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Abstract We find the low lying quasinormal mode frequen-
cies of the recently proposed novel four dimensional Gauss–
Bonnet de Sitter black holes for scalar, electromagnetic and
Dirac field perturbations using the third order WKB approx-
imation as well as Padé approximation, as an improvement
over WKB. We figure out the effect of the Gauss–Bonnet
coupling α and the cosmological constant � on the real and
imaginary parts of the QNM frequencies. We also study the
greybody factors and eikonal limits in the above background
for all three different types of perturbations.

1 Introduction

Black holes are one of the most intriguing objects in the the-
ory of general relativity (GR). They are the simplest objects
that one can come across in the study of GR, simply because
they are parametrised by only three parameters: the mass, the
charge and the spin. It is one of the reasons why black holes
have attracted so much attention apart from the fact that they
are mathematically beautiful as well as strange objects by
their own merit at the same time. Among many other inter-
esting areas of studies, quasinormal modes (QNMs) have
gained attention for the last few decades in discussing the
perturbations of black holes [1–4]. It is well known that for
a large family of black holes, the perturbation equations can
be cast into a Schrödinger like form. The QNMs come out
as the solutions of the corresponding Schrödinger like wave
equation with complex frequencies with boundary conditions
which are purely ingoing at the horizon and outgoing at spa-
tial infinity. QN frequencies carry unique information about
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the black hole parameters and despite the classical origin, it
was found that QNMs might provide a hint into the quantum
nature of the black holes [5–7]. In addition, QNMs in anti de
Sitter (AdS) space-time has been shown to appear naturally in
the description of the dual conformal field theories living on
the boundary (see [3] for a detailed list of references). QNMs
of black holes have already been observed in the ground
based experiments [8,9] and they already present a plethora
of information about black holes. However, research areas
still remain open towards interpreting those results which
requires the exploration of alternative theories of gravity
[10,11] towards understanding fundamental problems like
singularity resolution or a quantum nature of gravity.

QNMs of black holes have originally been studied in the
context of Einstein’s theory of general relativity (see [3] for
a comprehensive list of references). QNMs dominate the last
stage of an extremely complicated yet intriguing process of
the merger of binary compact objects (for example black hole
(BH) – black hole or black hole – neutron star (NS) merger),
whereas the first two stages consist of the inspiral of the two
BHs or NSs and merger of the two BHs or NSs into a single
one. It has been observed that the last stage of formation of
the single BH or NS from the binary merger is dominated by
the quasinormal ringing and this process corresponds to an
extremely strong gravitational field which cannot be modeled
using the help of post-Newtonian approximation. However,
it is this last stage of the merger process which carries the
necessary imprint of the characteristics of a particular theory
of gravity [10]. In fact black holes in a number of alternative
theories of gravity may produce the same observational sig-
nature in the asymptotic regions, but can lead to qualitatively
different features near the event horizon. Therefore, study-
ing various alternative theories of gravity in the strong field
region still remains an active and interesting area of research
in the context of gravitational wave signatures of black holes.
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One such alternative theory is the Einstein–Gauss–Bonnet
(EGB) theory of gravity which consists of higher curvature
corrections to the Einstein–Hilbert term in the gravitational
action. Because of the reason described above, there had
been a lot of interests in black holes arising from higher
curvature corrections to Einstein–Hilbert action. On another
front, lot of new developments in string theory [12–14] had
increased this particular theories importance on the grav-
ity side as well. It is well known that low energy limits
of string theories give rise to effective models of gravity
in higher dimensions, which involve higher powers of the
Riemann curvature tensor in the action in addition to the
usual Einstein–Hilbert term [12]. The Gauss–Bonnet combi-
nation R2−4RabRab+Rabcd Rabcd is of most interest among
these higher powers of Riemann tensor and the theory also
admits black hole solutions [15–17]. Not only in string gener-
ated gravity models, the Gauss–Bonnet black holes have also
gained interest in the context of brane world models [18] as
well as in the context of possible production at the LHC [19].

It is imperative to note that the Gauss–Bonnet action
in D-space time dimensions, having the following form∫
dDx

√−g{R2 −4RabRab + Rabcd Rabcd} gives non-trivial
equations of motion only in 4 + 1 dimensions or higher,
while in 3 + 1 dimensions the Gauss–Bonnet term reduces
to a topological surface term (see [20,21] for details). Lot
of work has been done on quasinormal modes and stabil-
ity of black holes arising out of EGB gravity in space time
dimensions D > 4[22–38].

