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Abstract We study the energy loss of a heavy quark prop-
agating in the quark-gluon plasma (QGP) in the frame-
work of the Moller theory, including possible large Coulomb
logarithms as a perturbation to BDMPSZ bremsstrahlung,
described in the harmonic oscillator (HO) approximation. We
derive the analytical expression that describes the energy loss
in the entire emitted gluon frequency region. In the small fre-
quencies region, for angles larger than the dead cone angle,
the energy loss is controlled by the BDMPSZ mechanism,
while for larger frequencies it is described by N = 1 term
in the GLV opacity expansion. We estimate corresponding
quenching rates for different values of the heavy quark path
length and different m/E ratios.

1 Introduction

The energy loss of heavy quarks propagating through the
media was widely discussed in recent years in different for-
malisms. In particular the heavy quark energy losses were
intensively studied in the BDMPSZ [1–6] approach, starting
from [7].

The authors of [7] assumed that like in the vacuum, the
heavy quark radiation is suppressed by the dead cone effect,

ω
d I vac

dωdk2
t

∼ αsCF

π2

k2
t

(k2
t + θ2ω2)2

, (1)

where I is the multiplicity of the heavy quark, θ = m/E is the
dead cone angle, m is the heavy quark mass, ω and �kt are the
frequency and the transverse momenta of the radiated gluon,
and E is the energy of the heavy quark. They resulting heavy
quark quenching rate is then significantly smaller than the one
observed in the experiment, where up to rather small energies
of order several masses of heavy quark, the jet quenching
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rates of the heavy and light/massless quarks are the same
[8,9].

However it was found in [10,11] (see also [12–15] for
related research) that the dead cone effect is actually absent,
both in the harmonic oscillator (HO) approximation to the
BDMPSZ approach and in the first N = 1 term in the GLV
opacity expansion [16–18]. This observation leads to sig-
nificant increase in the theoretical prediction for the heavy
quark jet quenching rate. However this increase is not large
enough to match the experimental data on the mass depen-
dence .of the quenching factor. In fact the simulations carried
in [10,11] show that in both HO and GLV approximations
the quenching rate is approximately constant as a function of
a quark mass up to θ ∼ 0.05 and then starts to fall.

In another interesting development it was pointed in [10,
19–22] that the interference pattern in the parton propagation
is determined by the minimal of the two available coherence
lengths – the LPM coherence length, the quantum diffusion
formation length and the parton path length L . Let us define
the quenching coefficient as

q̂ =
∫

d2qt
(2π)2 nq

2 dσ R
el

d2qt
, (2)

where n is the density of the scattering centres in the media,
and σ R is the scattering cross section of the projectile par-
ton in the color representation R. The transverse momenta
accumulated in the diffusion regime is

k2
t ∼ q̂lc, (3)

where lc is a diffusion coherence length, corresponding to
Landau Pomeranchuk Migdal (LPM) effect, l L PM

c (ω) =√
ω/q̂ . Next there is the quantum diffusion formation length,

similar to heavy quark propagating in the media without
interference between different media scattering centres, lqc ∼
1/(θ2ω). The actual physical radiation regime is determined
by the shortest of these lengths [10,20].
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For light quark, as it was shown in [20] for frequencies
much smaller than ωc ∼ q̂ L2, the dynamics of the quark is
determined by LPM interference. This interference is usually
described in the so called harmonic oscillator (HO) approxi-
mation. On the other hand for frequencies ω ≥ ωc, the energy
loss is described by the N=1 GLV formalism [16–18]. The
reason why, although there may be a lot of elastic scatterings,
the use of a first term in the opacity expansion is still justified
is rather straightforward [20]: the N = 1 GLV approximation
corresponds to the tail of q2

t probability distribution, i.e to
the regime when the large but rare momentum transfers are
dominant.

For heavy quark for the small frequencies the gluons are
emitted outside the dead cone and can be described in the
same HO approximation as for light quarks. However for
frequencies larger than ωDC = (q̂/θ4)1/3, when the gluons
start to be emitted inside the dead cone region, the quantum
diffusion length lqc = 1/θ2ω starts to be smaller than the
diffusion coherence length l L PM

coh [21,22] and the dynamics
of radiation for these large frequencies is determined by N =
1 GLV approximation.

