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Abstract We provide a way of decoupling the first law of
thermodynamics in two sectors : the standard first law of
thermodynamics and the quasi first law of thermodynam-
ics. It is showed that both sectors share the same thermo-
dynamics volume and the same entropy. However, the total
thermodynamics pressure, the total temperature and the total
local energy correspond to a simple sum of the thermody-
namics contributions of each sector. On the other hand, turn-
ing on the coupling constant α, the total energy, given by
the Noether charge, increases proportionally to this constant.
Furthermore, it is showed a simple example, where, there is a
phase transition between stable/unstable black hole, and, due
to the application of the decoupling, it is possible to deter-
minate that the cause of this phase transition is the behavior
of the temperature at the quasi sector.

1 Introduction

Finding new solutions of physical interest to the Einstein
field equations is not an easy task due to the highly nonlinear
behavior of its equations. In this regard, in (2017) was pro-
posed the Gravitational Decoupling Method [1], which rep-
resents an easy algorithm to decouple gravitational sources in
General Relativity. This algorithm involves a Minimal Geo-
metric Deformation (MGD) to the metric tensor together
with a decoupling of sources. One interesting extension of
the method was showed in reference [2]. The method was
described in reference [3] as follows: “given two gravita-
tional sources: a source A and an extra source B, standard
Einstein’s equations are first solved for A, and then a simpler
set of quasi-Einstein equations are solved for B. Finally, the
two solutions can be combined in order to derive the com-
plete solution for the total system”. The source A represents
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to the seed sector and the source B represents to the extra
sector. Since its appearance, this method has served to find
several new solution of physical interest, as for example well
behaved solutions that could represent stellar distributions
[3–11], black hole solutions [12–14], f (G) gravity [15], Ein-
stein Klein Gordon System [16], Pure Lovelock gravity [17],
f (R, T ) gravity [18], f (R) gravity [19]. See other applica-
tions [20–42].

On the other hand, the fact that the black holes, due to
quantum fluctuations, emit as black bodies where its temper-
ature is related to its surface gravity [43–46], shows that in
these objects the geometry and thermodynamics are directly
connected. In this regard, the simplest version of the first law
of thermodynamics is (see for example [47]):

d M = T d S + �d J + φd Q, (1)

where M , T , S, J and Q represent the mass, temperature,
entropy, angular momentum and electric charge, respectively.
In Eq. (1) one can notice the absence of the terms of pressure
and volume. In that respect, one way to address this prob-
lem was showed in reference [48], where the cosmological
constant was associated with the thermodynamics pressure
of the system, P = − �

8π
, whereas the thermodynamics vol-

ume corresponds to the thermodynamic variable conjugate
to P . So, the mass parameter is interpreted as the enthalpy.
However, other way to address this problem was showed
in reference [49], identifying the thermodynamics pressure
with the radial pressure of the energy momentum tensor. As
indicates this reference, it is showed an interesting “ analogy
between the gravitational dynamics of the horizons and ther-
modynamics, specifically, it is showed that it is possible to
interpret the field equations near any spherically symmetric
horizon as a thermodynamic identity dU = T d S−PdV ” for
the non rotating and non charged case. In this way, the term
−PdV can represent the macroscopic work done by the sys-
tem. This analogy has been used for example for the study of
the evolution of the regular black holes with a cosmological
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horizon in theories of Lovelock with a unique ground state
[50], the study of regular black hole thermodynamics in Ein-
stein Hilbert theory [51], stationary axis-symmetric space
time and time dependent evolving horizons [49], generic
Lovelock theory [52] . See also [53–55].

In this work, inspired by the gravitational decoupling
method, where the equations of motion are characterized by
the standard Einstein’s equations and the quasi Einstein equa-
tions, we write the equations of motion as a thermodynamics
identity dU = T d S − PdV , which, in analogous way to
the mentioned method, will be characterized by two sectors,
namely, the standard first law and the quasi first law. We
will determine, as consequence of the application of the algo-
rithm, which thermodynamics quantities are shared for both
sectors and which quantities of the total system correspond
to a simple sum of the quantities of each sector. Further-
more, by mean of an example, where the energy density of
the seed sector correspond to the Hayward model [56] and
the energy density of the extra sector correspond to the Dym-
nikova model [57], we will test the thermodynamics behavior
of each sector and the total system.

