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Abstract We investigate the effective Dirac equation, cor-
rected by merging two scenarios that are expected to emerge
towards the quantum gravity scale. Namely, the existence of a
minimal length, implemented by the generalized uncertainty
principle, and exotic spinors, associated with any non-trivial
topology equipping the spacetime manifold. We show that
the free fermionic dynamical equations, within the context
of a minimal length, just allow for trivial solutions, a feature
that is not shared by dynamical equations for exotic spinors.
In fact, in this coalescing setup, the exoticity is shown to pre-
vent the Dirac operator to be injective, allowing the existence
of non-trivial solutions.

1 Introduction

Over the last decades, high energy physics has allowed us
to look closer to the very structure of matter. It naturally
rises concerns on the limits of current approaches. Whether
this limit exists or not, fundamental concepts regarding the
underlying spacetime geometry may be revisited, at high
energy scales [1,2]. At least at energy scales as large as the
Planck scale, quantum gravity effects are expected to set in.
The non-renormalizability of quantum gravity consists of a
major problem that physicists have been trying to overcome
for decades. However, it could be effectively circumvented,
by suggesting that gravity should lead to an ultraviolet cut-
off, leading to a minimal observable length. The existence
of a minimal length scale seems to be a model-independent
feature of quantum gravity [3], from string theory [4–6] to
loop quantum gravity [7], and quantum black holes [8–13].
Effectively, the Heisenberg Uncertainty Principle (HUP) can
be corrected by a minimal length, giving rise to the so-called
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Generalized Uncertainty Principle (GUP). See Refs. [14–17]
for a comprehensive review. In particular, in the context of
the Dirac equation, phenomenological bounds were explored
in Ref. [18].

Formally, the minimal length can be implemented in quan-
tum mechanics, through small quadratic corrections to the
canonical commutation relations [19–22], whose relation-
ship to a minimal length is not biunivocal [23]. The com-
patibility with relativistic covariance was implemented in
Ref. [24], with the so-called Quesne-Tkachuk algebra, lead-
ing to a generalization of the Heisenberg algebra. Some high
energy physics phenomena were investigated in the scope of
the Quesne-Tkachuk algebra [25,26], whereas generaliza-
tions were proposed in Ref. [27]. Besides, the relationship
between a generalized algebra, induced by a minimal length,
and higher derivative theories was established [28]. Inter-
acting fermionic fields were also studied in the context of a
minimal length scale. Reciprocal effects of massive fermions
were investigated in Ref. [29] and black hole tunnelling was
scrutinized in Ref. [30]. Interestingly, the investigation of free
(classical) fermionic fields whose dynamics is dictated by the
deformed Dirac operator leads to a particularly odd result, as
shown in the next section. The situation may be framed as
follows: denoting by E the space of the Dirac equation solu-
tions engendered by the Dirac operator, /∂ , it is clear that
ker(/∂) = E . In the presence of a minimal length, as we will
see, within the usual first-order approximation and consider-
ing massive particles, the Dirac operator becomes injective,
collapsing its kernel into the null spinor. In other words, only
the trivial solution is allowed.

A different perspective is reached by studying exotic
spinors, along with the minimal length framework. Given
a manifold with non-trivial topology, more than one spinor
bundle is allowed. Such bundles belong to different equiva-
lence classes, giving rise to the so-called exotic spin struc-
tures, which accommodate exotic spinors [31]. Inequivalent
spin structures are felt through different spin connections
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[32,33], inferring a different dynamics. In other words, these
spinors are annihilated by a modified (exotic) Dirac opera-
tor. Moreover, going towards the Planck scale, besides the
presence of a minimal length, one also finds support for the
existence of exotic spinors, as non-trivial topologies are also
expected to appear in such a regime [34,35]. Coalescing the
two scenarios, we will show that the odd feature about free
fermions, within dynamical equations corrected by minimal
length, is solved in the scope of exotic spinors, being the dou-
bly corrected Dirac operator not injective. For completeness,
and anticipating one of the results of Sect. 3.A, we also study
particular cases for which the trivial solution is also the only
possibility, in the coalescing scenario.