In a further development the authors of [23,24] obtained
the formula for light quarks, that explicitly describes not only
the diffusion and N = 1 GLV regime, but also the intermediate
region of frequencies, and thus is applicable to the dynam-
ics of light quark quenching in the entire frequency region.
Their formula takes into account possible Coulomb interac-
tion corrections to the LPM bremsstrahlung, treated as the
perturbation. In the conventional abelian LPM effect such
approach is usually called Moller theory [25].

In the current paper we shall generalise the results of
[23,24] to heavy quarks and obtain the unified formula that
describes the gluon radiation for arbitrary frequencies. The
basic approach will be to build the perturbation theory for
heavy quark around the HO approximation. We shall see
that while the radiation beyond dead cone is determined, for
ω ≤ ωDC by LPM effect and is similar to the one for light
quarks, while the dead cone radiation is described by N = 1
GLV approximation.

Throughout the whole paper we shall assume that the dom-
inant gluons are soft, ω = xE, x << 1. It is quite simple to
include the finite frequencies using ω = z(1− z)E , however
the full calculation will then require also the inclusion of the
space phase constraints, that will make the calculations much
more complicated.

The paper is organised in the following way. In the Sect. 2
we describe the dynamics of heavy quark propagation in the
media, in Sect. 3 we review the description of heavy quark
in the HO in Sect. 4 we build a perturbation theory for heavy
quarks and derive the explicit expression for the energy loss.
We use this expression to estimate qualitatively the heavy
quark energy loss in Sect. 5, and to estimate the quenching
weights in Sect. 6. Our results are summarised in Sect. 7.

2 Heavy quark propagation in the QGP

2.1 Basic formalism

The heavy quark energy loss in the media is given by

ω
d I

dω
= CFαs

(ω)2 2Re
∫ ∞

0
dt1

∫ t1

0
dt∂�x∂�y(K (�x, t1, �y, t)

−K0(�x, t1; �y, t))|�x=�y=0. (4)

Here K is the propagator of the particle in the media with
the two dimensional effective potential due. to the scatter-
ing centres, and K0 is the corresponding propagator of the
free particle in the vacuum. The effective two dimensional
potential is given by

V ( �ρ) = i
∫

d2qt
(2π)2 (1 − exp(i �qt �ρ))

d2σel

d2qt
. (5)

Here d2σel/d2qt is the cross section of elastic scattering
of high energy particle on the media centre. The media
is described by Gyulassy–Wang model [26]. The effective
potential in the momentum space is given by

dσ(�qt )
d2qt

= 4παsm2
DT

(q2
t + μ2)2

≡ g4n

(q2
t + μ2)2

, (6)

where the parameter μ ∼ mD , and the Debye mass mD is
given by

mD ∼ 4παsT
2(1 + N f /6) = 3

2
g2T 6 (7)

for N f = 3 light quarks, T is the media/QGP temperature.
The density of the scattering centres in the GW model is

given by n = 3
2T

3, and the strong coupling is αs = g2

4π
. The

effective potential in the coordinate space is

V (ρ) = q̂

4Nc
(1 −μρK1(μρ) = q̂ρ2

4Nc
(log

(
4

μ2ρ2

)
+ 1 − 2γE ),

(8)

where γE = 0.577 is the Euler constant, and the bare quench-
ing coefficient is

q̂ = 4πα2
s Ncn. (9)

2.2 Perturbation theory

For processes that are dominated by large momentum trans-
fer oit is enough to take into account only the first terms
in the Taylor expansion of V (ρ). The first approximation
corresponds to the quadratic term in the expansion 8 and is
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called the HO (harmonic oscillator ) approximation. In this
approximation the effective potential V is given by

V (ρ) = 1

4
q̂effρ

2. (10)

Here q̂eff is the effective jet quenching coefficient, given by

q̂eff = q̂ log

(
Q2

μ2

)
, (11)

and Q is the typical transverse momenta, accumulated by the
particle on the scale of the coherence length.