2 The Einstein field equations for multiple sources

In this section, we will show the Einstein field equations for
multiple sources. The seed energy momentum tensor T̄μν

is coupled to an additional source θμν , whose coupling is
proportional to the constant α and causes anisotropic effects
on the self gravitating system [10]. As indicates reference
[3], this additional source can contain new fields, like scalar,
vector and tensor fields. So, the energy momentum is:

Tμν = T̄μν + αθμν, (2)

where the conservation law is:

∇νT μν = 0. (3)

Taken account an energy momentum tensor of the form
T μ

ν = diag(−ρ, pr , pθ , pθ , ...) and a seed energy momen-
tum tensor of the form T̄ μ

ν = diag(−ρ̄, p̄r , p̄θ , p̄θ , ...), from
Eq. (2) it is straightforward to note that:

ρ = ρ̄ − αθ0
0 (4)

pr = p̄r + αθ1
1 (5)

pθ = p̄θ + αθ2
2 (6)

The Einstein field equations, in natural units, correspond
to

Gμ
ν = 8πT μ

ν . (7)

We will study the following spherically symmetric space
time:

ds2 = −μ(r)dt2 + μ(r)−1dr2 + r2d�2
2. (8)

It is worth to mention that the form of this metric has the
two following consequences on the energy momentum tensor
through the Einstein field equations :

T t
t = T r

r (9)

T θ
θ = T φ

φ , (10)

which implies that

ρ = −pr (11)

pθ = pφ. (12)

To accomplish the condition (11) it is imposed in arbitrar-
ily way that

ρ̄ = − p̄r ,and (13)

θ0
0 = θ1

1 . (14)

In this way, the (t − t) and (r − r) components of the
Einstein field equations are similar and are given by:

8πρ̄ − 8παθ0
0 = 1 − μ

r2 − μ′

r
, (15)

where ′ denotes derivation respect to the radial coordinate.
On the other hand, the conservation law has the form:

p̄′
r + 2

r
( p̄r − p̄t )

+ α
(
(θ1

1 )′ + 2

r
(θ1

1 − θ2
2 )

)
= 0. (16)

As indicates the reference [1], due that, in the limit α → 0,
the geometry of the line element (8) is associate with the
geometry of the seed perfect fluid, and its respective Bianchi
identities are satisfied, the seed energy momentum tensor is
conserved, i.e. : ∇ν T̄ μν = 0:

p̄′
r + 2

r
( p̄r − p̄t ) = 0, (17)

and, by inserting Eq. (17) into Eq. (16) , it is easily to see
that the extra source is also conserved, i.e. ∇νθ

μν = 0:

(θ1
1 )′ + 2

r
(θ1

1 − θ2
2 ) = 0, (18)

thus, each source is separately conserved.
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3 A brief review of the gravitational decoupling method

As was said in the introduction, the gravitational decoupling
method applies a decoupling of the gravitational sources,
Eq. (2), together with the Minimal Geometric Deformation
(MGD) of the space time (explained below).

We will call seed solution to the solution of the Einstein
field Eq. (7) with α = 0. In our case the seed solution is
written as the following spherically symmetric and static line
element

ds2 = −μ̄(r)dt2 + μ̄(r)−1dr2 + r2d�2
2. (19)

It is easy to check that the equations of motion are given
by the Eq. (15) with α = 0 and μ = μ̄, whereas, the conser-
vation equation is given by the Eq. (17). A complete analysis
of the gravitational decoupling method when de metric com-
ponents gtt �= g−1

rr can be found in references [1,3].
Turning on the parameter α, the effects of the source θμν

appear on the seed solution. These effects are encoded in the
geometric deformation undergone by the seed fluid geometry
in Eq. (19) as follows:

μ(r) → μ̄(r) + αg(r). (20)

This last is known as the Minimal Geometric Deformation.
MGD was initially proposed in references [58,59] for the
study of brane world models [60–62] and was extended to
the study of black hole solutions [63]. Other applications in
references [64–66].

