uab(0, ξ) = P exp

[
−g fabc

∫ ξ

0
dw · Ac(w)

]
, (4)

which connects the two different space-time points 0 and
ξ along a path that is determined by the process. There
are at least two possible definitions of the correlator that
involve two different gauge-link choices, leading to the

Fig. 1 Tree-level cut diagram for the calculation of T -even leading-
twist gluon densities. The double dashed line represents the spin- 1

2
spectator. The red blob represents the nucleon-gluon-spectator vertex.
Gluon lines with crosses correspond to specific Feynman rules for the
gluon field tensor (see text)

so-called Weizsäcker–Williams (WW) and dipole gluon
TMDs [34,74], which can be probed in different processes.
In this work, we consider only leading-order contributions,
neglecting the effect of the gauge link and its process depen-
dence (see, e.g., Ref. [5,75]).1 Therefore, our calculation at
the present stage of sophistication can be considered to be a
model for both definitions of gluon TMDs.

In the following, we consider the leading-twist compo-
nent of the gluon-gluon correlator �+i,+ j ≡ �i j with i, j
transverse spatial indices [2]. We evaluate it in the spectator
approximation, namely we assume that the nucleon in the
state |P, S〉 can split into a gluon with momentum p and
other remainders, effectively treated as a single spin- 1

2 spec-
tator particle with momentum P− p and mass MX . Similarly
to Ref. [50], we define a “tree-level” scattering amplitude
Mi

a(S) given by (see Fig. 1)

Mi
a(S) = 〈P − p|F+i

a |P, S〉

= ūc(P − p)
Giμ

ab(p, p)

p2 Yμ,bc U (P, S) , (5)

where U is the nucleon spinor and ūc is the spinor of the
spectator with color c. The term

Giμ
ab(p, k) = −iδab

(
giμ − ki (n−)μ

p+

)
(6)

represents a specific Feynman rule for the field tensor in the
definition of the correlator [49,76]. We remark that at the
accuracy we are working all results are gauge invariant.

We model the nucleon-gluon-spectator vertex as

Yμ
bc = δbc

[
g1(p

2) γ μ + g2(p
2)

i

2M
σμν pν

]
, (7)

1 We recall that in the Weizsäcker–Williams representation it is always
possible to choose a gauge where the gauge-link operator reduces to
unity [33,34].
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where as usual σμν = i[γ μ, γ ν]/2, and g1,2(p2) are model-
dependent form factors. With our assumptions the spectator
is identified with an on-shell spin- 1

2 particle, much like the
nucleon. Although in principle the expression of Yμ could
contain more Dirac structure, we model it similarly to the
conserved electromagnetic current of a free nucleon obtained
from the Gordon decomposition. The form factors g1,2(p2)

are formally similar to the Dirac and Pauli form factors, but
obviously must not be identified with them. Consistently with
our previous model description of quark TMDs [50], we use
the dipolar expression

g1,2(p
2) = κ1,2

p2

|p2 − �2
X |2 = κ1,2

p2 (1 − x)2

( p2
T + L2

X (�2
X ))2

,

(8)

where κ1,2 and �X are normalization and cut-off parameters,
respectively, and

L2
X (�2

X ) = x M2
X + (1 − x)�2

X − x (1 − x) M2 . (9)

The dipolar expression of Eq. (8) has several advantages: it
cancels the singularity of the gluon propagator, it smoothly
suppresses the effect of high p2

T where the TMD formalism
cannot be applied, and it compensates also the logarithmic
divergences arising after integration upon pT .

Using Eq. (5), we can write our spectator model approxi-
mation to the gluon-gluon correlator at tree level as

�i j (x, pT , S) ∼ 1

(2π)3

1

2 (1 − x) P+

×Tr
[
M̄ j

a(S)Mi
a(S)

]
|p2=τ(x, p2

T )

= 1

(2π)3

1

2 (1 − x) P+ Tr

[
( /P + M)

1 + γ 5/S

2

× G jν∗
ab′ (p, p)Y∗

ν,b′c′G
iμ
ab(p, p)Yμ,bc ( /P − /p + MX )cc′

]
,

(10)

where a trace upon color and spinorial indices is understood.
The assumed on-shell condition (P − p)2 = M2

X for the
spectator implies that the gluon is off-shell by

p2 ≡ τ(x, p2
T ) = − p2

T + L2
X (0)

1 − x
. (11)