The HO effectively describes the LPM bremsstrahlung
[1]. More precise treatment of the energy loss includes also
large Coulomb logarithms and is called in the theory of the
Abelian (QED) LPM effect the Moller theory [25]. In the
QCD framework the inclusion of Coulombic interactions
can be made using the perturbation theory [23,24]. Namely,
instead of the usual opacity expansion [16–18], we shall con-
sider the perturbation theory around the oscillator potential
adding the Coulombic effects as a perturbation. The effective
potential in Moller theory is given by

V (ρ) = 1

4
q̂ρ2 log(1/ρ2μ2), (12)

and includes the short range coulombic logarithms. In the
framework of the perturbation theory this potential is split as

V (ρ) = VHO(ρ) + Vpert (ρ), VHO (ρ) = q̂ log(Q2/μ2)

4
ρ2,

Vpert(ρ) = q̂

4
log

(
1

Q2ρ2

)
, (13)

where Q is the typical momenta, defined above, equal to Q ∼√
q̂ω in the HO approximation. We shall need sufficiently

large Q, so that

log(Q2/μ2) � log

(
1

Q2ρ2

)
, (14)

i.e. perturbation theory is applicable meaning that we probe
rather small transverse distances.

Then the energy loss is given by Eq. 4, where the propa-
gator K is calculated in perturbation theory as [23,24]

K (�x, t1; �y, t) = KHO (�x, t1; �y, t)
−

∫
d2z

∫ t1

t
dsKHO (�x, t1; �z, s)Vpert (z)KHO (�z, s; �y, t1)

(15)

Here KHO is the heavy quark propagator in the imaginary
two dimensional potential VHO [11]:

KHO (�x, t1; �y, t) = iω


2π sinh 
(t1−t)
exp

(
iω


2

{
coth 
(t1 − t)(�x2 + �y2)

− 2�x �y
sinh 
(t1 − t)

})
exp(−iθ2ω(t1 − t)/2), (16)

and


 = (1 + i)

2

√
q̂/ω (17)

In the limit when there is no media this propagator reduces
to free quark propagator

K0(�x, t1; �y, t) = iω

2π
exp

(
i
ω(�x − �y)2

2(t1 − t)

)
. (18)

2.3 Qualitative dynamics of the heavy quark

The expansion written in the form 15 clearly exhibits the for-
mation lengths described in the Introduction: the heavy quark
mass leads to the oscillating exponent exp(iθ2ω/2(t1 − t)) in
Eq. 16, while the harmonic oscillator part of the propagator
16 oscillates with the frequency

√
ω/q̂ . Then it is clear that

when lqc << l L PM
c the oscillations due to heavy quark mass

cut off the integral for heavy quark energy loss, the oscillating
harmonic oscillator part of the propagator is approximately
freezed and the LPM effect is not relevant, the energy loss
is defined by the induced radiation on the scattering centres-
the N=1 GLV. On the other hand, in the opposite case, the
heavy quark exponent is close to one, and the integral for
energy loss is controlled by the HO multiplier. We have LPM
bremsstrahlung plus corrections due to coulomb logarithms.

We can now choose the substruction scale Q in the
momentum space. As it was explained in [20,23] this scale
corresponds to the typical momentum accumulated by the
quark along the coherence length propagation. Such momen-
tum squared is q̂ × √

ω/q̂ for ω << ωDC and ∼ θ2ω2 ∼
ω/ lqc for ω >> ωDC . Consequently we shall use the inter-
polation formula

Q2 =
√

ωq̂effU (−ω + ωDC ) + θ2ω2U (ω − ωDC ), (19)

where U (x) is a unit step function:U (x) = 1 if x ≥ 0,
and U (x) = 0 if x ≤ 0. We shall use another interpolation
formula to check the sensitivity to the exact Q value in the
intermediate region around ωDC :

Q2 =
√
q̂efω + θ4ω4. (20)
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Alternatively, the dynamics of the heavy quark can be
approached using the arguments in [20]. Namely , in the LPM
(diffusion ) regime the distribution over momentum transfers
in the scattering on the media centres is described by a gaus-
sian, peaked in the Q2

t yp ∼ √
q̂w. The scattering with sig-

nificantly higher momentum transfers qt is described by the
tail of the distribution, which is N = 1 GLV, that essentially
describes the independent coulomb scattering on the media
centres. In this region the LPM gaussian is parametrically
close to zero, and N=1 GLV dominates. It was explained in
[21,22] that N = 1 term in opacity expansion is a good descrip-
tion of large momentun transfer regime, since such scatter-
ings in the tail occur quite rarely. Since inside dead cone the
typical momenta is k2

t ∼ ω/ lqc ∼ θ2ω2 � √
q̂ω, inside the

dead cone we shall find ourselves in the GLV regime.

