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Abstract In the zero momentum limit we numerically cal-
culate the quasinormal frequencies of the massive Dirac field
propagating in a Lifshitz black brane. We focus on the non-
exactly solvable cases for the fermionic perturbations, so that
our results are an extension of the examples already reported
for the massive Klein–Gordon and Dirac fields in the zero
momentum limit. Based on our numerical results, we propose
an analytical approximation of the obtained quasinormal fre-
quencies of the Dirac field and compare their behavior with
those of the Klein–Gordon field. We extend the results on the
Klein–Gordon quasinormal frequencies already published.
Furthermore, by imposing the Dirichlet boundary condition
at the asymptotic region, we are able to find more general
results for the fermionic exactly solvable case previously
studied.

1 Introduction

In the study of perturbed spacetimes it can be found a well
defined set of proper oscillations known as quasinormal
modes (QNM), in order to find these QNM solutions par-
ticular boundary conditions have to be fulfilled. When the
spacetime has an event horizon the perturbation has to be
purely ingoing near it, due to the fact that classically nothing
can escape from the black hole or black brane, whereas the
other boundary condition depend on the asymptotic structure
of the spacetime [1–8]. Associated to the QNM it is found a
complex set of frequencies, named as quasinormal frequen-
cies (QNF), which depend on the parameters of the spacetime
and the perturbation itself. Thus by computing the QNF of a
black hole or a black brane we can study its physical prop-

a e-mail: aaresdepargar0800@alumno.ipn.mx
b e-mail: alopezo@ipn.mx (corresponding author)

erties [1–3]. Moreover in the AdS-CFT correspondence the
QNF are useful to compute the relaxation times of the dual
field theories [2,3,5,7,8].

The spacetimes which present Lifshitz scaling at the
boundaries

t → λzt, x → λx, (1)

where the parameter z is the critical exponent and t , x rep-
resent the coordinates of the spacetime boundary, recently
have been used to model non-relativistic systems near crit-
ical points in the holographic context [9–12]. Therefore, it
is relevant to compute the QNF spectrum in Lifshitz space-
times, so that we can compute the relaxation times of the
associated dual field theory and in Refs. [5,6,13–20] we can
look at some examples.

Even though the electromagnetic, scalar and fermionic
perturbations are sometimes easier to study than the met-
ric perturbations, the equations of motion that describe the
dynamics of the perturbations does not always allow us to
find analytical solutions, actually there exist several cases
of perturbations for Lifshitz spacetimes where the problem
has to be treated numerically and usually there is not an
evident analytical expression which describes the numerical
QNF [5,7,17,19,20]. Fortunately, there exist several meth-
ods which allow us to compute numerically the QNF spec-
trum, in particular the Asymptotic Iteration Method (AIM)
has good results [21–23].

By imposing the Dirichlet boundary condition at the
asymptotic region and in the zero momentum limit, we
extend the results presented in Refs. [5,6], where the QNM
exact solutions are found for Klein–Gordon (KG) and Dirac
fields propagating in an asymptotically Lifshitz black brane
[24,25], and in this paper we give more general results than
in Ref. [6] for the exact solutions of the fermionic field. Fur-
thermore, for the KG field we numerically calculated its QNF
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for the non-exactly solvable cases and we analyze again the
examples considered for the first time in [5], we extend it for
the Dirac field and we give analytical approximations for our
numerical QNF of both fields.

The paper is organized as follows. In Sect. 2 we give a
general outlook of the Lifshitz black brane which we are
going to work with. In Sect. 3 we write the equations of
motion for the Dirac field, study again the exactly solvable
example of Ref. [6] and analyze a limit of the equations of
motion where we find analytical solutions. In Sect. 4 we
briefly summarize the numerical method that we use in the
rest of the paper, the Improved Asymptotic Iteration Method
(IAIM), so that in Sect. 5 we show the numerical results for
both the fermionic and scalar fields. In Sect. 6 we discuss our
main results. Finally, in Appendix A we give a proof of the
classical stability for the Dirac field in the zero momentum
limit.

2 Lifshitz black brane

It is said that a D-dimensional (D ≥ 3) background is a
Lifshitz spacetime if it behaves as

ds2 = r2zdt2 − dr2

r2 − r2dx2
D−2, (2)

at the asymptotic region. Motivated by the results found in
Refs. [5,6], we analyze an exact solution of the Einstein–
Maxwell–Dilaton equations of motion given by [24,25]

ds2 = V (r)2r2zdt2 − dr2

V (r)2r2 − r2dx2
D−2, (3)

where

V (r)2 = 1 −
(rh
r

)α

, α = D + z − 2, (4)

and dx2
D−2 is the line element of a maximally symmetric

manifold representing a (D − 2)-dimensional plane [24,25],
thus (3) is the line element of a symmetric spacetime. The
spacetime (3), (4) represents a Lifshitz black brane, whose
radius of the event horizon is rh and r ∈ (rh,∞) is the interval
of interest in this work. Thus, this spacetime behaves as (2)
at infinity and it presents Lifshitz scaling at the asymptotic
boundary. When z = 1 the holographic theory is relativistic,
that is, it falls on the solution given in Ref. [7], whereas if
z > 1 the holographic theory is non-relativistic. In what
follows we have set the Lifshitz radius l equal to 1.

The tortoise coordinate r∗ for the black brane (3) is defined
by

dr

dr∗
= V (r)2r z+1, (5)

with r∗ ∈ (−∞, 0) when r ∈ (rh,∞), such that for D =
z + 2 it is found [5]

r∗ = 1

2zr zh
ln

(
r z − r zh
r z + r zh

)
. (6)

The Hawking temperature of the black brane (3) is given by
[5,25]

T = αr zh
4π

. (7)

In what follows, in the Lifshitz black brane (3), we study
the oscillations of the scalar and fermionic perturbations in
the zero momentum limit, which are studied for the first time
in Refs. [5,6]. One purpose of this work is to compute numer-
ically the Dirac QNF for the cases z > D − 2 which are not
studied in Ref. [6] and we compare them with the KG QNF
given in Ref. [5].