As mentioned, in four space time dimensions, the Gauss–
Bonnet term does not contribute to the gravitational dynamics
since it becomes a surface term. Although, the role played by
the Gauss–Bonnet term in four dimensional gravity theories
has been intriguing for a long time and few studies towards
that direction could be found in [39,40]. Very recently a
non-trivial extension of EGB theory of gravity has been pro-
posed by Glavan and Lin [41] in four space time dimen-
sions as D → 4 limit of the higher dimensional Gauss–
Bonnet theory. It has been shown that the EGB gravity theory
can be reconstructed in a particular way where the Gauss–
Bonnet coupling can be re-scaled as α/(D−4), with α being
the Gauss–Bonnet coupling. This theory in four space time
dimension was soon termed as novel 4D EGB theory, which is
defined as a D → 4 limit at the level of equations of motion.
It was shown that the D → 4 singular limit of the Gauss–
Bonnet term produces some non trivial contributions to the
gravitational dynamics, but preserves the number of gravi-
ton degrees of freedom. This novel EGB theory can be shown
to be free from Ostrogradsky instability [41] too. Moreover,
it was shown that such a theory does not require coupling
to any matter field, it bypasses all conditions imposed by
Lovelock’s theorem [20] and is also free from any singu-
larity problem. The discovery of such a theory in D = 4
dimensions, therefore, has generated tremendous interest in

the area of higher curvature theories which has been reflected
in the large volume of works being done in a short span of
time [42–78]. It should be noted that since the proposal of
this solution, there have been several studies which ques-
tions the existence of this particular solution [79–81]. These
studies argue that there is no consistent way of taking the
D → 4 limit of a D dimensional theory, as was suggested
by Glavan and Lin. It was also shown in [82], by consider-
ing a semi-classical quantum tunnelling of the vacuum of the
solution, that the vacuum decay rate would exhibit diverging
behaviour or complex behaviour, leading to an unstable or
non-physical vacuum of the 4D Einstein Gauss–Bonnet solu-
tion. Since then, several regularization schemes have been
proposed in order to overcome these shortcomings [83–85].
Note that in this work, we would proceed by considering
the solution as proposed by Glavan and Lin. Our aim in this
work is to study the quasinormal modes of black holes in
four dimensional novel EGB gravity in asymptotically de
Sitter spaces. While there were many works on construct-
ing different black hole solutions, such as static spherically
symmetric black holes [41], black holes in AdS spaces [44],
rotating black holes and their shadows [46,48], generalised
four dimensional black holes in Einstein-Lovelock gravity
[45], radiating Vaidya like black holes [53], regular black
holes [66,67]; not much effort has gone into figuring out the
QNMs of spherically symmetric black holes with the excep-
tions of [42,59,60,70]. Our aim is to fill up this gap in the
literature by studying the quasinormal modes of spherially
symmetric black hole in novel four dimensional EGB gravity
in asymptotically de Sitter space time.

The plan of this paper is as follows: in the next section we
will briefly discuss about the four dimensional EGB grav-
ity and the black hole solutions in them with a particular
focus on the asymptotically de Sitter branch. In Sect. 3, we
will describe the scalar, electromagnetic and Dirac perturba-
tions of the black hole metric and will briefly describe the
methodology adopted to evaluate the QN frequencies, Sect. 4
presents the results of our calculations. We give a brief discus-
sion on the eikonal limit, Lyapunov exponents and unstable
circular null geodesics following [86] in Sect. 5. A very brief
discussion on the greybody factors is given in Sect. 6. Finally
we conclude the paper with a discussion on our results and
future outlook.