2.4 N = 1 GLV

We shall also need the explicit expression for N = 1 term in
the opacity expansion for massive quark. The corresponding
result was derived in [11], and has the form:

ω
d I

dω
=

∫
dk2

t

∫ ∞

0
dq2 4αsCF q̂qkt

πω

LQ1 − sin(LQ1)

Q2
1

q2

q2 + θ2ω2

× m2
D(k2 + θ2ω2) + (k2 − θ2ω2)(k2 − q2)

(k2 + θ2ω2)((m2 + k2 + q2)2 − 4k2q2)3/2 . (21)

where

Q1 = (q2 + θ2ω2)/(2 ∗ ω). (22)

Here kt is the momentum of the radiated gluon.

3 Heavy quark in the HO approximation

Let us review the leading order contribution to the energy
loss of heavy quark, that in our perturbation approach corre-
sponds to Harmonic approximation. There are two parts in
the expression 4 due to different regions of integration in t1,
we shall call them the bulk and the boundary contributions
since in one case the integration in t1 goes from 0 to L and
in the second from L to ∞. Note that the authors of [23,24]
used different approach due to results in [19] that permits for
massless case the calculation of the integral 4 without split-
ting into two regions. However, it is not clear how to extend
the method of [19] to the case. of massive quarks. We shall
review here the heavy quark energy loss calculation in HO
approximation and represent the results in the form of the
one dimensional integrals.

3.1 HO bulk contribution

This term is equal to

ω
d IHO Bulk

dω
= αs

ω2 2Re
∫ L

0
dt1

∫ t1

0
dt∂�x∂�y(K (�x, t1; �y, t)

−K0(�x, t1; �y, t))|�x=�y=0, (23)

where K0 is the propagator of the free heavy quark, and KHO

is the heavy quark propagator in the HO approximation given
by Eq. 16.

After differentiation we obtain in the soft gluon limit:

ω
dHO Bulk

dω
= −αsCF

π

×2Re
∫ L

0
dt1

∫ t1

0
dt

(

2

(sinh(
(t1 − t))2 − 1

(t1 − t)2

)

× exp(−iθ2ω((t1 − t)/2) (24)

Note that the integrand is a function of τ = t1 − t . We use
the identity

∫ L

0
dt1

∫ t1

0
ds f (s) =

∫ L

0
(L − s) f (s)ds (25)

to go from the double to one-dimensional integrals. This
means

ω
d IHO Bulk

dω
= −2αsCF

π
2Re

∫ L

0
dt1

×
∫ t1

0
dτ

(

2

sinh(
τ)2 − 1

τ 2

)
Exp(−iτθ2ω/2)

= −2αsCF

π

∫ L

0
ds(L−s)(
2/ sinh(
s)2−1/s2) exp(−isθ2ω/2)

(26)

In the limit of the massless quark θ → 0 we get the spectrum

ω
d I

dω
= 2αsCF

π
Re log

(
sinh(
L)


L

)
(27)

in agreement with the BDMPSZ results for the bulk part of
the spectrum for massless quark.

3.2 HO boundary term

It is also easy to calculate the boundary term in the HO
approximation:

ω
d IHO Boundary

dω
= αs

ω2 2Re
∫ ∞

L
dt1

∫ L

0
dt∂�x∂�y(K (�x, t; �y, t1)

−K0(�x, t1; �y, t)|�x=�y=0 (28)

The propagator K in Eq. 28 corresponds to the new regime
when the particle travels outside of the media, t1 > L , L >

t > 0 . Consequently it is given by by the convolution
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K (�x, t1; �y, t) =
∫

d2zK0(�x, t1; �z, L)KHO(�z, L; �y, t) (29)

Using the explicit expressions for K0 and KHO given by Eqs.
16, 18 we obtain

∂�x ∂�y K (�x, t1; �y, t)|�x=0,�y=0

=
∫

d2z
∫ ∞
L

dt1

∫ L

0
dt

1

(2π)2
ω4
2z2

(t1 − L)2 sinh(
(L − t))2

× exp

(
i z2

(
ω

2(t1−L)
+ ω


2
coth 
(L−t)

))
exp(−iθ2ω(t1−t)/2)

(30)

It is easy to carry the integration over d2z. We have

∫
d2z exp(i Az2)z2 = π

A2 (31)