3 Dirac perturbations in the Lifshitz spacetime

Let us consider a D-dimensional (D > 3) symmetric space-
time whose line element is [26,27]

ds2 = F(r)2dt2 − G(r)2dr2 − H(r)2dΣ2
D−2, (8)

where the functions F , G and H depend only on the r coordi-
nate, and dΣ2

D−2 is a (D − 2)-dimensional maximally sym-
metric base manifold. It is worth to mention that the Lifshitz
black brane (3) can be written as (8) if we identify

F(r) = V (r)r z, G(r) = 1

V (r)r
, H(r) = r, (9)

and the submanifold dΣ2
D−2 is identified with the (D − 2)-

dimensional plane dx2
D−2.

In D-dimensional symmetric backgrounds, the Dirac
equation

i /∇ψ = mψ, (10)

reduces to a pair of coupled partial differential equations in
two variables [27,28]. In order to do so, we note that the
D-dimensional symmetric spacetime (8) can be written as

ds2

H(r)2 = ds̃2 = ds2
2D − dΣ2

D−2

= F2

H2 dt
2 − G2

H2 dr
2 − dΣ2

D−2, (11)

and by using the transformation properties of the Dirac opera-
tor under conformal transformations, that is, if g̃μν = Ω2gμν

then /∇ψ = Ω(D+1)/2 /̃∇ψ̃ and ψ = Ω(D−1)/2ψ̃ , we find that
in the spacetime (11), conformal to the symmetric spacetime
(8), the Dirac operator simplifies to [27,28]

/̃∇ = [
/∇2D ⊗ I2(D−2)/2 − iσ3 ⊗ /∇dΣ

]
. (12)
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where I2(D−2)/2 is the 2(D−2)/2 × 2(D−2)/2-dimensional iden-
tity matrix, the symbol ⊗ stands for the direct product and σi
are the Pauli matrices. As in Ref. [27], we have considered
the following representation of the gamma matrices

γ̃t = σ1 ⊗ I2(D−2)/2 , γ̃r = iσ2 ⊗ I2(D−2)/2 , (13)

γ̃1 = σ3 ⊗ γ̂1, . . . , γ̃D−2 = σ3 ⊗ γ̂D−2.

The matrices γ̂i are a representation of the gamma matrices
for a (D − 2)-dimensional space and the operators /∇2D and
/∇dΣ stand for the Dirac operators on the two-dimensional
spacetime ds2

2D and on the (D−2)-dimensional submanifold
dΣ2

D−2, respectively [27].

Taking the Dirac spinor ψ̃(r, t, xi ) for the spacetime (11)
as

ψ̃(r, t, xi ) = ψ2D(r, t) ⊗ χ(xi ), (14)

with ψ2D(r, t) a two-spinor on a two-dimensional spacetime
and with

/∇dΣχ(xi ) = κχ(xi ), (15)

in such a way that κ and χ(xi ) are the eigenvalues and the
eigenfunctions of the Dirac operator on the submanifold with
line element dΣ2

D−2 [27]. From (12) and the previous facts
we obtain that the Dirac equation (10) can be reduced to the
pair of coupled partial differential equations

∂tψ2 − F

G
∂rψ2 =

(
iκ

F

H
− imF

)
ψ1,

∂tψ1 + F

G
∂rψ1 = −

(
iκ

F

H
+ imF

)
ψ2, (16)

where the functions ψ1 and ψ2 are components of a 2D-
dimensional spinor and for the Dirac field we assume that
the mass m is always positive (m > 0). We point out that
the system of equations (16) is valid for D = 3 [29], and the
black brane solution (3) is also valid in D = 3 [4,23,24].
Therefore we include the spacetime dimension D = 3 in our
study.

Based on the test field approximation, in the zero momen-
tum limit we are going to compute the fermionic QNF for
the Lifshitz spacetime (3), therefore we use (16) with κ = 0
which is an allowed eigenvalue because the base manifold
dx2

D−2 is a (D − 2)-dimensional plane [30]. In what follows
we set an harmonic time dependence for the components of
the field, which means

ψi = e−iωt Ri (r), i = 1, 2. (17)

Thus by inserting the previous expression into the system (16)
with κ = 0 and by defining y = rh/r , such that y ∈ (0, 1),

we obtain

∂y R2(y) − iω̂yz−1

(1 − yα)
R2(y) = − im

y(1 − yα)
1
2

R1(y),

∂y R1(y) + iω̂yz−1

(1 − yα)
R1(y) = im

y(1 − yα)
1
2

R2(y), (18)

with ω̂ = ω/r zh . We focus on the solution for R2(y), by
mentioning that similar results are found for R1(y). Hence,
if we take the first derivative of the first equation in (18) with
respect to y and by inserting the second equation of (18) into
it, we obtain a second order differential equation given by

d2R2(y)

dy2 +
(

1

y
− αyα−1

2(1 − yα)

)
dR2(y)

dy
(19)

+
(

ω̂2y2z−2

(1 − yα)2 − m2

y2(1 − yα)
− iω̂yz−1

(1 − yα)

(
z

y
+ αyα−1

2(1 − yα)

))

R2(y) = 0.

To find QNM solutions we are going to define them based
on Refs. [5,6], that is, the solution R2(y) of Eq. (19) is a
QNM, if satisfies the boundary conditions:

• Near the horizon it must behave as an ingoing wave.
• It goes to zero as r → ∞ (Dirichlet boundary condition).

To fulfill the requirement near the horizon, that is in the neigh-
borhood y = 1, we have to look at the solution of (19) near
it, thus we analyze

d2R2(y)

dy2 − 1

2(1 − y)

dR2(y)

dy

+
(

ω̂2

α2(1 − y)2 − iω̂

2α(1 − y)2

)
R2(y) = 0, (20)

with solutions

R2(y) ∼ A1(1 − y)−
i ω̂
α + B1(1 − y)

1
2 + i ω̂

α , (21)

where A1, B1 are constants.1 From (5) we find that

dr∗
dy

= − yz−1

r zh(1 − yα)
, (22)

such that near the horizon we obtain

e−iωr∗ ∼ (1 − y)−
i ω̂
α , (23)

therefore, to have ingoing waves, we have to choose the solu-
tion corresponding to (1 − y)−iω̂/α , because otherwise we
have an outgoing wave solution.