The leading-twist T -even gluon TMDs can be obtained
by suitably projecting �i j [2,3]:

f̂ g1 (x, p2
T ; MX ) = −1

2
gi j[

�i j (x, pT , S) + �i j (x, pT ,−S)
]

=
[(

2Mxg1 − x(M + MX )g2
)2

Fig. 2 The spectral function ρX of Eq. (16) as a function of the spec-
tator mass MX

×[
(MX − M(1 − x))2 + p2

T

] + 2 p2
T ( p2

T + xM2
X ) g2

2

+2 p2
T M

2 (1 − x) (4g2
1 − xg2

2)
]

×
[
(2π)3 4xM2 (L2

X (0) + p2
T )2

]−1
, (12)

ĝg1L(x, p2
T ; MX ) = 1

SL
iεi jT �i j (x, pT , SL)

=
[
p2
T (2 − x)

(
2M g1 − (MX − M) g2

)
+2Mx (MX − M (1 − x))2 g1

−[
(MX + M) x

(
L2
X (0) + (1 − x) (MX − M)2)

+2Mx p2
T

]
g2

] (
2M g1 − (MX + M) g2

)

×
[
(2π)3 4M2 (L2

X (0) + p2
T )2

]−1
, (13)

ĝg1T (x, p2
T ; MX ) = −M

pT · ST iεi jT �i j (x, pT , ST )

= −
(

2M g1 − (MX + M) g2

) [
(MX − M (1 − x))

×(
2M (1 − x) g1 + xMX g2

) + p2
T g2

]

×
[
(2π)3 2M (L2

X (0) + p2
T )2

]−1
, (14)

ĥ⊥g
1 (x, p2

T ; MX ) = M2

ε
i j
T δ jm(p j

T p
m
T + g jm p2

T )
εlnT δnr

× [
�nr (x, pT , S) + �nr (x, pT ,−S)

]
=

[
4M2 (1 − x) g2

1 + (L2
X (0) + p2

T ) g2
2

]

×
[
(2π)3 x (L2

X (0) + p2
T )2

]−1
, (15)

where ε
i j
T = ε−+i j and SL(T ) is the longitudinal (transverse)

polarization of the nucleon.
The gluon TMDs of Eqs. (12)–(15) explicitly depend on

the spectator mass MX , which therefore must not be consid-
ered as a free parameter. In fact, in our model MX can take
real values in a continuous range according to the spectral
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function

ρX (MX ) = μ2a

[
A

B + μ2b + C

πσ
e− (MX−D)2

σ2

]
, (16)

where μ2 = M2
X − M2 and {X} ≡ {A, B, a, b,C, D, σ } are

free parameters. Indeed, each gluon TMD in Eqs. (12)–(15)
is weighed on the spectral function ρX such that the actual
model expression of a generic gluon TMD Fg(x, p2

T ) reads

Fg(x, p2
T ) =

∫ ∞

M
dMX ρX (MX ) F̂ g(x, p2

T ; MX ) . (17)

As shown in Fig. 2, the spectral function is particularly sen-
sitive to the parameters a, b: its asymptotic trend at large MX

depends on the sign of the difference a − b. As pointed out
in Ref. [77], it is easy to show that the trend at large MX

affects the small-x tail of TMDs, which is the effective way
in our model to account for qq̄ contributions to spectator con-
figurations that become energetically available at large MX .
Similarly, the behavior of ρX at low MX influences the tail
of TMDs at intermediate x .

3 Model parameters

According to Eq. (17), our model results for the T -even gluon
TMDs are obtained by weighing the analytic expressions
of Eqs. (12)–(15) with the spectral function in Eq. (16). In
total, we have 10 free parameters: seven characterizing the
spectral function (A, B, a, b, C , D, σ ) and three for the
dipolar form factor (the κ1,2 normalizations and the �X cut-
off). The parameters A, B and b, in the Lorentzian component
of the spectral function (16) control the small-x tail of the
gluon TMDs. The Gaussian component (depending on the
parametersC , D and σ ) is sensitive to the moderate-x regime.
The sum of the two contributions is modulated by a power-
law behavior (depending on the parameter a) such that the
spectral function has enough flexibility to correctly describe
the whole x-range considered. The vertex parameters κ1,2

and �X in Eq. (8) mainly regulate the behavior in pT . To fix
these parameters, we follow the procedure described below.