So we obtain

ω
d IHO Boundary

dω
=

∫ ∞

L
dt1

∫ L

0
dt

(
2Re

1

π


2

(t1 − L)2 sinh(
(L − t)2

exp(−iθ2ω(t1 − L + L − t)/2)

(1/(t1 − L) + 
 coth 
(L − t))2

−2Re
1

π

exp(−iθ2ω(t1 − L + L − t)/2)

(t1 − t)2

)
(32)

we now can define s = t1 − L , and take integral over s.
Using the formula

∫ ∞
0

ds exp(−i As)/(1+Bs)2 = B − i A exp(A/B) ∗ �(0, i A/B))

B2

(33)

where �(s, x) is the incomplete gamma function [27]. We
obtain

ω
d IHO Boundary

dω
= 2Re

αsCF

π

×
∫ L

0
ds

(
2


sinh(2
s)
− iθ2ω

2
exp

(
i
θ2ω tanh(
s)

2


))

×
�

(
0,

iθ2ω tanh(
s)
2


)

cosh(
s)2

−
(

1

s
− iθ2ω

2
exp(iθ2ωs/2)�(0, iθ2ωs/2)

)
(34)

In Eq. 34

�(0, x) = −Ei(−x) − iπ (35)

and s = L − t , the function Ei is the integral exponent func-
tion [27]. Note that. the integrand in 34 is concentrated near
the end of the media region, i.e. near t ∼ L .

For small frequencies outside the dead cone the energy spec-
trum almost does not change when we take into account the
quark mass, while for large frequencies in the dead angle
region the spectrum decreases rather rapidly, in agreement
with Dokshitzer–Kharzeev results.

The full HO result for massive quarks is then given by the
sum of Eqs. 34 and 26:

ω
d IHO

dω
= ω

d IHO Bulk

dω
+ ω

d IHO Boundary

dω
(36)

For light quark (i.e. in the θ → 0 limit) we have for the bulk
term

ω
d I

dω
= αsCF

π
Re log

(
sinh(
L)


L

)
(37)

and

ω
d I

dω
= αsCF

π
(Re log(| cosh(
L)|)− Re log

(
sinh(
L)


L

)

(38)

for the boundary term. In the sum we obtain the famous
BDMPS spectrum

ω
d I

dω
= 2αsCF

π
(log(| cosh(
L)|) (39)

confirming the self consistency of our approach.

4 Coulombic correction

We are now in position to calculate the corrections due to
Coulomb logarithms. As in the previous section we split the
integration in Eq. 4 into two parts 0 < t1 < L (the bulk term)
and t1 > L-the boundary term.
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4.1 Bulk term

We start from the bulk term. The Coulombic correction to
the propagator for the heavy quark is given by [23]

Kpert (�x, t1; �y, t) = −
∫

d2z
∫ L

0
dt1

∫ t1

0
dt

×
∫ t1

t
dsKHO(�x, t1; �z, s)Vpert(�z, s)KHO(�z, s, ; �y, t)

(40)

where the perturbation potential is taken as in Eq. 13

Vpert = q̂

4
log 1/(z2Q2) (41)

where Q is the substraction point in momentum space, that
must be taken as the typical momentum acquired in the set
of elastic scatterings over the coherence length scale . Note
that the potential is not dependent on s. As a result we have
after differentiating the propagator over its endpoints,

ω
d IBulk Coulomb

dω
= αsCF

ω2 2Re
∫ L

0
dt1

∫ t1

0
dt

∫
d2z

∫ t1

t
ds

× q̂

4

ω4
4 exp(−iθ2ω(t1 − t)/2)

(2π)2 sinh 
(t1 − s)2 sinh 
(s − t)2

× exp

(
iω


2
z2(coth(
(t1 − s) + coth 
(s − t)))z4 log(

1

z2Q2

)

(42)

We now carry the integration over d2z using
∫

d2zz4 log

(
1

z2Q2

)
exp(−Bz2)

=
(
−3 + 2γE + 2 log

(
B
Q2

))
π

B3 , Re(B) ≥ 0. (43)

We then obtain

ω
d IBulk Coulomb

dω
= − 4q̂αsCF


πω
2Re

×
∫ L

0
dt1

∫ t1

0
dt

∫ t1

t
ds sinh 
(t1 − s) sinh 
(s − t)