Near infinity, which means y → 0, Eq. (19) simplifies to

d2R2(y)

dy2 + 1

y

dR2(y)

dy
− m2

y2 R2(y) = 0, (24)

1 Hereinafter Ai and Bi are considered as constants.
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and the solutions at this limit are given by

R2(y) ∼ A2y
m + B2y

−m . (25)

Recalling that in Ref. [6] only for m ≥ z we found exactly
a well defined QNF spectrum, since for 0 < m < z the
Dirichlet boundary condition was not sufficient to determine
a discrete set of QNF. We see that decoupling the system (16)
with κ = 0 in a different way from the one presented in Ref.
[6], we are able to set the Dirichlet boundary condition for all
the positive values of the mass m by choosing the ym term.
It is straightforward to find the exact solutions presented for
the first time in Ref. [6] by using (19). The exactly solvable
example corresponds to z = D − 2 or α = 2z, hence by
inserting the following ansatz

R2(v) = v−i ω̂
2z (1 − v)

m
z f (v), (26)

into Eq. (19), we find out that f (v) is solution of the hyper-
geometric differential equation [31]

d2 f

dv2 +
(
c

v
+ c − a − b − 1

1 − v

)
d f

dv
− ab

v(1 − v)
f = 0, (27)

with

a = m

z
, b = − iω̂

z
+ m

z
+ 1

2
, c = − iω̂

z
+ 1

2

and v = 1 − yz

1 + yz
. (28)

If we suppose that c is not an integer, the solution of (27)
is [31]

f (v) = A3 F(a, b; c; v)

+B3 v1−c F(a − c + 1, b − c + 1; 2 − c; v), (29)

where F(a, b; c; v) is the hypergeometric function and
because

lim
v→0

F(a, b; c; v) = 1, (30)

we find that near the horizon

R2(v) ∼ A3 v−i ω̂
2z + B3v

1
2 +i ω̂

2z ∼ Ã3(1 − y)−
i ω̂
α

+B̃3(1 − y)
1
2 + i ω̂

α . (31)

From (23) to have an ingoing wave at the horizon we must
set B3 = 0, thus (26) is written as

R2(v) = A3v
−i ω̂

2z (1 − v)
m
z F(a, b; c; v). (32)

For c − a − b different from an integer, owing to the
Kummer properties for the hypergeometric solution, as r →
∞ (v → 1), the solution R2 at this limit behaves as [31]

R2(v) ∼ Γ (c) Γ (c − a − b)

Γ (c − a) Γ (c − b)
(1 − v)

m
z

+ Γ (c) Γ (a + b − c)

Γ (a) Γ (b)
(1 − v)−

m
z , (33)

therefore we require that the second term of (33) goes to
zero, because we need that R2(v) → 0 at the asymptotic
region. This can be done if a = −n1 or b = −n2 with
ni = 0, 1, 2, . . ., and if we look at the expressions (28) we
can conclude that in order to have QNM solutions for all the
positive values of the mass it is necessary that

ω = −i zr zh

(
n + m

z
+ 1

2

)
. (34)

The last expression is the QNF set found in Ref. [6] with
the difference that all the positive values of the mass are
allowed. We have to mention that the condition a = −n1

gives a condition over the mass which is not physical, and
even though we have supposed that neither of the parameters
c nor c−a−b can be integers, when we consider that they are
integers, the same results are obtained, we just have to use the
corresponding solutions of the hypergeometric differential
equation (27) [31].

For the previous reasons we believe that in order to study
the cases z 
= D − 2 we first use the approach of this paper
instead of the one used in Ref. [6]. Thus, as we already know
the appropriate behavior of R2(y) at the boundaries we insert
into (19) the following ansatz

R2(y) = ym exp (−iωr∗) R̃2(y)

= ym exp

(
iω̂

∫
yz−1dy

(1 − yα)

)
R̃2(y), (35)

and it is obtained that R̃2(y) must be a solution of

d2 R̃2(y)

dy2 +
(

2m + 1

y
− αyα−1

2(1 − yα)
+ 2iω̂yz−1

1 − yα

)
d R̃2(y)

dy

+
(

2iω̂myz−2

1 − yα
− m (α + 2m) yα−2

2(1 − yα)

)
R̃2(y) = 0. (36)

Although we have not yet found the analytical solutions
of (36) for z 
= D − 2, if we suppose z >> D − 2 or equiv-
alently α ∼ z, Eq. (36) transforms into

d2 R̃2(x)

dx2 +
⎛
⎝

(
2m
z + 1

)

x
+

(
2iω̂
z − 1

2

)

(1 − x)

⎞
⎠ d R̃2(x)

dx

+
m

(
2iω̂
z − 1

2 − m
z

)

zx(1 − x)
R̃2(x) = 0, (37)

with x = yz . Once again, the differential equation (37) is of
hypergeometric type (27) with parameters

a = m

z
, b = −2iω̂

z
+ 1

2
+ m

z
, c = 2m

z
+ 1, (38)
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thus if we proceed in a similar way as for α = 2z, to fulfill
the QNM requirements at the boundaries it is necessary that

ω = −i
z

2
r zh

(
n + 1

2
+ m

z

)
, n = 0, 1, 2, 3, . . . . (39)

When we compare (34) with (39) we see that both sets of QNF
have a similar analytical form. In Sect. 5 we show that for z >

D−2 the behavior of our numerically calculated Dirac QNF
is well approximated by a similar expression. Since, as we
mentioned before, we have not been able to treat analytically
the problem of z 
= D − 2, we implement the numerical
method known as the Improved Asymptotic Iteration Method
[21–23] as in Ref. [5] for the scalar perturbations.

4 The improved asymptotic iteration method

The Asymptotic Iteration Method is developed in Ref. [21],
improved in [22,23] and has been used to compute the QNF
for several gravitational systems [5,17,20]. The method is
based on taking derivatives iteratively of the second order
differential equation [21,22]

Y ′′(x) = λ0(x)Y
′(x) + s0(x)Y (x). (40)

By taking the n-th derivative of (40) we can always keep
the form of the original differential equation if we define the
functions

λn(x) = λ′
n−1(x) + sn−1(x) + λ0(x)λn−1(x), (41)

sn(x) = s′
n−1(x) + s0(x)λn−1(x),

such that for n = 1, 2, . . .,

Y (n+2)(x) = λn(x)Y
′(x) + sn(x)Y (x), (42)

where the notation Y (n+2)(x) refers to (n + 2)-derivative of
Y (x). The main point of the method is that we can build the
general solution of (40) if we suppose that for a certain n the
quantization condition

sn(x)

λn(x)
= sn−1(x)

λn−1(x)
= β(x), (43)

is fulfilled [21]. To obtain the QNF by using the method
described above, we have to rewrite (43) as

sn(x)λn−1(x) − λn(x)sn−1(x) = 0 (44)

and search its roots once we evaluate it in an appropriate
value of x . Also, in Ref. [21] it is shown that the condition
(43) is sufficient to find the solution of Eq. (40).