We perform the integration over pT in the TMDs of
Eqs. (12)–(15) weighed with the spectral function as in
Eq. (17). As is well known, only the first two densities
give non-vanishing results. Then, we assume that these pT -
integrated TMDs reproduce the collinear PDFs f g1 (x) and
gg1 (x) at some low scale Q0. Finally, we fix our model
parameters by simultaneously fitting the NNPDF3.1sx
parametrization for f g1 [78] and the NNPDFpol1.1
parametrization for gg1 [79] at Q0 = 1.64 GeV, which is the
lowest hadronic scale provided by the NNPDF Collaboration

Table 1 Central column: mean values and uncertainties of the fitted
model parameters. Rightmost column: corresponding values for replica
11

Parameter Mean Replica 11

A 6.1 ± 2.3 6.0

a 0.82 ± 0.21 0.78

b 1.43 ± 0.23 1.38

C 371 ± 58 346

D (GeV) 0.548 ± 0.081 0.548

σ (GeV) 0.52 ± 0.14 0.50

�X (GeV) 0.472 ± 0.058 0.448

κ1 (GeV2) 1.51 ± 0.16 1.46

κ2 (GeV2) 0.414 ± 0.036 0.414

for these two parametrizations. We consider the parametriza-
tions only in the range 0.001 < x < 0.7 to avoid regions
with large uncertainties and where effects not included in our
model can be relevant [80]. We choose a grid of 70 points
distributed logarithmically below x = 0.1 and 30 points dis-
tributed linearly above x = 0.1. We perform the fit using the
bootstrap method. Namely, we create N replicas of the central
value of the NNPDF parametrization by randomly altering it
with a Gaussian noise with the same variance as the original
parametrization uncertainty. We then fit each replica sepa-
rately and we obtain a vector of N results for each model
parameter. We build the 68% uncertainty band of our fit by
rejecting the largest and smallest 16% of the N values of
any prediction. This 68% band corresponds to the 1σ confi-
dence level only if the predictions follow a Gaussian distri-
bution, which is not true in general. We choose to work with
N = 100 replicas because this number is sufficient to repro-
duce the uncertainty of the original NNPDF parametrization.
In the following, we will show also the result from the replica
number 11, which we consider a particularly representative
replica because its parameter values are the closest to the
mean parameters. However, we stress that only the full set of
100 replicas contain the full information about our fit results.2

In Table 1, we show the values of our model parameters.
For each one, we quote the central 68% of the N = 100 values
by indicating the average and the uncertainty given by the
semi-difference of the upper and lower limits. In the right
column, we show the corresponding values for replica 11.
Parameter B in Eq. (16) is fixed to B = 2.1 since exploratory
tests have shown that the fit is rather insensitive to it. We get a
total χ2/d.o.f. = 0.54 ± 0.38. This small value originates from
the large uncertainty in the gg1 parametrization, particularly
at small x . We remark that the output of the fit selects the
option a − b < 0, which corresponds to a spectral function
0 ≤ ρ(MX ) < 0.5 asymptotically vanishing for very large

2 The full set of results can be obtained from the authors upon request.
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Fig. 3 The x f g1 (left panel) and xgg1 (right panel) as functions of x
at Q0 = 1.64 GeV. Lighter band with red dashed borders for the
NNPDF3.1sx parametrization of x f g1 [78] and the NNPDFpol1.1

parametrization of xgg1 [79]. Green band for the 68% uncertainty band
of the spectator model fit. Solid black line for the result of the replica
11

spectator masses MX (see Fig. 2). Therefore, we deduce that
the positivity bound fulfilled by F̂ g in the right handside
of Eq. (17) (when corresponding to the polarized TMDs of
Eqs. (13)–(15)) is maintained through the integral also for
the actual gluon TMDs on the left handside.

In Fig. 3, we show the results of our simultaneous fit of
x f g1 (x) (left panel) and xgg1 (x) (right panel) at Q0 = 1.64
GeV. The lighter band with red dashed borders identifies
the NNPDF3.1sx parametrization of x f g1 [78] and the
NNPDFpol1.1parametrization of xgg1 [79]. The green band
is the 68% uncertainty band of our fit. The solid black line
represents the result of replica 11. The right panel shows that
our gluon helicity at most diverges more slowly than 1/x . On
the one side, this feature can ben considered as a rigidity of
the model. On the other side, it can be considered as a predic-
tion. In any case, we verified that it is important to perform
a simultaneous fit of both the unpolarized and helicity gluon
PDFs. Bounding the model parameters only to f g1 (x) is not
enough to get a reliable x-behavior of the model.