Replacing Eq. (20) into the Eq. (15), under the assump-
tions (11), (12), (13) and (14), the system splits into two sets
of equations:

– The standard Einstein equations for a seed solution (with
α = 0) given by:

8πρ̄ = 1 − μ̄

r2 − μ̄′

r
, (21)

and the respective conservation equation (17).
– The terms of order α give rise to the following quasi-

Einstein equations [1], which include the source θμν :

− 8πθ0
0 = −g

r2 − g′

r
, (22)

and the respective conservation equation (18).

4 Decoupling the first law of thermodynamics

In order to analyse the thermodynamics, we will follow
one scheme analogous to the above mentioned method,
but, unlike the previous case, following the idea of the

references [49,54], we will study the behavior of the
equations of motion at the black hole horizon, and thus,
these equations will be write as two sectors analogous
to the first law of thermodynamics. Will call r = a to
the generic horizon, where μ(a) = 0. The first step,
following reference [49], is, identify the thermodynam-
ics pressure with the radial pressure of the fluid per-
fect,

Ptot = pr = p̄r + αθ1
1

Ptot =Ps + αPq , (23)

where p̄r = Ps and θ0
0 = Pq , and, using the conditions

(13) and (14), evaluating the equations of motion (15) at
r = a:

4πa2 (
Ps + αPq

) = u′

2
a − 1

2
. (24)

Next, also following [49], we consider two horizons whose
values are a and a + da, thus, multiplying Eq. (24) by da:

(Ps + αPq)d

(
4

3
πa3

)
=

(
μ′

4π

)
d

(
4πa2

4

)
− d

(a

2

)
.

(25)

To test the role of the constant α, we will apply the MGD
to the geometry. Turning on α, the effects of the source θμν

appear on the seed solution. These effects are encoded in the
geometric deformation undergone by the seed fluid by the
Eq. (20).

Thus, it is direct to see that the Eq. (15) can be written as:

μ = μ̄ + αg = 1 − 2

r

(
ms(r) + α · mq(r)

)
, (26)

where

ms(r) =
∫

4πr2ρ̄dr, (27)

mq(r) = −
∫

4πr2θ0
0 dr, (28)

and

μ̄(r) =1 − 2

r
ms(r) (29)

g(r) = − 2

r
mq(r). (30)

To ensure an asymptotically flat behavior, must be
imposed that:

lim
r→∞ ms(r) = Ms (31)

lim
r→∞ mq(r) = Mq , (32)
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also

lim
r→∞

d

dr
ms(r) = 0 (33)

lim
r→∞

d

dr
mq(r) = 0, (34)

Thus, replacing (26) at r = a, where μ(a) = 0:

a

2
= ms(a) + α · mq(a). (35)

Thus, inserting Eqs. (20) and (35) into Eq. (25), the system
splits into the following sets of equations:

– The standard firs law of thermodynamics of order α0,
which is analogous to the standard Einstein equations:

Psd

(
4

3
πa3

)
=

(
μ̄′

4π

)
d

(
4πa2

4

)
− d

(
ms(a)

)
. (36)

This equation has the form of the first law of thermody-
namics PdV = T d S−dU , where each term is identified
as:

Thermodynamics Pressure =Ps (37)

Volume =4

3
πa3 (38)

Temperature =Ts = μ̄′

4π
(39)

Entropy =4πa2

4
= Area

4
(40)

Local Energy =Uloc
s = ms(a) (41)

It is worth to mention that our thermodynamics variables
obtained coincide with the previously known in liter-
ature. The thermodynamics volume coincide with the
geometric volume, the temperature is the well known
expression and the entropy follows the area’s law. The
energy ms(a) corresponds to a local definition of energy,
at r = a, given by reference [50]. In the vacuum case,
where ρ̄ = θ

μ
ν = 0, the solution (26) has the form

μ = 1 − 2M/r and the local energy coincide with the
energy of the Schwarzschild black hole, a/2 = M .
These thermodynamics variables Ps ,Ts and Uloc

s repre-
sent the contribution of the standard sector to the total
pressure, total temperature and total local energy of the
black hole. These ones do not represent the pressure, tem-
perature and local energy of an independent black hole.