This paper is organized as follows: the next section is
reserved to introduce the problem of free fermionic fields,
within the minimal length scope. Section 3 is devoted to
studying exotic spinors, as well as the merging between
exotic spinors and the minimal length setup. The formal
aspects are analyzed and a correction in the topological term
is proposed, after what the dynamical scenario is explored. In
the final section, we summarize and comment on our relevant
results.

2 Introductory remarks on minimal length and free
fermionic systems

The generalized commutation relation between Xμ and Pμ,
engendered by a minimal length [24] in the momentum space,
reads1

[Xμ, Pν] = −i[(1 − βpρ pρ)ημν − 2βpμ pν], (1)

where the (square of the) minimal length is encoded into the β

parameter. It is possible to show [24,28] that a quite suitable
point in the parameter space may be chosen so that Eq. (1)
holds in the configuration space, for Pμ = (1 − βpρ pρ)pμ.
Hence a correction in the partial derivative operator can be
implemented by

∂μ �→ (1 + β�)∂μ. (2)

With Eq. (2), the investigation of the free spinors profile,
in a base manifold endowed with minimal length, follows
straightforwardly. The minimal length derivative prescription
simply yields

i(1 + β�)/∂ψ − mψ = 0. (3)

Inserting the operator [i(1 + β�)/∂ + m14×4] into Eq. (3)
from the left, and keeping the first-order approximation in β,
one has

�ψ + 2β�2ψ + m2ψ = 0. (4)

1 Throughout the paper, natural units are used.

Replacing back �ψ , coming from (4), into Eq. (3), implies
that

i(1 − βm2)/∂ψ − mψ = 0. (5)

To make explicit the degenerate states corresponding to the
two spin projections, the usual approach suggests the analysis
of Eq. (5) in the rest frame formalism, in the momentum
space (the Dirac representation of the gamma matrices is
particularly clear in this regard), and proceed with a spinorial
boost. Writing ψ = e∓i pxw( �p), where w( �p) is a spinor, it is
straightforward to see that, in the rest frame, Eq. (5) leads to

⎛
⎜⎜⎝

κ − 1 0 0 0
0 κ − 1 0 0
0 0 −κ − 1 0
0 0 0 −κ − 1

⎞
⎟⎟⎠ w( �p) = 0, (6)

for κ ≡ ±(1 − βm2). Since κ �= ±1 for β �= 0, the
unique solution consists of the trivial one, despite the matrix
in Eq. (6) is not invertible. One could argue that the rest
frame would not be attainable, however, then we are forced
to conclude that the dynamical equation is insensitive to the
minimal length (see, for instance, Eq. (5) for m = 0). For
this reason, henceforth, we will no longer deal with the non-
massive case. Following a different approach, and starting
with a different corrected Dirac equation, in Ref. [36] the
authors arrive at a similar conclusion. The existence of a
minimal length does not allow the existence of free fermions
solutions.

Returning to the analysis performed in the Introduction,
let ψ be a section of the PSpin(1,3)

×C
4 spin-Clifford bundle.

Hence, denoting by E ⊂ PSpin(1,3)
× C

4 the subset compris-
ing solutions of the Dirac equation engendered by the Dirac
operator, /∂ , one sees that in the context of minimal length,
the kernel of /∂ is given by {0} ⊂ E , and the operator becomes
injective. It is difficult to encompass such behavior in a phys-
ical interpretation. On the one hand, it seems that the energy
increment, to the point where the minimal length becomes
dominant, would implement a mapping ker(/∂) = E = {0}.
However, as the energy increases, the second-order terms
start to be relevant, at least compared to first-order terms,
as these terms contrast to the usual terms. In this case, Eqs.
(3 – 5) would be modified accordingly, preventing ker(/∂) to
collapse into the subset {0}. The peculiar point is that usual
solutions would need second-order terms to survive, whereas
non-trivial exotic fermionic solutions, as we will see, do exist
in the first-order approximation. To make our claims clear,
looking for low energy effects, corrections of the dynamical
equations will be restricted to the leading order.
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3 Exotic spinor structures and the minimal length

We start with a discussion on pertinent details, concerning
the foundations and construction of exotic spinors, which are
particularly important for our analysis.