Previous work shows that the main problem of the AIM
[21,22], is that the computation of the derivatives of λi (x)
and si (x) for each iteration could be a hard work issue, that is
why in Ref. [23] an optimization is proposed and in that paper
the Improved Asymptotic Iteration Method is developed. In

this method, the functions λn(x) and sn(x) are expanded in
a Taylor series, around an appropriate point x0, that is,

λn(x) =
∞∑
i=0

cin(x − x0)
i , sn(x) =

∞∑
i=0

din(x − x0)
i , (45)

thus, Eq. (41) now become

cin = (i + 1)ci+1
n−1 + din−1 +

i∑
k=0

ck0c
i−k
n−1,

din = (i + 1)di+1
n−1 +

i∑
k=0

dk0c
i−k
n−1, (46)

and the quantization condition (44) is translated into

d0
n c

0
n−1 − d0

n−1c
0
n = 0. (47)

As we mentioned previously, to obtain the QNF with the
method described in the last paragraphs we use Eq. (47),
by taking into account that the boundary conditions have to
be set before in order to obtain an equation in the form of
(40). This fact means that the functions, λ0(x) and s0(x) have
already the information of the boundary conditions and there-
fore the condition (47) is a polynomial in ω, whose zeros
are in principle the QNF. We point out that the method is
implemented by solving the condition (47) for a previously
selected value of n. Because we are solving the condition
in an approximate way, unphysical QNF could appear. To
choose the appropriate frequencies, we use physical argu-
ments (see Appendix A, for example) and we have to pick
the ones that repeat as n increases.

By recalling that (36) has already the information of the
boundary conditions for the QNM, we can implement IAIM
for the cases z 
= D − 2, if we identify

λ0(y) = −
(

2m + 1

y
− αyα−1

2(1 − yα)
+ 2iω̂yz−1

1 − yα

)
,

s0(y) = −
(

2iω̂myz−2

1 − yα
− m (α + 2m) yα−2

2(1 − yα)

)
. (48)

In the zero momentum limit, notice that in Appendix A we
show that for the Dirac field moving in the black brane (3) the
imaginary parts of their QNF satisfy Im(ω) < 0 and that is
why we can actually implement the numerical method since
the system is classically stable.

5 Numerical results

In Ref. [5] the QNF of the scalar perturbations moving in
the Lifshitz black brane (3) are studied. In that paper exact
QNF are calculated for D = z + 2 and by implementing
the IAIM, the KG QNF were obtained numerically for the
cases D 
= z + 2. In this paper we study again the KG QNF
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Fig. 1 First two Dirac QNF with D = 3, m = 1 and different values
of z

Fig. 2 First two Dirac QNF with D = 4, m = 1 and different values
of z

in the spacetime (3) to compare the numerical results for
z > D − 2 with an analytical expression that we propose.
Also we compare them with the Dirac QNF that are computed
by implementing the same numerical method. For the Dirac
field we also give an analytical approximation for the QNF
that are obtained numerically. We begin by calculating the
QNF of the Dirac field.

5.1 Dirac QNF in a Lifshitz black brane

In Ref. [6], for D = z + 2, exact Dirac QNF are calculated
by imposing the Dirichlet boundary condition at the asymp-
totic region and in Sect. 3 we extend the previous results to
all the positive values of the mass. Based on it, we implement
the IAIM to compute the QNF for the non-exactly solvable
cases which correspond to D 
= z + 2. In order to use the
IAIM, we take as a basis Eq. (36) for R̃2 which has already
the information of the boundary conditions and by empha-
sizing that similar numerical results are obtained for the R̃1

function.

Fig. 3 First two Dirac QNF with D = 5, m = 1 and different values
of z

In what follows we show some examples of the numerical
data obtained by using the expressions for λ0 and s0 given in
(48), by mentioning that due to the dependence of the QNF
on rh we find useful to plot ω̂ in the examples shown. In all
the figures of this work the numerical data are represented
by colored dots and the data computed from the analytical
approximations or exact expressions are represented by black
circles, in such a way that the superposition of circles and
colored dots shows the agreement between the analytical and
numerical data. The dashed lines show where the exactly
solvable examples of Refs. [5,6] are placed.

We notice that for z ≥ D − 2 the numerical results (and
the analytical results (34) and (39)) point out that the QNF of
the Dirac field are purely imaginary. Considering the numer-
ically calculated QNF and due to the form of the analytical
expressions (34) and (39), we found out that our numerical
results for the QNF of the Dirac field for z ≥ D − 2 are well
approximated by the following formula

ω = −i
α

2
r zh

(
n + 1

2
+ m

z

)
, n = 0, 1, 2, 3, . . . . (49)

At present time we do not have an analytical deduction of
this expression. However, we notice that in the appropriate
limits, it reproduces the exactly solvable cases as well. For
example, once we replace α = 2z into (49), we obtain the
formula (34) and if we consider the limit α ∼ z it yields the
expression (39). Thus, (49) is a good approximation to our
numerical Dirac QNF, but we have to point out that it is only
based on the numerical output that we obtained and we do
not know if it reproduces the whole spectrum of QNF for the
Dirac field.

For several values of the spacetime dimension for the black
brane (3), in Figs. 1, 2, 3, 4 and 5 we illustrate the behavior of
the Dirac QNF when we change the critical exponent z while
we keep fixed m. For the cases z ≥ D − 2, we observe that
|Im(ω̂)| increases as z increases. In more detail, we see that
when z starts to grow the behavior is approximately linear
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Fig. 4 First two Dirac QNF with D = 6, m = 1 and different values
of z

Fig. 5 First two Dirac QNF with D = 7, m = 1 and different values
of z

and for z large the QNF are well described by (49). The
reason of this could be explained by terms similar to m/z of
the proposed expression (49), whose contribution decreases
as z increases. Furthermore, when z ≥ D − 2, in Figs. 1, 2,
3, 4 and 5 we observe that, for all the studied values of the
spacetime dimension, the imaginary parts of the Dirac QNF
behave in a similar form when z varies.