– The quasi first law of thermodynamics of order α, which
is analogous to the quasi Einstein equations:

Pqd

(
4

3
πa3

)
=

(
g′

4π

)
d

(
4πa2

4

)
− d

(
mq(a)

)
. (42)

This equation also has the form of the first law of thermo-
dynamics, PdV = T d S−dU , and each term is identified
as:

Thermodynamics Pressure =Pq (43)

Volume =4

3
πa3 (44)

Temperature =Tq = g′

4π
(45)

Entropy =4πa2

4
= Area

4
(46)

Local Energy =Uloc
q = mq(a), (47)

where, in a similar way to the previous case, all the
thermodynamics variables coincide with the previously
known in the literature.

Also, these thermodynamics variables Pq ,Tq and Uloc
q rep-

resent the contribution of the quasi sector to the total pres-
sure, total temperature and total local energy of the black
hole. These ones do not represent the pressure, temperature
and local energy of an independent black hole.

4.1 Some remarks

From the previous analysis one can remark some properties:

– The total thermodynamics pressure, total temperature
and total local energy correspond to a simple sum of the
thermodynamics contributions of each sector

Ptot = Ps + αPq (48)

Ttot = Ts + αTq (49)

Uloc
tot = Uloc

s + αUloc
q (50)

So, as was said above, it is worth to mention that the tem-
peratures Ts and Tq represent the contribution of each
sector (standard and quasi) to the total temperature of
black hole and, do not represent the temperature of one
independent black hole. The same occurs with the pres-
sure and energy.

– Both sectors share the same thermodynamics volume and
entropy.

As was said above, Uloc
tot corresponds to a local definition of

energy, located at r = a [50]. However, the total energy of
the system must be computed by the Noether charge [67], by
mean of the Komar formula [68].
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E ∝ lim
r→∞ K (ξ) =

= lim
r→∞

1

8π

d

dr
μ(r)r2

∫
d�2

=1

2

(
Ms + α · Mq

)
, (51)

where ξ is a timelike Killing vector. Thus, the total energy
is proportional to the Komar formula [68]. After a regular-
ization, based on the inclusion of the boundary terms in the
action [67], can be obtained that:

E = Ms + α · Mq . (52)

At infinity, our local definitions of energy coincide with the
total energy. Thus, other important result of our decoupling
of the first law of thermodynamics is that: The total energy
corresponds to the contribution of the Noether charge of each
sector. So, turning on the coupling constant α, the total energy
increases proportionally to this constant.

5 A simple example

As a simple example, we choose a seed and a extra source,
such that, near the origin, the mass functions behave as:

ms(r)

∣∣∣
r≈0

≈ C1r3 (53)

mq(r)

∣∣∣
r≈0

≈ C2r3. (54)

This one implies that near the origin the geometry behaves
as a de Sitter space time, where the invariants of cur-
vature have finite values, and thus, unlike the singular
Schwarzschild solution, the geometry is regular near the ori-
gin. These models are called regular black holes [69,70].