A spin structure on a 4-dimensional Lorentzian space-
time manifold M requires an orthogonal frame bundle

PSpin(1,3)
πs−→ M and a double cover

s : PSpin(1,3) → PSO(1,3), (7)

such that πs = π ◦ s, for both π : PSO(1,3) → M
and πs denoting the bundle projection operator onto the
M manifold. When the first cohomology group is not triv-
ial, H1(M, Z2) �= {0}, exotic spin structures (P̃Spin(1,3), s̃),
inequivalent to the usual ones, are then admitted to exist.
Hence, one can construct exotic spinors as sections of the
spinor bundle, associated to the principal bundle P̃Spin(1,3).

In order to evince the difference between the usual and
the exotic spin structures, and making explicit the non-trivial
elements of H1(M, Z2), let one remembers that two spin
structures P := (PSpin(1,3), s) and P̃ := (P̃Spin(1,3), s̃)

are equivalent as long as a Spin(1, 3)-equivariant mapping
q : P → P̃ , compatible to s and s̃, exist. Namely, this equiv-
alence holds if the diagram

P

s

q
P̃

s̃

PSO(1,3)

commutes. The group homomorphism σ : Spin(1, 3) →
SO(1, 3) has ker(σ) 
 Z2. Let ∪i∈IUi be an open cover for
M , having transition functions

ai j : Ui ∩Uj → SO(1, 3), (8)

such that ai j ◦ a jk = aik on Ui ∩Uj ∩Uk and a j j = id. For
a spin structure (PSpin(1,3), s) on M , a system of transition
functions

bi j : Ui ∩Uj → Spin(1, 3) (9)

has the properties [32,38]

σ ◦ bi j = ai j , bi j ◦ b jk = bik, b j j = id. (10)

In this way, two spin structures (PSpin(1,3), s) and (P̃Spin(1,3), s̃)

are, respectively, portrayed by the mappings bi j and b̃i j ,

being both defined on Ui ∩ Uj to Spin(1, 3) = S̃pin(1, 3),
such that σ ◦ b jk = a jk = σ ◦ b̃ jk .

Let one defines a cocycle ci j by the expression bi j (x) =
b̃i j (x)ci j , such that

ci j : Ui ∩Uj → ker(σ) = Z2 ↪→ Spin(1, 3), (11)

with ci j ◦ c jk = cik . These cocycles ci j are the non-trivial
elements of the first cohomology group H1(M, Z2). This
construction is shown to define an one-to-one correspon-
dence, between inequivalent spin structures and H1(M, Z2)

[42]. This shows that the very existence of the cocycles ci j
is necessary to have exotic spinors on M . Yet, notice that ci j
requires the existence of an open covering for M .

Now, the exotic spinors construction on a manifold will be

addressed, M̃ , endowed with both non-trivial topology and
minimal length. We have already seen that to establish exotic
spinors on a manifold, one needs an open cover ∪i∈IUi for

M̃ . On the other hand, in the current case it is necessary to
proceed with some caution, due to the minimal length. More
precisely, the bound

|Ui ∩Uj | > L (12)

is necessary, for all i, j , where L accounts for the mini-

mal length. Since M̃ is a Hausdorff paracompact topological
space, then every open cover has an open refinement that is
locally finite, which ensures the possibility of such open sets
to exist. In other words, as the arbitrary union of open sets is
also an open set, it is always possible to construct a collection
W of open sets, Wk , implemented by an arbitrary union of
Ui as Wk = ∪iUi , for all k, such that W = ∪kWk . The Wk

are chosen such that |Wk | > L , for all k, and |Wk ∩Wl | > L ,
for all k, l, covering the manifold. Hence, the construction
of the transition functions ai j : Wi ∩ Wj → SO(1, 3) is
allowed. Therefore, also hi j : Wi ∩ Wj → Spin(1, 3) and

h̃i j : Wi ∩ Wj → ˜Spin(1, 3) can be deployed, such that

σ ◦ hi j = ai j , hi j ◦ h jk = hik , and h j j = id. Here, σ is a
group homomorphism between Spin(1, 3) = Spin(1, 3) =
˜Spin(1, 3) and SO(1, 3).