Nevertheless the behavior is not linear for values of z that
are close to D−2, while for the cases z < D−2, as z moves
away from the line z = D − 2, the QNF are not longer
described by (49) since, in general, the QNF are not purely
imaginary as it can be verified in Tables 1 and 2 where explicit
numerical data are shown.2 The same situation happens for

2 In all the tables the headline AN refers to the values of the QNF
computed from the analytical approximations or exact expressions. The
headline IAIM refers to the numerical QNF obtained by implementing
the IAIM. We notice that in Tables 1 and 2 the real parts of the analytical
values are not shown because the proposed expression (49) produces
purely imaginary frequencies. Also, we define the quantity ω̂0 as the
frequency of the fundamental mode normalized by r zh . This quantity is
useful in what follows.

the KG QNF, as it was described in Ref. [5]. Notice that in
Sect. 5.2 we study the QNF of the KG field again [5].

In Figs. 6, 7 and 8 and Table 3, we show particular exam-
ples with D and z fixed, but satisfying z ≥ D − 2, to illustrate
how the QNF change when we vary the mass of the field. We
note that for the first three modes their dependence on the
mass is similar in all the cases shown. Furthermore, in Figs.
6, 7 and 8 we see that the mass of the field changes slightly
the values of the Dirac QNF, at least for n = 0, 1, 2.

It is relevant to mention that in this Section we have
presented representative examples, but we have calculated
numerical data for other values of the parameters, and as far
as we know, the results can be extended for more values of the
parameters by noticing that problems of convergence of the
method appear when they take higher values. We conclude
that the formula (49) is a good approximation for the behav-
ior of the QNF obtained numerically in the cases z ≥ D − 2,
however for z < D − 2 the expression (49) does not work
and we are far from proposing an analytical expression that
approximates the values of these QNF.

5.2 KG QNF in a Lifshitz black brane

In this section we expound some numerical data for the QNF
of the KG field to extend some of the previous results in Ref.
[5]. First we present an analytical formula for its QNF in the
limit α ∼ z that is not previously known, and in a similar way
to the Dirac field, we propose an analytical approximation
for the obtained numerical QNF in the non-exactly solvable
cases (see the expression (63)).

The equation of motion for a massive scalar field is
(
� + m2

)
φ = 0, (50)

with m denoting the mass of the field, � = ∇μ∇μ is the
d’Alembert operator and ∇μ the covariant derivative. Taking
into account the results of Ref. [5] and by considering that
we are in the zero momentum limit, if we insert the following
ansatz

φ = r− D−2
2 φ̃(r)e−iωt (51)

into (50) with the help of the tortoise coordinate (5), for the
radial function of the scalar field moving in (3) we obtain a
Schrödinger-like equation

d2φ̃(r∗)
dr2∗

+
[
ω2 − V(r)

]
φ̃(r∗) = 0, (52)

with

V(r) = F2(r)
(
m2 + θ + σ 2

(rh
r

)α)
,

θ = (D − 2)(D + 2z − 2)

4
, σ = (D − 2)

2
.

(53)
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Table 1 For D = 3, 4, 5 we show the Dirac QNF for the fundamental mode with m = 1 and different values of z

z D = 3 D = 4 D = 5

AN IAIM AN IAIM AN IAIM

|Im(ω̂0)| |Re(ω̂0)| |Im(ω̂0)| |Im(ω̂0)| |Re(ω̂0)| |Im(ω̂0)| |Im(ω̂0)| |Re(ω̂0)| |Im(ω̂0)|
1 1.500 0 1.500 2.250 1.026 2.534 3.000 1.879 2.363

2 1.500 0 1.464 2.000 0 2.000 2.500 0 2.716

3 1.667 0 1.639 2.083 0 2.051 2.500 0 2.500

4 1.875 0 1.853 2.250 0 2.218 2.625 0 2.598

5 2.100 0 2.082 2.450 0 2.421 2.800 0 2.769

6 2.333 0 2.319 2.667 0 2.641 3.000 0 2.970

7 2.571 0 2.559 2.893 0 2.870 3.214 0 3.186

8 2.813 0 2.801 3.125 0 3.105 3.438 0 3.411

9 3.056 0 3.046 3.361 0 3.343 3.667 0 3.642

10 3.300 0 3.291 3.600 0 3.583 3.900 0 3.877

Table 2 For D = 6, 7 we show
the Dirac QNF for the
fundamental mode with m = 1
and different values of z

D = 6 D = 7

AN IAIM AN IAIM

z |Im(ω̂0)| |Re(ω̂0)| |Im(ω̂0)| |Im(ω̂0)| |Re(ω̂0)| |Im(ω̂0)|
1 3.750 2.333 2.127 4.500 2.606 1.927

2 3.000 0.779 3.996 3.500 1.758 4.042

3 2.917 0 3.008 3.333 0 3.622

4 3.000 0 3.000 3.375 0 3.430

5 3.150 0 3.128 3.500 0 3.500

6 3.333 0 3.305 3.667 0 3.648

7 3.536 0 3.506 3.857 0 3.831

8 3.750 0 3.721 4.062 0 4.034

9 3.972 0 3.944 4.278 0 4.249

10 4.200 0 4.173 4.500 0 4.471

We proceed in a different way from Ref. [5] to achieve
higher values of the physical parameters, by recalling that the
objective of this section is to compute the QNF for the scalar
field in the Lifshitz black brane (3) to extend the previous
published results. Thus we are going to consider the boundary
conditions imposed in Ref. [5] which are the same that we
have used while studying the fermionic perturbations.

Equation (52) transforms into

d2φ̃(y)

dy2 +
(

1 − z

y
− αyα−1

(1 − yα)

)
dφ̃(y)

dy

+
(

ω̂2y2z−2

(1 − yα)2 − m2 + θ

y2(1 − yα)
− σ 2yα−2

(1 − yα)

)
φ̃(y) = 0,

(54)

where we have used once again the variable y = rh/r . By
analyzing the solutions of Eq. (54) at the boundaries, we
propose the following ansatz

φ̃(y) = y
z−α

2 +Δ exp(−iωr∗) f̃ (y)

Fig. 6 First three Dirac QNF with D = 4, z = 10 and different values
of m

= y
z−α

2 +Δ exp

(
iω̂

∫
yz−1dy

(1 − yα)

)
f̃ (y), (55)
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Fig. 7 First three Dirac QNF with D = 6, z = 8 and different values
of m

Fig. 8 First three Dirac QNF with D = 7, z = 6 and different values
of m

and by inserting (55) into (54) we get that the function f̃ is
a solution to

d2 f̃ (y)

dy2 +
(

(1 − α + 2Δ)

y
− αyα−1

(1 − yα)
+ 2iω̂yz−1

(1 − yα)

)
d f̃ (y)

dy

+
(
iω̂ (z − α + 2Δ) yz−2

(1 − yα)
− Δ2yα−2

(1 − yα)

)
f̃ (y) = 0.