2 Novel four dimensional Einstein–Gauss–Bonnet
gravity

In their recent work, Glavan and Lin [41] had shown by con-
structing a model of the novel four dimensional Einstein–
Gauss–Bonnet gravity that the four important criteria, dic-
tated by Lovelock’s theorem [20,21] for Einstein’s general
relativity with the cosmological constant to be a unique the-
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ory of gravity (viz. existence of 3 + 1 dimensional space
time, general coordinate invariance, metricity and existence
of second order equations of motion) can be overridden and
the model can exhibit modified dynamics. To understand it
in a better way, let us recall that the action for a general
D-dimensional EGB gravity theory can be written as

SEGB[gab] = SEH [gab] + SGB[gab], (1)

where the Einstein–Hilbert action is

SEH [gab] = 1

16πGN

∫
dDx

√−g [R − 2�] . (2)

In writing Eq. (2) and in the rest of the paper, we have chosen
GN , the D-dimensional Newton’s constant to be unity, R is
the Ricci scalar and � is the bare cosmological constant.
In fact both GN = 1/8πM2

pl and � are the parameters of
the theory, where Mpl is the Planck mass characterising the
strength of the gravitational interaction. It is well known that
Einstein’s General theory of Relativity is a perturbatively
non-renormalizable theory, and it can be made sensible by
adding higher curvature corrections to the Einstein–Hilbert
action in strong gravity regimes. Among different choices
of higher curvature terms, the Lovelock corrections play a
crucial role in the sense that the field equations contain terms
only up to the second derivative of the metric and secondly,
the gravitational dynamics remains free of the Ostrogradsky
instabilities. Of particular interest is the third order Lovelock
correction, known as the Gauss–Bonnet term and the action
looks like

SGB[gab] = 1

16π

∫
dDx

√−gαG, (3)

where, α is the Gauss–Bonnet coupling constant and G is
the Gauss–Bonnet term having the form G = Rabcd Rabcd −
4RabRab + R2 in which Rabcd is the Riemann curvature ten-
sor, Rab is the Ricci tensor and R is the Ricci scalar. Incorpo-
rating such terms in the Einstein–Hilbert action had already
generated many interesting scenarios a few of which was
mentioned in the introduction of this paper. It is to be noted
that the Gauss–Bonnet term in four space time dimensions
turns out to be a total divergence, hence it does not contribute
to any gravitational dynamics. However, by re-scaling the
Gauss–Bonnet coupling constant in G as α → α/(D − 4)
and then taking the limit D → 4, one can obtain the novel
four dimensional EGB gravity theory [41]. Therefore, fol-
lowing Eq. (1), the action for novel four dimensional EGB
gravity with the scaled coupling constant α/(D − 4) can be
written as

SEGB [gab] = 1

16π

∫
dDx

√−g

[

R − 2� + α

D − 4

×
(
Rabcd R

abcd − 4RabR
ab + R2

)]
+ Smatter,

(4)

where, Smatter represents action corresponding to any matter
fields in the theory. One can vary the action with respect

to the metric and setting the variation to be equal to zero:
δSEGB/δgab = 0, leads to the equations of motion

8πTab = G(�)
ab + G(EH)

ab + G(LL)
ab , (5)

where, the tensors in the RHS of Eq. (5) respectively are
G(�)

ab = �gab, the Einstein tensor G(EH)
ab = Rab − 1

2 Rgab
and the Lanczos–Lovelock tensor

G(LL)
ab = − α

D − 4

[
1

2
gab(Rmnpq R

mnpq − 4Rmn R
mn + R2)

−2RRab − 4Ram Rm
b + 4Rambn R

mn − 2Ramnp R
mnp
b

]
. (6)

The four dimensional novel EGB theory, at the level of equa-
tions of motion, can be obtained as a limit D → 4 [41], cir-
cumventing the Lovelock’s theorem. Such a theory admits
black hole solutions (it admits both de Sitter as well as anti
de Sitter branches, see [41,44,53] for details):

ds2 = − f (r)dt2 + f −1(r)dr2 + r2(dθ2 + sin2 θdφ2),

with

f (r) = 1 + r2

32πα

[

1 −
√

1 + 128παM

r3 + 64πα�

3

]

. (7)

In the above M is related to the black hole mass. In the limit
α → 0, the above solution reduces to the Schwarzschild de
Sitter solution and as r → ∞, f (r) reduces to the asymptot-
ically de Sitter space time with positive cosmological con-
stant. The Gauss–Bonnet coupling constant α can in principle
be either positive or negative. In fact, it can be shown that
in appropriate parameter region, the solution has two hori-
zons: the event horizon rH and the cosmological horizon rc.
However, in the α < 0 regime, the metric function does not
remain real for small values of the radial coordinate. How-
ever, we are not interested in very small values of r , rather
our interest lies in the region rH < r < rc, therefore, we can
in principle allow α to take negative values.