As a conclusion of this construction, it is always possible
to find cocycles ci j : Wi ∩ Wj → Z2, defined by hi j (x) =
h̃i j (x)ci j , which are non-trivial elements of H1

(
M̃, Z2

)
,

allowing the existence of exotic spinors on M̃ .
We will study, in the next section, the behavior of exotic

spinors, ψ̃ , along with the minimal length corrections in their
dynamics. It is worth to emphasize that the correction due to
the non-trivial topology is implemented when one replaces
the Dirac operator as

/∂ �→ /∂ + χ−1dχ. (13)

Therefore this topological correction encompasses a deriva-
tive term which could, in principle, also be corrected by the
minimal length. Let us look at this issue more closely. Fol-
lowing Refs. [33,37–40], one assumes a set of scalar fields
χi : Ui → C such that χi (x) ∈ U(1), and

χi (x)(χ j (x))
−1 = ω(ci j (x)) = ±1, (14)
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where ω denotes a faithful irreducible representation from the
Minkowski spacetime Clifford algebra to the space M(4, C)

of 4 × 4 matrices with complex entries. If the case of a 2-
torsionless second cohomology group H2(M, Z2), the χi (x)
scalar fields always exist, andχ2

i (x) = χ2
j (x), for x ∈ Ui∩Uj

[37,38,40,41]. Consequently, the local functions χi define a
unique unimodular scalar field χ : M → C such that, for all
x ∈ Ui , the equality χ(x) = χ2

i (x) holds.
Besides, the χi scalar field forms a local root system for χ

[38], and are the generators of the cocycles ci j , which are the
non-trivial elements of H1(M, Z2). As already presented,
such cocycles do exist and, equivalently, exotic spinors exist
in this new spacetime manifold, so it seems natural to think
that their generators carry information on the minimal length

that characterizes M̃ . Yet, the unimodular scalar fields may
be arranged as

χ(x) = eiθ(x), (15)

where θ : M → R [38]. Usually, without a minimal length,
the θ(x) represents a strongly continuous function that
reflects the non-trivial topology. Within the minimal length
context, however, |χ(x ′)−χ(x)| = 2 − 2 cos(θ(x ′)−θ(x)),
and one is certainly forbidden to make x ′ infinitely close of
x . Equivalently, |χ(x ′) − χ(x)| ∼ O(β), where β has L2

order of magnitude, and we are forced to conclude that the
derivative operator should also be corrected. Nevertheless,
the formal and exact functional form of such a correction is a
quite difficult task. Up to the best of our knowledge, there is
no completely satisfactory answer to this issue, culminating
in a manageable operator. Here we will adopt, instead, an
effective approach, motivating the corrected derivative oper-
ator. Our proposal goes as follows: since the minimal length
is responsible for this correction in the derivative operator, it
must be small compared to the identity,

∂ �→ (14×4 + β̃O)∂, (16)

where hence β̃ ∼ β, and O is an operator acting on sections

of ˜PSpin(1,3) ×C
4. Now, nothing ensures that O is a differen-

tial operator. If it is not, one would have to take special care
ensuring covariance of the dynamical equation. Being O a
derivative operator, however, covariance imposes that either
O = a0γ

μ∂μ or it contains only even powers in the deriva-
tive. In this last case, its more complete form would be given
byO = a1�+a2�2+· · · , where a0, a1, a2, · · · are arbitrary
parameters with suitable dimensions. Anticipating Sec. III.A,
in the first order approximation there is no substantial differ-
ence in the net result. We will present our calculations with
O being taken as a derivative operator of the form O = �,
with a1 already absorbed into β̃, and just mention the other
case by passing. This motivated functional form of correction
is, then, quite similar to the minimal length correction in the
derivative operator obtained, however, by other arguments.