×
(
i

(
−3+2γ +2 log

(
ω


2Q2
sinh 
(t1 − t)

sinh 
(t1 − s) sinh 
.(s − t)]
))

+π

)

× exp(−iθ2ω(t1 − t)/2

sinh(
(t1 − t))3 . (44)

The integral over s can be taken analytically in the limits
between t1, t . Quite remarkably under regularisation when
we integrate between t + ε, t1 − ε, and then take the limit
ε → 0 the integral is finite. We then use the identity Eq. 25,
since the integrand depends only on the difference t1 − t , to
represent the Coulomb correction to the bulk contribution in

the form of an one dimensional integral

ω
d IBulk Coulomb

dω
= Re

∫ L

0
dx(L − x)

×2i
αsCF q̂

ωπ

exp(iθ2ω(−iθ ∗ ωx/2)

sinh 
(x)3

× cosh(
x)(−((−2 + A + Log(4) − 2 log(
 ∗ ω/Q2))

+2 ∗ (
x+log(1 − Exp(−2
x)))−log(2))) tanh[
x)

−(−π2/6 − (2 + A)
x − 2Li2(2, exp(−2
x))

−Li2(2, 1) − (−iπ + 2
x)2/2 − π2/3 + 2
x(−i ∗ π

+ log((1−exp(−2
x))+2
x + log(−
ω/Q2)), (45)

where

A = −iπ + 3 − 2γE . (46)

Here Li2 is the dilogarithm (Spence) function [27]:

Li2(z) = −
∫ z

0

log(1 − u)

u
. (47)

Note that , since 
 is complex, the integrand is the compli-
cated analytical function of its arguments. We have checked
that this function has no discontinuities related to the cuts of
logarithm and dilogarithm in the complex plane in the region
of integration and as a function of ω and q̂ .

4.2 The correction to the boundary term

Next we need to calculate the correction to the HO boundary
term. This correction is given by the integral

ω
d ICoulomb Boundary

dω
= αsCF

(2π)3ω2

q

4

×
∫ ∞

L
dt1

∫ L

0
dt

∫ L

t
ds

∫
d2z

∫
d2u

exp
(
i ωz2

t1−L

)

(t1 − L)2 (�z�u)

× exp

(
i
ω
(z2 ∗ coth(L − s) + u2 ∗ coth(L − s) − 2�z�u

sinh(L−s) )

2

)

× exp(iu2 coth(s − t) ω

2 )

sinh 
(L − s)(sinh 
(s − t))2 ω5
3u2 log

(
1

Q2u2

)
. (48)

The integral
∫
d2z is gaussian and can be easily taken, the

remaining integral over
∫
d2u is taken using Eq. 43.

After the integrations over d2z and d2u the resulting inte-
gral has the form
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ω
d ICoulomb Boundary

dω
=

∫ ∞

L
dt1

∫ L

0
dt

∫ L

t
ds

iαsCF q̂


πω
exp(iθ2ω(t − t1)/2)

×
(
A − 2 log

(
ω
(cosh(
(L − t))
(t1 − L) + sinh(
(L − t))

2Q2 sinh(
(s − t))(
(t1 − L) cosh(
(L − s)) + sinh(
(L − s)))

))

× sinh(
(s − t))(
(t1 − L) cosh(
(L − s)) + sinh(
(L − s))), (49)

where

A = −iπ + 3 − 2γE . (50)

The integral over s can be taken using Mathematica, since the
integrand is essentially the rational function. We then obtain
the double integral over t, t1:

ω
d ICoulomb Boundary

dω
= iαsCF q̂

2πω
exp iθ2ω(t − t1)

× cosh(
(L − t))(2 log(((1 − exp(−2
(L − t))) + 
(t1 − L)

×(1 + exp(−2
(L − t))))/(2
(t1 − L))) + 2
(L − t))
(L − t1)

−((−2 + A + log(4) − 2 log(

ω

Q2 )) + 2(
(L − t)

+ log((1 − exp(−2
(L − t)))) − log(2)))) tanh(
(L − t))

+(−π2/6−(2+A)
(L−t)−Li2(
exp(−2
(L − t))(1+
(L − t1))

1 − 
(L − t)

−Li2(exp(−2
(L − t)) − Li2(−1 + 2

1 + 
(L − t1))
)

−(−iπ + 2
(L − t))2/2 − (−iπ + 2
(L − t)