3 Scalar, electromagnetic and Dirac perturbations

We study the quasinormal modes of the metric given by Eq.
(7) for scalar, electromagnetic and Dirac perturbations. Here
we will take a rescaling of the Gauss–Bonnet coupling con-
stant 32πα → α, and use this as the new Gauss–Bonnet cou-
pling constant for convenience. So the metric simply reduces
to

f (r) = 1 + r2

α

[

1 −
√

1 + 4αM

r3 + 2α�

3

]

. (8)
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The Klein-Gordon equation for a massless scalar field in a
black hole background takes the form

1√−g
∂a

(√−ggab∂b	
)

= 0, (9)

whereas, the electromagnetic field in curved spacetime fol-
lows the equation

1√−g
∂a

(√−gFbcg
bdgca

)
= 0, (10)

where Fbc = ∂b Ac − ∂c Ab and Aa is the four vector
potential. After separation of variables, the radial parts of the
above equations take the form

d2
s

dr2∗
+ (ω2 − Vs(r))
s = 0 (11)

where, s = “scalar” refers to scalar field and s = “em”
refers to electromagnetic field and r∗ is the tortoise coordinate
defined as

dr∗ = dr

f (r)
(12)

The effective potentials for the scalar and electromagnetic
cases are respectively given by

Vscalar(r) = f (r)

(
l(l + 1)

r2 + 1

r

d f (r)

dr

)

, (13)

and

Vem(r) = f (r)

(
l(l + 1)

r2

)

. (14)

For a Dirac field on the other hand, the covariant Dirac equa-
tion has the form [87]

γ α

(
∂

∂xα
− ωα

)


 = 0, (15)

where γ α are the Dirac gamma matrices and ωα are the spin
connections. After applying the method of separation of vari-
ables, the radial part of the above equation can be cast in
the Schrödinger like form again, however with two different
potentials corresponding to two different chiralities

d2
±
dr2∗

+
(
ω2 − V dirac± (r)

)

± = 0, (16)

where, the effective potentials are of the form:

V dirac± (r) = (l + 1)

r
f (r)

(
(l + 1)

r
∓

√
f (r)

r
± d

√
f (r)

dr

)

.

(17)

Note that the potentials V dirac+ (r) and V dirac− (r) can be trans-
formed among each other implying that the quasinormal
modes obtained from these two seemingly different poten-
tials are isospectral. Therefore one can use either of the two
V dirac± (r) for calculation of quasinormal modes.

It is worth mentioning here that the stability of the scalar
and electromagnetic perturbations in a general black hole
background can be confirmed from the positive definite-
ness of the effective potential. However, it was shown very
recently that the situation with the Dirac field is a little bit
different, particularly if one considers higher curvature cor-
rected black holes as well as study them in asymptotically de
Sitter space times. Firstly, it was shown that even if the effec-
tive potential for one of the chiralities consists of a negative
gap, the Dirac field perturbation can keep the black hole sta-
ble [88]. However, the positive definiteness of the potential
of any one of the potentials for any one of the chiralities does
not help in asymptotically de Sitter black hole backgrounds
because the potential for both chiralities in general may have
negative gaps [89]. Keeping these features in mind, we plan
to study the quasinormal modes of the novel Gauss–Bonnet
de Sitter black hole in four space time dimensions. We plot
the effective potential of all three kinds of perturbations in
Fig. 1. The quasinormal modes are the solutions of the mas-
ter wave equation given by Eq. (11) satisfying the conditions
of purely outgoing waves at infinity and pure ingoing waves
at the event horizon. In the next section we will look into
approximation routines to compute the quasinormal frequen-
cies for the above three types of perturbations.