As a parenthetical remark, we notice that the topologi-
cal term is commonly accepted to be eliminated by a gauge
redefinition. We will end this section making explicit that this
cannot be accomplished [43,44] (For this remark we will not
pay attention to minimal length issues). The explicit form of
Eq. (13), along with a gauge interaction term (obtained for
instance by the minimal coupling prescription), is given by

(iγ μ∂μ + γ μAμ + iγ μ∂μθ(x) − m14×4)ψ = 0. (17)

As a connected group, the U (1) representations are unitary
and may be disposed as eiΛ(x), with real Λ(x). By means
of a gauge transformation Aμ �→ Aμ − ∂μΛ(x) it would
be necessary the identification of Λ(x) with iθ(x), to elimi-
nate the topological term. Nevertheless, θ(x) is also real and,
therefore, such elimination cannot be accomplished.

3.1 Exotic fermions and minimal length

Bearing in mind the discussion performed in the previous
section, we will investigate the free fermionic exotic case,
with a minimal length correction in the usual derivative and
also with the correction in the exotic term. This last correction
is not so determinant after all, and its absence would not
significantly modify the final result. At the end of the analysis,
we also comment about non-derivative corrections.

The exotic spinor dynamical equation, in the context here
explored reads

iγ μ (1 + β�) ∂μψ̃ + iγ μ
(

1 + β̃�
)

∂μθ(x)ψ̃ − mψ̃ = 0.

(18)

It is helpful to remember that the corrected derivative terms
are already saturated, that is �∂μ· = ∂ρ[∂ρ(∂μ·)]. For further
use, we write Eq. (18) in the form

i /∂ψ̃ + i /∂θ(x)ψ̃ + i /∂(β�ψ̃) + i β̃�/∂θ(x)ψ̃ − mψ̃ = 0.

(19)

Inserting from the left the operator
[
i(1 + β�)/∂

+i
(

1 + β̃�
)

/∂θ(x) + m14×4

]
into Eq. (19), we arrive at

the following awkward expression,

−�ψ̃ − 2β�2ψ̃ − m2ψ̃

+i
[
i /∂ + β�/∂ + m14×4

] [
/∂θ(x)ψ̃ + β̃�/∂θ(x)ψ̃

]

+i
[
/∂θ(x) − β̃�/∂θ(x)

] [
i /∂ψ̃ + iβ�/∂ψ̃ − mψ̃

]

−
[
/∂θ(x) + β̃�/∂θ(x)

] [
/∂θ(x)ψ̃ + β̃�/∂θ(x)ψ̃

]
= 0.

(20)

Notice that, in Eq. (19),�ψ̃ is already multiplied byβ. There-
fore, in the first-order limit, and considering ββ̃ → 0, as dis-
cussed, the relevant terms (in advance of what will be used
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back into Eq. (19)) read2

−β�ψ̃ − βm2ψ̃ − β /∂(/∂θ(x)ψ̃) − β /∂θ(x)/∂ψ̃

−β /∂θ(x)/∂θ(x)ψ̃ = 0. (21)

The only tricky term is /∂(/∂θ(x)ψ̃) = �θ(x)ψ̃ +γ μγ ν∂νθ(x)
∂μψ̃ . Using {γ μ, γ ν} = 2ημν implies that

−β /∂(/∂θ(x)ψ̃) = −β�θ(x)ψ̃

−2β∂μθ(x)∂μψ̃ + β /∂θ(x)/∂ψ̃. (22)

Inserting back this expression into Eq. (21) yields

β�ψ̃ = −βm2ψ̃ − β�θ(x)ψ̃ − 2β∂μθ(x)∂μψ̃

−β∂μθ(x)∂μθ(x)ψ̃. (23)