(56)

The parameter Δ is given by

Δ = α

2
+

√(α

2

)2 + m2, (57)

and is the scaling dimension of the operator OΔ dual to
φ, as it is explained in [5] and through the Breitenlohner-
Freedman bound (BF bound), there exist a constrain on the
scaling dimension given by [32,33]

0 <
α

2
< Δ. (58)

As for the fermionic perturbations, we can consider the
limit case α ∼ z for the scalar field. In this limit, with the help
of the variable x = yz , as previously, Eq. (56) transforms into

Table 3 First three Dirac QNF with m = 2

D = 4 z = 10 D = 6 z = 8 D = 7 z = 6
AN IAIM AN IAIM AN IAIM

n |Im(ω̂)| |Im(ω̂)| |Im(ω̂)| |Im(ω̂)| |Im(ω̂)| |Im(ω̂)|
0 4.200 4.165 4.500 4.436 4.583 4.540

1 10.200 10.192 10.500 10.502 10.083 10.102

2 16.200 16.196 16.500 16.499 15.583 15.577

Fig. 9 First two KG QNF with D = 3, Δ = 7 and different values of
z

Fig. 10 First two KG QNF with D = 4, Δ = 7 and different values
of z

an hypergeometric differential equation (27) with parameters

a = Δ

z
, b = −2iω̂

z
+ Δ

z
and c = 2Δ

z
. (59)

Thus, following a similar procedure to that described in Ref.
[5], to satisfy the boundary requirements for the QNM, in the
limit α ∼ z the KG QNF must be equal to

ω = −i
zr zh
2

(
n + Δ

z

)
, n = 0, 1, 2, . . . . (60)

Therefore we expect that as α ∼ z the QNF of the KG behave
as (60). This analytical result is not given in Ref. [5]. The
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Fig. 11 First two KG QNF with D = 5, Δ = 7 and different values
of z

exactly solvable case (z = D − 2) was already analyzed in
Ref. [5] and it was found that the QNF are

ω = −i zr zh

(
2n + Δ

z

)
, n = 0, 1, 2, . . . (61)

Owing to the previous results, it is interesting to inspect
higher values for the parameters z and D, since we want to
compare them with the Dirac QNF of the previous section.
Furthermore, these values extend the results of Ref. [5] where
they only reached z = 6, so that in this section we will go
further. As it can be verified with (22) and (23) and with the
first term of (55) where it is assured that the field goes to zero
at the asymptotic region, Eq. (56) has already the information
of the boundary conditions. Thus, taking as a basis Eq. (56),
we are going to compute the KG QNF with the help of the
IAIM as in Ref. [5].

From the expression (56) for the Klein–Gordon field we
identify

λ0(y) = −
(

(1 − α + 2Δ)

y
− αyα−1

(1 − yα)
+ 2iω̂yz−1

(1 − yα)

)
,

s0(y) = −
(
iω̂ (z − α + 2Δ) yz−2

(1 − yα)
− Δ2yα−2

(1 − yα)

)
. (62)

By implementing the IAIM, taking as a basis expressions
(62), we reproduce Table 2 of Ref. [5] and in Table 7 we show
the numerical results where we found a minimal difference.
Furthermore it is found that the obtained numerical QNF for
the scalar field moving in the black brane (3) for z > D − 2
tend to behave as

ω = −i
αr zh
2

(
n + Δ

2z
+ Δ

2α

)
, n = 0, 1, 2, 3 . . . . (63)

Owing to the BF bound (58), we choose representative
examples and in Figs. 9, 10 and 11 it is shown the behavior
of the QNF to compare them with Eqs. (60), (61), or (63) as
appropriate. To compare in more detail the numerical results

Table 4 KG QNF for the fundamental mode with D = 3 and different
values of Δ and z

Δ = 6 Δ = 7 Δ = 8
|Im(ω̂0)| |Im(ω̂0)| |Im(ω̂0)|

z IAIM AN IAIM AN IAIM AN

1 6.000 6.000 7.000 7.000 8.000 8.000

2 3.968 3.750 4.652 4.375 5.336 5.000

3 3.588 3.500 4.204 4.083 4.822 4.667

4 3.412 3.375 3.997 3.938 4.583 4.500

5 3.311 3.300 3.878 3.850 4.445 4.400

6 3.246 3.250 3.801 3.792 4.356 4.333

7 3.201 3.214 3.747 3.750 4.293 4.286

8 3.168 3.188 3.707 3.719 4.247 4.250

9 3.143 3.167 3.677 3.694 4.211 4.222

10 3.123 3.150 3.653 3.675 4.184 4.200

Table 5 KG QNF for the fundamental mode with D = 4 and different
values of Δ and z. The empty rows point out that the BF bound is
violated

Δ = 6 Δ = 7 Δ = 8
|Im(ω̂0)| |Im(ω̂0)| |Im(ω̂0)|

z IAIM AN IAIM AN IAIM AN

2 6.000 6.000 7.000 7.000 8.000 8.000

3 4.277 4.000 5.029 4.667 5.782 5.333

4 3.854 3.750 4.531 4.375 5.209 5.000

5 3.632 3.600 4.268 4.200 4.906 4.800

6 3.495 3.500 4.105 4.083 4.716 4.667

7 3.402 3.429 3.993 4.000 4.587 4.571

8 3.334 3.375 3.912 3.938 4.492 4.500

9 3.284 3.333 3.851 3.889 4.421 4.444

10 3.804 3.850 4.365 4.400

with the produced values by the proposed expression (63) in
Tables 4, 5 and 6 we show explicitly some of the results for
the QNF that are used to plot the Figs. 9, 10 and 11.