4 Results

With the parameters in Table 1, the second Mellin moment
of our model PDF f g1 (x, Q0), i.e., the nucleon momentum
fraction carried by the gluons at the model scale Q0 = 1.64
GeV, turns out to be

〈x〉g =
∫ 1

0
dx x f g1 (x, Q0) = 0.424 ± 0.009 . (18)

This result is in excellent agreement with the latest lattice cal-
culation 〈x〉g = 0.427(92) obtained at the scale 2 GeV [81].
The first Mellin moment of the model PDF gg1 (x) gives the
contribution of the gluon helicity to the nucleon spin. In our

model, it turns out to be Sg = 1
2 〈1〉�g = 0.159 ± 0.011 at

Q0 = 1.64 GeV, to be compared with the latest lattice esti-
mate of the gluon total angular momentum 〈J 〉g = 0.187(46)

at the scale 2 GeV [81].
In Fig. 4, we show our model results for T -even gluon

TMDs as functions of p2
T for x = 0.1 (left panels) and

x = 0.001 (right panels) at the same scale Q0 = 1.64 GeV
as in Fig. 3, i.e., without evolution effects. Again, the green
band refers to the 68% statistical uncertainty, and the solid
black line indicates the result of the best replica 11. From top
to bottom, the panels refer to the unpolarized x f g1 (x, p2

T ),
the helicity xgg1L(x, p2

T ), the worm-gear xgg1T (x, p2
T ), and

the Boer–Mulders xh⊥g
1 (x, p2

T ). Each TMD shows a dis-
tinct pattern both in x and p2

T . In particular, the unpolarized
x f g1 (x, p2

T ) clearly shows a non-Gaussian shape in p2
T with a

large flattening tail for p2
T → 1 GeV. Moreover, for p2

T → 0
it reaches a very small but non-vanishing value, suggesting
that the gluon wave function has a significant component
with orbital angular momentum L = 13. The information
underlying these plots largely expands the one contained in
Fig. 3 and can be a useful guidance in explorations of the full
3D dynamics of gluons.

To this purpose, it is also useful to consider the following
densities that describe the 2D pT -distribution of gluons at
different x for various combinations of their polarization and
of the nucleon spin state. For an unpolarized nucleon, we
identify the unpolarized density

xρ(x, px , py) = x f g1 (x, p2
T ) (19)

as the probability density of finding unpolarized gluons at
given x and pT , while the “Boer–Mulders” density

3 This result would change if the spectator were a particle with spin
different from 1

2 .
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Fig. 4 The T -even gluon TMDs as functions of p2
T for x = 0.1 (left panels) and x = 0.001 (right panels) at Q0 = 1.64 GeV. Green band indicates

the 68% statistical uncertainty, solid black line for the replica 11. From top to bottom, panels show x f g1 (x, p2
T ), xgg1L (x, p2

T ), xgg1T (x, p2
T ), and

xh⊥g
1 (x, p2

T )

xρ↔(x, px , py) = 1

2

[
x f g1 (x, p2

T )+ p2
x − p2

y

2M2 xh⊥g
1 (x, p2

T )

]

(20)

represents the probability density of finding gluons linearly
polarized in the transverse plane at x and pT . The “helicity

density”

xρ�/+(x, px , py) = x f g1 (x, p2
T ) + xgg1L(x, p2

T ) (21)

contains the probability density of finding circularly polar-
ized gluons at x and pT in longitudinally polarized nucleons.
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Fig. 5 From top to bottom, the gluon densities of Eqs. (19) and (20)
as functions of pT at Q0 = 1.64 GeV and at x = 0.1 (left panels) and
x = 0.001 (right panels) for an unpolarized nucleon virtually moving

towards the reader. For each contour plot, 1D ancillary plots show the
density at py = 0. Results from the best replica 11 (see text)