Now one can return to Eq. (19) inserting there β�ψ̃

obtained above. A bit of simple, but tedious, algebra leads to

i
[
(1 − βm2) − β�θ(x) − β∂μθ(x)∂μθ(x)

−2β∂μθ(x)∂μ

]
/∂ψ̃

+
[
i /∂θ(x) + i(β̃ − β)�/∂θ(x)

−2iβ /∂(∂μθ(x))∂μ − m14×4

]
ψ̃ = 0. (24)

Before going any further, we remark that Eq. (24) recovers,
in suitable limits, the particular cases it generalizes:

(a) for θ(x) constant and β = 0 = β̃, Eq. (24) recovers the
standard Dirac equation;

(b) for θ(x) constant and β, β̃ �= 0, Eq. (5) is obtained;
(c) keeping the function θ(x) and setting β = 0 = β̃,

the dynamical equation for exotic spinors is attained, as
expected.

In the approximation considered, it is clear that Eq. (24) cir-
cumvents the problem pointed out for Eq. (3). In fact, recast-

ing Eq. (24) as /̃∂ψ̃ = 0, and denoting by Ẽ ⊂ ˜PSpin(1,3)×C
4

the set comprising the solutions of /̃∂ψ̃ = 0, then obviously
ker(/̃∂) = Ẽ �= {0}. Hence /̃∂ is not injective. The exoticity
prevents the minimal length correction to shrinking the ker-
nel of /̃∂ . Non-trivial exotic solutions for the non-interacting
problem do survive, in fact.

In view of the results pointed here and the problem pre-
viously described, one would be tempted to think of the
minimal length setup as being the natural ambiance to find
out physical signatures exclusively implemented to exotic
spinors. Nevertheless, keeping in mind that our investigation
was carried out focusing on free spinors, such assertion is not
as straightforward. What seems plausible to conclude is that

2 In this regard, it is possible to see that the only term encoding the min-
imal length correction in the exotic term is already present in Eq. (19),
in the first-order approximation.

physical signatures regarding exotic spinors will be domi-
nant (though not exclusive) in a limit of the interacting terms
going to zero. However, this phenomenological bridge needs
a deeper investigation. In any case, the spectrum arising from
Eq. (24) will furnish the clues for a typical signature.

We have asserted that Eq. (24) admits non-trivial solutions.
While it is generally true, we would like to present here a
counterexample, making explicit the fact that for some partic-
ular cases of (24), non-trivial solutions are not allowed. This
is important, since it points to the necessity of some caution
in drawing conclusions from this fermionic system. In order
to make our point clear here, we notice that it is somewhat
usual to think of the additional terms in Eq. (24) as effective
interaction terms. Hence, no plane waves are expected. Here
this point of view will not be adopted. Instead, the fermionic
fields investigated here are completely free, but in a rather
unusual (although physically justified) base manifold. If one
is willing to accept this approach, then it is plausible to look
for plane wave solutions, with possibly a changed energy
spectrum. Hence by writing, as before, ψ̃ = e∓i px w̃( �p),
Eq. (24) in the rest frame yields

±
[
1 − βm2 − β�θ(x)

−β∂μθ(x)∂μθ(x)
]
γ 0mw̃(0) ± 2iβθ̇(x)γ 0m2w̃(0)

+
[
i /∂θ(x) + i(β − β̃)�/∂θ(x)

−m
]
14×4w̃(0) ∓ 2β /∂(θ̇(x))mw̃(0) = 0. (25)

In order to make explicit our claim that not every (topolog-
ically non-trivial) scenario leads to non-trivial solutions, we
investigate the particular case θ = θ(t), i. e., the topological
term is only a smooth function of time. In this particular case,
Eq. (25) may be recast as (from now on θ(t) ≡ θ)
{

± (
1 − βm − 3βθ̈

) − βθ̇2 + i
[(

±2m2β + 1
)