The seed source is given by the Hayward model [56]:

ρ(r) = 1

2π

3Q2 M2
s

(2Q2 Ms + r3)2 , (55)

where Q is a constant. The mass function is:

ms(r) = Msr3

r3 + 2Ms Q2 . (56)

On the other hand, the extra source is given by the Dym-
nikova model [51]:

θ0
0 (r) = − Mq exp(−r3/R3)

(4/3)π R3 , (57)

where R is a constant. The mass function is:

mq(r) = Mq

(
1 − exp(−r3/R3)

)
. (58)

It is direct to check that the conditions (53) and (54) are
fulfilled, an thus, this model is suited to represent a regular

Fig. 1 Behavior of Ms parameter for α = Q = R = 1, Mq = 0.7

black hole. It is worth to mention that the combination of
both energy density models, (55) and (57), provides a new
model of regular black holes, inserting Eqs. (56) and (58)
into Eq. (26)

μ = 1−2

r

(
Msr3

r3+2Ms Q2 +α · Mq

(
1− exp(−r3/R3)

))
.

(59)

On the other hand, also it is direct to check that the con-
ditions (31) and (32) are fulfilled. This one ensures that the
total energy corresponds to the contribution of the Noether
charge of each sector, equation (52).

In the figure 1 one can check the existence of one critical
value of Ms = M∗, which corresponds to the minimum value
on the curve, where there is an extremal black hole, where
the internal horizon a = r− and black hole horizon a = r+
coincide. On the other hand, for Ms > M∗ there are two
horizons, namely, the internal horizon r− and the black hole
horizon r+. This behavior is generic for other values of the
parameters.

Figures 2 (a), 2(b) and 2(c) display the behavior of the con-
tributions Ts and Tq and the total temperature Ttot , respec-
tively. This behavior is generic for other values of the param-
eters. One can check that the temperature vanishes at the
extremal case [71]. Ts and Tq are contributions to the total
temperature Ttot , where, this last is always positive. The total
temperature has a local maximum, located at r+ = rmax . One
can check that this inflection point is due to the behavior of
the contribution of the quasi sector, Tq , which vanishes after
this point. Using the standard definition of the heat capacity:

C = Ttot
∂S

∂r+

(
∂Ttot

∂r+

)−1

, (60)

it is direct to see that the sign of the specific heat depend

only on the factor
∂Ttot

∂r+
. So in the point r+ = rmax , where

this derivative vanishes, there is a phase transition. At the
left side of r+ = rmax this derivative is positive and the heat
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(a)

(b)

(c)

Fig. 2 Behavior of Ts ,Tq and Ttot for α = Q = R = 1,Mq = 0.7

capacity is positive, i.e the black hole is stable. However, at
the right side of r+ = rmax this derivative is negative and the
heat capacity is negative, i.e the black hole is unstable.

6 Conclusion and discussion

In this work is showed that, a direct consequence of the split-
ting of the equations of motion of one spherically symmetric
space time, in an analogue way to the gravitational decou-
pling method, is the decoupling of the first law of thermody-
namics in two sectors, called, the standard first law of thermo-
dynamics, and the quasi first law of thermodynamics. This is
achieved, following the approximation of the reference [49],
where the equations of motion are evaluated at the horizon
r = a.

Each sector is written as a thermodynamics identity
PdV = T d S − dU . In this respect, both sectors share the
same thermodynamics volume and the same entropy. The
total thermodynamics pressure, total temperature and total
local energy correspond to a simple sum of the thermody-
namics contributions of each sector, Eqs. (48), (49) and (50).
Other interesting result is that the total energy corresponds
to the contribution of the Noether charge of each sector,
Eq. (52). Thus, turning on the coupling constant α, the total
energy increases proportionally to this constant.

In both sectors, the terms corresponding to the identity
PdV = T d S − dU coincide with the previously known
in literature. The thermodynamics volume coincide with the
geometric volume, the temperature is the well known expres-
sion and the entropy follows the area’s law. The local defi-
nition of energy coincide with the definition of the reference
[50].

Finally, it is provided one example, where the seed source
and the extra sources correspond to the Hayward model [56]
and the Dymnikova model [57], respectively. It is worth to
mention that this combination provides a new model of reg-
ular black hole. It is showed that the total temperature has
an inflection point where there is a phase transition between
stable/unstable black hole. Thus, due to the application of
the decoupling, it is possible to determinate that this phase
transition occurs due to the behavior of the temperature con-
tribution at the quasi sector.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
work and no experimental data were used.]
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