3.1 Methodology used: WKB approximation and Padé
approximation

It is well known that the analytic computation of quasinor-
mal modes is almost impossible in most of the cases except
a few background like BTZ black hole. Therefore, in order
to numerically obtain the quasinomal frequencies, we have
employed the 3rd order WKB approximation along with the
improvements figured out using 3rd order Padé approxima-
tion. It is already very well known that based on the semi
classical arguments, Schutz and Will [90] had suggested the
WKB technique, which was later modified in [91], by match-
ing the exterior WKB solutions across the two turning points,
which can be done only when the two classical turning points
are close enough (see [92] for more details). The potential in
the interior region was then expanded using the Taylor series
expansion upto sixth order. The asymptotic approximation
to the interior solution is used to match the 3rd order WKB.
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Fig. 1 The figure plots the effective potential Vef f with the radial coordinate r for the scalar (solid), electromagnetic (dotted) and the Dirac (dashed)
perturbation

The formula for quasinormal frequencies using third order
WKB approach is given by [91]

ω2 =
[
V0 + (−2V ′′

0

)1/2
�̃(n)

]

−i

(

n + 1

2

)
(−2V ′′

0

)1/2
[
1 + ̃(n)

]
. (18)

where, �̃ = �/ i and ̃ = /(n+ 1
2 ) and � and  are given

by

�(n) = i

(−2V ′′
0 )1/2

[
1

8

(
V (4)

0

V ′′
0

) (
1

4
+ ν2

)

− 1

288

(
V (3)

0

V ′′
0

)2

(7 + 60ν2)

⎤

⎦ (19)

(n) =
(
n + 1

2

)

(−2V ′′
0

)1/2

⎡

⎣ 5

6912

(
V (3)

0

V ′′
0

)4

(77 + 188ν2)

− 1

384

(
V (3)2

0 V (4)
0

V ′′3
0

)
(

51 + 100ν2
)

+ 1

2304

×
(
V (4)

0

V ′′
0

)2

(67 + 68ν2) + 1

288

(
V (3)

0 V (5)
0

V ′′2
0

)

×
(

19 + 28ν2
)

− 1

288

(
V (6)

0

V ′′
0

)
(

5 + 4ν2
)
]

, (20)

where, V (n)
0 is the n-th derivative of the effective potential

with respect to the tortoise coordinate calculated at the max-
imum of the potential r0, V0 is the height of the potential
maximum and ν = n + 1/2, where n is a positive integer.

As a matter of fact, it should be pointed out here that
the accuracy of the WKB method depends crucially on the
multipole number l and the overtone number n. It has been
shown in [93] that the WKB approach works extremely well
for situations where the multipole number is larger com-
pared to the overtone: l > n. It is such a good approx-

imation that the results from numerical integration of the
wave equation and the WKB results are in good agreement,
but the WKB approach does not yield satisfactory results
if l = n and is not applicable for l < n. On the other
hand, the results are progressively better with increasing l
values. In order to increase the accuracy of the higher order
WKB approach, it has been recently proposed to use Padé
approximation [94,95] on the usual WKB formula.These
works show that Padé approximations often works well even
beyond the range of applicability of WKB approximation.
In order to understand whether it is possible to construct
a better approximation to achieve more accurate results, it
was found out that by extending the order of the WKB
terms i.e. increasing the order of the Taylor series approx-
imation of the potential and constructing the well know Padé
approximants of the formal series for ω2, the Padé transforms
are always in good agreement with the exact numerically
obtained QNMs.

Here in this paper we have generated the quasinomal fre-
quencies using the 3rd order WKB and Padé approximation
and quoted both results in order to look for the improvements
that the Padé approximation induces.

4 Results

We have numerically obtained the quasinormal frequencies
for the scalar, electromagnetic and Dirac perturbations. We
have exploited the 3rd order WKB approximation and Padé
approximation for calculating the frequencies of the four
dimensional Einstein–Gauss–Bonnet de Sitter black hole.
The frequencies have been obtained for a wide range of
parameter values, by individually varying l, α and �. The
results for all three types of perturbations are presented in
Tables 1 and 2. Our findings are summarised in Figs. 2 and
3.
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(a) Scalar perturbation (b) Electromagnetic perturbation (c) Dirac perturbation

(d) Scalar perturbation (e) Electromagnetic perturbation (f) Dirac perturbation

(g) Scalar perturbation (h) Electromagnetic perturbation (i) Dirac perturbation

(j) Scalar perturbation (k) Electromagnetic perturbation (l) Dirac perturbation

Fig. 2 The figure plots the real and imaginary parts of the quasinormal
frequencies vs the different parameters (α,�) of the four dimensional
Gauss–Bonnet de Sitter spacetime, for different types of perturbations,

for a fixed mass of M = 0.5. The different colors denote the different
modes for different values of (l, n): red (0, 0); blue (1, 0); black (1, 1);
green (2, 0); cyan (2, 1) and orange (2, 2)