In Figs. 9, 10 and 11 we can see that for the KG field
the |Imω̂0| goes to a constant value as z increases, this is
consistent with the proposed expression (63) since by taking
z >> D− 2 (α ∼ z), it is found that |Imω̂0| ∼ Δ/2. For the
Dirac field, as z increases, in Figs. 1, 2, 3, 4 and 5 we visualize
that the |Imω̂0| increases instead of decreasing to a constant
value which is also congruent with the formula (49) proposed
for the numerical QNF of the Dirac field. For the overtones
of both fields, as z increases, our numerical results show that
|Imω̂| increases. Based on the proposed expressions (49) y
(63) we think that the linear dependence on the mode number
n contributes to this behavior. Surprisingly, for both fields
the line z = D − 2 represents a breaking point, since for
z < D − 2 the QNF are not purely imaginary [5]. Even
though we are far from understanding the reason of it, we
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Table 6 KG QNF for the fundamental mode with D = 5 and different
values of Δ and z. The empty rows point out that the BF bound is
violated

Δ = 6 Δ = 7 Δ = 8
|Im(ω̂0)| |Im(ω̂0)| |Im(ω̂0)|

z IAIM AN IAIM AN IAIM AN

3 6.000 6.000 7.000 7.000 8.000 8.000

4 4.420 4.125 5.207 4.813 5.997 5.500

5 3.999 3.900 4.713 4.550 5.428 5.200

6 3.765 3.750 4.434 4.375 5.106 5.000

7 3.613 3.643 4.253 4.250 4.895 4.857

8 3.506 3.563 4.125 4.156 4.746 4.750

9 4.030 4.083 4.635 4.667

10 3.956 4.025 4.549 4.600

believe that we have to study in detail the case z < D − 2 in
a future work.

We observe in Figs. 9, 10 and 11 that for the numeri-
cal data of the KG QNF, the formula (63) does not give an
approximation as precise as the proposed formula (49) for
the numerical QNF of the Dirac field.

6 Discussion

In the zero momentum limit we study the QNF of the massive
Dirac and KG perturbations in the Lifshitz black brane (3).
We extend the results presented in Ref. [6], since in Sect. 3
for z = D − 2, by imposing the Dirichlet boundary condi-
tion at the asymptotic region and by considering that we are
on the test field approximation, we are able to find the exact
QNF of the Dirac field for all the positive values of the mass,
in contrast to Ref. [6] in which a restriction on the value of
the mass was imposed. Based on it, we numerically calcu-
late the fermionic QNF in the Lifshitz black brane (3) for the
non-exactly solvable cases z 
= D − 2. Owing to the exactly
solvable example and the limit case α ∼ z, where analyt-
ical QNF were computed, in Sect. 5 we were able to give
the approximate analytical expression (49) for our numerical
QNF with z > D− 2. For the cases z < D− 2 we found out
that, in general, the QNF are not purely imaginary, and the
proposed formula (49) does not work. It will be interesting
to analyze in detail the last case in a future work so that an
explanation can be found.

Additionally to the results for the Dirac field, we study the
QNF of the scalar perturbations in the spacetime (3) which
are calculated for the first time in Ref. [5] (but see Table 7).
Once again based on the case α ∼ z and the exactly solvable
example of Ref. [5], for which analytical expressions for the
KG QNF exist, we conclude that, for fixed D, the numerical
QNF of the KG field, starting from a particular value of z,

tend to behave as predicts the proposed expression (63) when
z > D − 2. Even though the analytical expressions (49) and
(63) approximate very well the numerical results, notice that
we do not have an analytical proof of these formulas.

Taking into account the Hawking temperature (7) and by
considering examples where (49) and (63) approximate the
numerical results, it is obtained that the numerical results
of the QNF for the Dirac and KG fields respectively can be
approximated by the expressions

ω = −2iπT

(
n + 1

2
+ m

z

)
,

ω = −2iπT

(
n + Δ

2z
+ Δ

2α

)
. (64)

Curiously, for both fields and for fixed D, z, m, the previous
formulas predict that the spacing between consecutive QNF
is given by

ωn+1 − ωn = −2iπT . (65)

From the numerical results and the proposed approximations
(49) and (63), we can state that the fermionic QNF depend
on the physical parameters in a different way that the QNF
of the scalar field, as it was already commented in Ref. [6].

In Sect. 5.1 for z ≥ D − 2 we also find that when z
varies the Dirac QNF behave in a similar way for the different
dimensions of the spacetime that we have studied. Moreover
we see that for the analyzed dimensions of the spacetime the
QNF of the Dirac field change with the mass in a similar way.
As far as we know these facts for the Dirac QNF in the black
brane (3) are not previously described.

We can compute that the decay time from [1–3]

τ = 1

|Im(ω0)| , (66)

where ω0 is the fundamental QNF, as previously. By assum-
ing that (64) and (65) are valid (at least for the values of the
physical parameters studied in this work) for the Dirac and
Klein–Gordon fields we obtain that their decay times are well
approximated by

τd = z

πT (z + 2m)
, τkg = zα

πTΔ(z + α)
. (67)

In the limit z → ∞, for both fields the previous expressions
predict that the decay times have the following behavior

τ ∼ 1

zr zh
= 1

z exp (z ln(rh))
, (68)

which is similar to the exactly solvable examples [5,6].
Therefore, in this limit and for both fields, we expect that
if rh ≥ 1 then τ → 0, whereas if rh < 1 then τ → ∞.

From the results of Ref. [5] and our numerical results, we
see that the fundamental frequencies of the Dirac and KG
field behave in a different way as z increases. For the scalar

123



739 Page 12 of 14 Eur. Phys. J. C (2020) 80 :739

Table 7 We show the numerical
results which are slightly
different from the ones obtained
in Ref. [5]. In this Table
τ = 1/|Im(ω0)| denotes the
relaxation time of the KG field

Δ = 3 Δ = 11/2

D = 5 z = 8/3 D = 4 z = 7/3 D = 5 z = 7/3 D = 5 z = 6
Re(ω0)
4πT 4πT τ

Re(ω0)
4πT 4πT τ

Re(ω0)
4πT 4πT τ

Re(ω0)
4πT 4πT τ

0.13 1.95 0 0.97 0.32 0.96 0 2.62

field |Im(ω̂0)| decreases, whereas for the Dirac field |Im(ω̂0)|
increases.