θ̇

+(β̃ − β)
...
θ

] }
γ 0w̃(0) − mw̃(0) = 0, (26)

where in the last term the multiplication by the identity is
implicit. Defining f ±(θ) = ±m(1 − βm − 3βθ̈ + βθ̇2) and
g±(θ) = (±2m2β +1)θ̇+(β̃ −β)

...
θ , we may recast Eq. (26)

in 2 × 2 blocks as

( [
( f ±(θ) − m) + ig±(θ)

]
12×2 02×2

02×2
[
( f ±(θ) + m) + ig±(θ)

]
12×2

)

w̃(0) = 0. (27)

Notice that in the θ = constant limit, Eq. (27) recovers (6),
as expected. Moreover, besides assuming θ = constant, if β

and β̃ both vanish, then Eq. (27) turns into the usual Dirac
case, recovering the two usual degenerate states for the free
particle case.
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As θ(t) is a real function, reflecting the unusual topology
of the spacetime, it is clear that g±(θ) must be zero, as a
necessary (although not sufficient) condition to non-trivial
solutions. It is straightforward to see that g±(θ) = 0 leads
to (β̃ − β)θ̈ + (±2m2β + 1)θ = c, where c is constant3.
The θ∗ function, that solves g±(θ∗) = 0, is then given by
a simple combination of sines and cosines. Nevertheless, by
inspecting the terms f ±(θ)±m, it is readily seen that to have
a situation as in the usual Dirac case, it is also necessary to
have4 3θ̈ − θ̇2 + m = 0. The solution of this last equation,
however, is given by a Weierstrass elliptic function, with no
superposition with θ∗ for all frequencies. Hence, it is not
possible to satisfy all the necessary conditions to have a non-
trivial solution. This ends the counterexample.

We finish by stressing that had we investigated the mini-
mal length correction in the topological term as an operator

proportional to γ μ∂μ, let us say
(

14×4 + β̃ /∂
)

∂μ, the only

difference (keeping the same approximation in vogue) would
be to replace the term β̃�/∂θ(x) by β̃�θ(x), in Eq. (24).

4 Conclusions

We have shown that the very existence of a minimal length
makes the Dirac operator /∂ to be injective, turning its ker-
nel into {0}, which is not interesting at all for fermionic
physics. One can understand, thus, the existence of the min-
imal length encoded in β as a kind of realization of an oper-
ation that squeezes the space of solutions of the Dirac equa-
tion, ker(/∂) = E ⊂ PSpin(1,3)

× C
4, into a space having only

the null spinor. It could be a clue of a feature presented in
approaches to quantum gravity. However, when the space-
time admits the existence of exotic spinors, the Dirac equa-
tion may have non-trivial spinors as solutions. Thus, assum-
ing that both effects are present in high energy phenomena,
the existence of free fermions should depend on which one
is effectively dominant when the energy is rising from TeV
order towards the Planck scale. It is important to notice,
though, that not every scenario merging exotic spinors and
a minimal length allows non-trivial solutions of the Dirac
equation. As we have shown in the last section, when one
takes the particular case of θ = θ(t), for instance, the kernel
of /̃∂ shrinks to the null spinor again. In other words, it is nec-
essary to have a local exotic term θ (with minimal length),
to have non-null spinors.

The previous discussions indicate an unexpected relation-
ship between the topologies of the spacetime and the space of
solutions of the Dirac equation when contributions of a mini-
mal length scale are relevant. This helps to understand which

3 Note that the case of β̃ = β yields θ = constant and the premise for
topological corrections is undermined.
4 These two conditions together are necessary and sufficient.

are the feasible physical scenarios for non-null fermionic
fields to existing in a spacetime with minimal length. Besides,
not only the Dirac equation in other contexts [45,46], but
other first order equations of motion can be explored, driving
flagpole and flag-dipole spinor fields [47–49], in the exotic
context [50]. Further studies on the relationship between
these spaces are being carried on by the authors, aiming to
expand our understanding of exotic spinors dynamics.
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