+ log(
1 + 
(t1 − L)

1 + 
(L − t1)
)2/2 − π2/3

+2
(L − t)(log((exp(−2
(L − t) + −1 + 
(L − t1)

1 + 
(L − t1)
)

+2
(L − t) + log(−
ω

Q2 )))

×(−1 + 
(L − t1) tanh(
(L − t))))/(
(t1 − L) cosh(
(L − t))

+ sinh 
(L − t))3. (51)

The final answer for the coulombic correction is then given
by a sum of Eqs. 45, 51:

ω
d ICoulomb

dω
= ω

d IBulk Coulomb

dω
+ ω

d ICoulomb Boundary

dω
.

(52)

We shall also need ω d ICoulomb reduced

dω
which is given by Eq. 52

but without the common factor q̂ . The final answer for the
energy loss is the sum of Eqs. 52, 36

ω
d I

dω
(ω, L , q̂, Q) = ω

d IHO

dω
(ω, L , q̂eff, Q)

+q̂ω
d ICoulomb reduced

dω
(ω, L , q̂e f f , Q).

(53)

where q̂e f f is given by Eq. 11 and the typical momenta Q is
given by Eqs. 19, 20. Equation 53 is our main result.

The integrals 45, 51 are rather complicated. However we
checked numerically that in the limit of massless quarks θ →
0 our results coincide with the ones obtained in [23,24]. We
were not able to reduce the expressions above to the light
quark case analytically. However we checked that the zero
mass quark expression derived in [23]

ω
d ICoulomb

dω
=

∫ L

0
ds

1

k(s)
log(k(s) + γ ), (54)

where

k(s) = iω


2
(coth(
(s) + tanh(
(L − s)) (55)

coincides with Eq. 53 numerically for all possible values of
L , ω

. We have also checked that the expression 55 can be eas-
ily derived also summing bulk and boundary contributions,
instead of using the approach of [19].

5 Numerical results

In our calculations we use our final expression for HO +
Coulomb correction to energy loss – Eqs. 53. For illustrative
numerical estimates we take the same parameters as in [24]:
T = 0.4 GeV, αs = 0.3, leading to μ = mD = 0.9 GeV
and q̄ ∼ 0.3 GeV3. We carried the numerical calculations
for two interpolating formula for typical momentum:

Q2 =
√

ωq̂effU (−ω + ωDC ) + θ2ω2U (ω − ωDC ) + μ2,

(56)

Q2 =
√
q̂efω + θ4ω4 + μ2, (57)

which differ from Eqs. 19, 20 by adding the regularising
momenta μ2, similar to the regularisation in [24].

We present our results for energy loss ωd I/dω for two
cases; the medium path width L = 2 fm and large path
length L = 5 fm. We see first that the different choice of the
interpolating formula for typical transverse momenta, 19 or
20 does not influence the result qualitatively, although it may
induce some difference at small ω of order 10–15%.

For large ω beyond dead cone frequency ωDC we see very
good agreement with N = 1 GLV approximation, especially
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Fig. 1 The energy loss in the leading order in αs for L = 2 fm for dif-
ferent values of θ as a function of the radiated gluon energy ω, divided
by αsCF for different parametrizations of the substruction momentum
Q(q̂, ω, θ). We depict the results for harmonic oscillator approximation
(HO) and including the Coulomb contribution (HO + Coulomb) given

by Eq. 53. The curves CD and CS show the dependence of the total
energy loss (HO + Coulomb) given by Eq. 53 on the parametrisation
of the substruction momenta Q: CD corresponds to the parametrisation
56, CS to the parametrisation 57, see the discussion in Sect. 2.3. The
curve GLV refers to N = 1 GLV expression with Q independent q̂

for the intermediate length case. L = 2 fm. We present L =
2 fm case in Fig. 1 where we see that the results including
coulombic corrections are in very good agreement with N =
1 GLV for large frequencies beyond dead cone. The use of
two interpolating formulae for momenta leads to very close
results especially they become identical in the dead cone
regime.

In Fig. 2 we depict the similar results for L = 5 fm. We
see that in this case for small ω both HO and HO + Coulomb
curves lie under the N = 1 GLV curve. We use Eq. 20 for Q.
curve, with the agreement increasingly good towards large
frequencies corresponding to the region inside dead cone.