Finally, the “worm-gear density”

xρ�/→(x, px , py) = x f g1 (x, p2
T ) − px

M
xgg1T (x, p2

T ) (22)

is similar to the previous one but for transversely polar-
ized nucleons. The first and third densities describe a sit-
uation where the pT -distribution is cylindrically symmetric

around the longitudinal direction identified by P+, because
the nucleon (gluon) is unpolarized or polarized longitudinally
(circularly) along P+. The density in Eq. (20) is symmetric
about the px and py axes because it describes unpolarized
nucleons and gluons that are linearly polarized along the px
direction. The density in Eq. (22) involves a transverse polar-
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Fig. 6 From top to bottom, the gluon densities of Eqs. (21) and (22)
as functions of pT at Q0 = 1.64 GeV and at x = 0.1 (left panels)
and x = 0.001 (right panels) for a polarized nucleon virtually moving

towards the reader. For each contour plot, 1D ancillary plots show the
density at py = 0. Results from the best replica 11 (see text)

ization of the nucleon along the +px axis. Hence, we expect
it to display an asymmetric distribution in the same direction.

In Fig. 5, from top to bottom the contour plots show
the pT -distribution of the densities in Eqs. (19) and (20),
respectively, obtained at Q0 = 1.64 GeV from replica 11
at x = 0.1 (left panels) and x = 0.001 (right panels) for
an unpolarized nucleon virtually moving towards the reader.

The color code identifies the size of the oscillation of each
density along the px and py directions. In order to better visu-
alize these oscillations, ancillary 1D plots are shown below
each contour plot, which represent the corresponding den-
sity at py = 0. As expected, the density of Eq. (19) (top
panels) has a cylindrical symmetry around the direction of
motion of the nucleon pointing towards the reader. Since the
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nucleon is unpolarized but the gluons are linearly polarized
along the px direction, the density of Eq. (20) (bottom-row
panels) shows a quadrupole structure. This departure from
the cylindrical symmetry is emphasized at small x , because
the Boer–Mulders function is particularly large.

In Fig. 6, from top to bottom the plots show the pT -
distribution of the densities in Eqs. (21) and (22), respec-
tively, obtained at Q0 = 1.64 GeV from replica 11 at x = 0.1
(left panels) and x = 0.001 (right panels) for a polarized
nucleon virtually moving towards the reader. Color code and
notations are the same as in the previous figure. The xρ�/+
density of Eq. (21) (top panels) is perfectly symmetric in
the displayed transverse plane because it refers to a nucleon
(gluon) longitudinally (circularly) polarized along the direc-
tion of motion pointing towards the reader. The size of the
density is emphasized at smaller x . The xρ�/→ density of
Eq. (22) is slightly asymmetric in px at x = 0.1 (left bottom
panel) because the nucleon is transversely polarized along
the px direction. This asymmetry is small and vanishes at
x = 0.001 (right bottom panel) because of the behavior of
the worm-gear function g1T .

5 Conclusions and outlook

We presented a systematic calculation of leading-twist T -
even gluon TMDs under the assumption that what remains
of a nucleon after emitting a gluon can be effectively treated
as a single spin- 1

2 spectator particle. The latter is consid-
ered on-shell but its mass is allowed to take a continuous
range of values described by a spectral function. The model
parameters are fixed by reproducing the x-profile of collinear
unpolarized and helicity gluon PDFs extracted from global
fits. Nevertheless, the spectral function grants the model a
sufficient degree of flexibility and gives the opportunity of
actually incorporating the effect of qq̄ contributions, which
are normally absent in spectator models.

We discussed our model results for the tomography in
momentum space of gluons inside nucleons for various com-
binations of their polarizations. These results can be a use-
ful guidance to the investigation of observables sensitive to
gluon TMD dynamics, with applications ranging from heavy-
flavor-meson/open-charm/quarkonia/Higgs production (see,
e.g., Refs. [13,16,18–20,22,82–85]) to almost back-to-back
di-hadron and di-jet production (see, e.g., Refs. [13,14]), and
almost back-to-back J/ψ-jet production [21]. All these chan-
nels can be studied at current and future collider facilities.
In order to facilitate the computation of observables based
on our model, we will make our results available through the
TMDlib library [86].

We plan to extend our model to include leading-twist T -
odd gluon TMDs along lines similar to our previous work on
quark TMDs [50]. It would be interesting also to improve the

description of the unpolarized gluon TMD at small x such
that it simultaneously satisfies evolution equations in both
the Collins–Soper–Sterman (CSS) [76,87] and BFKL [29–
32] kinematical regimes. All these prospective developments
are relevant to the exploration of the gluon dynamics inside
nucleons and nuclei, which constitutes one of the major goals
of the Electron-Ion Collider (EIC) project [41,42].
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