As shown in Appendix A, for the massive Dirac field prop-
agating in the black brane (3) and in the zero momentum
limit, the imaginary part of its QNF is negative. Owing to
the time dependence exp(−iωt) we assure that its QNM are
classically stable, since the field decays in time [5,6].3

As far as we are aware the perturbations in the black brane
(3) for κ 
= 0 have not been studied except the case z = 1
and D = 3 where analytical solutions are found [8]. The
extension is natural and could be considered in the future.
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Appendix A Classical stability

In this appendix to obtain decoupled radial equations we fol-
low the method of Ref. [6] where fermionic perturbations in
the Lifshitz black brane (3) were studied for the first time.
The aim of this is to show that the QNM for the massive
Dirac field in the zero momentum limit are classically stable.
In order to do that, as in Ref. [6], we transform (16) with
κ = 0 into two Schrödinger-like differential equations.

3 See Appendix A for a detailed analytical proof of this fact for the
Dirac field in the zero momentum limit.

Thus, by setting κ = 0 and by using r∗ the system (16) in
the metric (8) can be written as [6,34]

∂tψ2 − ∂r∗ψ2 = iWψ1, ∂tψ1 + ∂r∗ψ1 = iWψ2, (A.1)

with W = −mF(r∗). If we define

Z± = iψ2 ± ψ1, (A.2)

the system (A.1) turns into [6]

∂r∗ Z+ − ∂t Z− = WZ+, ∂r∗ Z− − ∂t Z+ = −WZ−,

(A.3)

and if we once again set an harmonic time dependence for
the Z± functions, that is

Z± = e−iω±tΩ±(r∗), (A.4)

from (A.3) it is found two Schrödinger-like differential equa-
tions given by

d2Ω±
dr2∗

+ ω2±Ω± = V̂±Ω±, (A.5)

with

V̂± = W 2 ± dW

dr∗
. (A.6)

By using r instead of r∗, in the black brane (3), Eq. (A.5)
become

d2Ω±
dr2 + G

F

(
d

dr

F

G

)
dΩ±
dr

+G2

F2

(
ω2± − V̂±(r)

)
Ω± = 0, (A.7)

where

V̂±(r) = F(r)2

(
m2 ∓ m

rG(r)

(
z + α

(
1 − V (r)2

)

2V (r)2

))
.

(A.8)

Near the horizon, which means taking the limit r → rh , Eq.
(A.7) behave as

d2Ω±
dr2∗

+ ω2±Ω± = 0, (A.9)

whose solutions are

Ω± ∼ A±e−iω±r∗ + B±eiω±r∗ . (A.10)
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Therefore to satisfy the condition near the horizon we must
set B± = 0. For this reason we propose the following ansatz

Ω± = e−iω±r∗φ±(r) = exp

(
−iω±

∫
G

F
dr

)
φ±(r),

(A.11)

and by inserting it into (A.7) we obtain that the functions φ±
satisfy

d

dr

((
F

G

)
dφ±
dr

)
− 2iω±

dφ±
dr

− G

F
V̂±φ± = 0. (A.12)

If we multiply (A.12) by the complex conjugate of φ±,
denoted by φ±, and integrating the resulting equations from
rh to ∞ we find
∫ ∞

rh
φ±

[
d

dr

((
F

G

)
dφ±
dr

)
− 2iω±

dφ±
dr

− G

F
V̂±φ±

]
dr = 0.

(A.13)

The S-deformation method allows us to prove whether the
perturbations satisfying a set of boundary conditions are sta-
ble, thus for (A.13) it is clever to define the following oper-
ators [26,34]

D± = d

dr∗
± mF(r∗), (A.14)

where we have chosen the S± functions as S± = ±mF [34].
By using the operators defined in (A.14), it is straightforward
to show that (A.13) transforms into [26,34]
∫ 0

−∞
|D±φ±|2dr∗ = j±|0−∞−2iω±

∫ 0

−∞

(
φ±

dφ±
dr∗

)
dr∗, (A.15)

where

j± = ±mF(r∗)|φ±|2 + φ±
dφ±
dr∗

= ±mF(r)|φ±|2 + φ±
(
F

G

)
dφ±
dr

. (A.16)

The symbol |φ|2 refers to the product of the quantity φ by
its complex conjugate and the boundary terms j±|0−∞ appear
because we have used integration by parts.

We want to evaluate j± at the boundaries, thus we have
to know the behavior of φ± near infinity. In this limit, by
keeping the relevant terms, Eq. (A.12) take the following
form

d2φ±
dr2 +

(
z + 1

r

)
dφ±
dr

−
(
m2 ∓ mz

r2

)
φ± = 0, (A.17)

with solutions

φ−(r) ∼ A2− r−z−m + B2− rm, ∀ m > 0,

φ+(r) ∼ A2+ r−m + B2+ r−z+m, ∀ m 
= z/2, (A.18)

φ+(r) ∼ A2+ r− z
2 + B2+ r− z

2 ln(r), m = z/2,

where A2± and B2± are constants.
The fields φ± must go to zero when we are near infinity,

thus for φ− we impose B2− = 0, while for φ+ the situation is
more complicated since we cannot decide which solution we
have to choose when 0 < m < z. Nevertheless from (A.3),
if we use the expressions (A.4), (A.11) and the r variable, at
the far region we obtain

∂rφ− − m

r
φ− ≈ − iω−

r z+1 φ+. (A.19)

Therefore, if φ− ≈ A2−r−z−m which is the solution that
satisfies the requirement at infinity, from (A.19) it yields that

φ+ ≈ −i

(
z + 2m

ω−

)
A2− r−m ∀m > 0, (A.20)

and if we compare (A.20) with (A.18), we find that it is
necessary to set B2+ = 0. The solution given in (A.20)
always goes to zero at infinity, since we have supposed that
ω+ = ω− 
= 0.

Now that we know the behavior of the fields at the asymp-
totic region and by noticing that F(r → rh) = 0, we obtain
that j±|0−∞= 0, thus the integral (A.15) turns into
∫ 0

−∞
|D±φ±|2dr∗ = −2iω±

∫ 0

−∞

(
φ±

dφ±
dr∗

)
dr∗. (A.21)

We can write the RHS of (A.21) in such a way that [7]
∫ 0

−∞
|D±φ±|2dr∗ = −|ω±|2|φ±(rh)|2

Im(ω±)
. (A.22)

From this expression, since the LHS of (A.22) are positive,
we can conclude that Im(ω±) < 0, because in the RHS of
(A.22) all the terms involving absolute values are also pos-
itive. Therefore, in the zero momentum limit, the massive
Dirac QNM in the background (3) are classically stable.
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