In Figs. 3 and 4 we depict for L = 2 and 5 fm respectively
the total and HO contributions to the energy loss for different
values of θ . We see that for the θ up to 0,05 the energy loss
does not change, but for larger θ it starts to decrease.

6 Quenching

Our results for energy loss can be translated to the jet quench-
ing weights along the lines of [28,29]. As it is known the jet
quenching factor describes the energy loss due to the arbi-
trary number of Poisson distributed gluons. Indeed, in the

previous chapters we calculated the energy loss probability
ωd Idω in the first order in αs . Then we can calculate the
quenching factor

Q(E) = exp

(
−

∫ ∞

0

(
1 − exp

(
− R

E
ω

)
d I

dω

))

= exp

(
− R

E

∫ ∞

0
exp(− R

E
N (ω)

)
≡ exp(−S(E))

(58)

where the multiplicity.

N (ω) =
∫ ∞

ω

ω′ d I
dω′ dω′ (59)

and

R = dσ 0

dp2
t

(60)

is determined from the experimental data, R ∼ 5. Here σ 0

is the radiation cross section in the vacuum, outside of the
media.

The estimated quenching rates have qualitative character,
we assumed that for ω ≤ 1 GeV the ωd I/dω curve linearly
goes to zero ar ω → 0, ω ≤ 1. . We see that for energies
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Fig. 2 The energy loss in the leading order in αs for L = 5 fm for dif-
ferent values of θ as a function of the radiated gluon energy ω, divided
by αsCF for different parameterisations of Q(q̂, ω, θ) for HO and total
(HO + Coulomb) contributions: CD, CS are the total (HO + Coulomb)

energy losses for typical momenta Q given by Eqs. 19, 20 respec-
tively.HO refers to HO approximation with Q given by Eq. 56, and
GLV refers to N = 1 GLV expression with Q independent q̂

Fig. 3 The energy loss in the leading order in αs for L = 2 fm for different values of θ as a function of the radiated gluon energy ω, divided by
αsCF , right-total energy loss in Moller theory, left-HO approximation. We use Eq. 20 for Q

of order 100 GeV (i.e. θ ∼ 0.05 the quenching coefficients
are actually the same for light quark and heavy b-qiuark.
and the quenching coefficients of heavy quarks depend on
energy much weaker than for the light, especially for not
large L. This is in agreement with the results of [10]. The
estimates have very qualitative character especially for light
quarks, since we expect they will be further influenced by
phase space restrictions which are known to significantly
reduce the energy loss, especially for small ω.

7 Conclusion

We have calculated the the energy loss of heavy quark prop-
agating through the quark-gluon plasma in the framework
of the Moller theory due to the soft gluon emission. In
particular we studied the influence of large Coulomb log-
arithms on the heavy quark propagation. We have found
rather large Coulomb corrections to LPM effect for small
and large energies of radiated gluons. In particular we have
seen that Coulombic corrections lead to N = 1 GLV expres-
sion for energy loss for frequencies corresponding to the
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Fig. 4 The energy loss in the leading order in αs for L = 5 fm for different values of θ as a function of the radiated gluon energy ω, divided by
αsCF right-total energy loss in Moller theory, left-HO approximation.We use Eq. 20 for Q

Table 1 The estimate for
quenching coefficients S(E) for
light and heavy quarks, for
middle L = 2 fm and long
L = 5 fm widths. The jet
quenching factor
Q(E) = exp(−S(E)) Here all
S(E) are divided on αsCF

L = 2 fm E = 25 GeV E = 50 GeV E = 100 GeV
S(E) S(E) S(E)

Light quark m=0 1.74 1.38 0.83

Heavy quark mb = 5 GeV 0.75 0.79 0.77

L = 5 fm S(E) S(E) S(E)

Light quark m=0 4.74 3.84 2.5

Heavy quark mb = 5 GeV 2.55 3 2.32

radiation inside the dead cone. Our main expression that
includes both HO approximation and Coulombic logarithms
is an Eq. 53. We have estimated the resulting quenching
weights for heavy quark propagation and see that the energy
loss of heavy and light quark is approximately the same
up to θ = m/E ∼ 0.05, We also see that the difference
between heavy and light quenching weights decreases with
the decrease of the length path of the quark. These results are
in agreement with the results of [10]. For massless quarks
our results coincide with those of [23,24] .
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