4.1 Scalar perturbation

The inference that can be made from the above figures is
that both the oscillation frequency and the damping rate
decreases with increasing values of �. Also as α decreases
and eventually becomes negative, the real part of the fre-

quency decreases whereas the imaginary part becomes more
negative implying that the damping increases. For positive
increasing values of alpha the real part of the frequency
increases, except for the l = 0 mode where the real part
was found to be decreasing with increasing α, whereas the
imaginary part increases.
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(a) Scalar perturbation (α is varied) (b) Scalar perturbation (Λ is varied) (c) Electromagnetic perturbation (α is
varied)

(d) Electromagnetic perturbation (Λ is
varied)

(e) Dirac perturbation (α is varied) (f) Dirac perturbation (Λ is varied)

Fig. 3 The figure plots the real part of the quasinormal frequencies vs
the imaginary part for different parameters (α,�) of the four dimen-
sional Gauss–Bonnet de Sitter spacetime, for different types of pertur-

bations, for a fixed mass of M = 0.5. The different colors denote the
different modes for different values of (l, n): red (0, 0); blue (1, 0);
black (1, 1); green (2, 0); cyan (2, 1) and orange (2, 2)

Table 3 The table shows the quasinormal frequencies for the n = 0 mode and for very large multipole numbers l for a four dimensional Gauss–
Bonnet de Sitter black hole with M = 0.5, α = 0.2 and � = 0.05

l Scalar EM Dirac Approximate frequency from Eq. (22)

3500 1321.97–0.169845 i 1321.97–0.169845 i 1322.16–0.169845 i 1321.778513516667734–0.169844849949930035 i

4000 1510.79–0.169845 i 1510.79–0.169845 i 1510.98–0.169845 i 1510.604015447620313–0.169844849781841718 i

4500 1699.62–0.169845 i 1699.62–0.169845 i 1699.81–0.169845 i 1699.429517378572879–0.169844849666595429 i

5000 1888.44–0.169845 i 1888.44–0.169845 i 1888.63–0.169845 i 1888.255019309525439–0.169844849584157273 i

5500 2077.27–0.169845 i 2077.27–0.169845 i 2077.46–0.169845 i 2077.080521240477990–0.169844849523160555 i

4.2 Electromagnetic perturbation

We observed similar behaviour to the case of scalar perturba-
tion in case of the electromagnetic perturbation i.e. both the
oscillation frequency and the damping rate decreases with
increasing values of �. As α becomes more negative, the
real part of the frequency decreases whereas the imaginary
part becomes increasingly more negative implying that the
decay of the modes is faster. For increasing values of α,
both the real part and the imaginary part increases, imply-
ing increasing oscillation and a decrease in the damping
rate.

4.3 Dirac perturbation

The qualitative behaviour of the Dirac case is also pretty
similar to the above two cases. The oscillation frequency

and the damping rate decreases with increasing values
of �. With decreasing values of α, the real part of the
frequency decreases whereas the imaginary part becomes
more negative implying increase in the damping rate and
vice-versa. One common nature observed in all the three
cases is that for a fixed value of l, as n increases, the
real part of the frequency decreases whereas the imaginary
part becomes more negative implying that as the overtone
increases for a fixed l, the damping rate increases. We also
observe that for all the three types of perturbations, as α

decreases,the oscillation frequency decreases with increas-
ing damping rates whereas as � decreases,the oscillation fre-
quency increases with increasing damping rates.The results
are summarised in Figs. 2 and 3, where we have plotted
the real and imaginary part of the quasinormal frequency
for different sets of parameter values. In particular, the plot
of real vs. imaginary part of the frequencies tell us the
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Fig. 4 The figure plots the reflection and transmission coefficient of the scattered scalar (solid), electromagnetic (dotted) and Dirac (dashed) wave
for M = 0.5 and different parameter values
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Table 4 The table shows the greybody factor of the scattered scalar,
electromagnetic and Dirac wave for different parameter values

ω Scalar case EM case Dirac case
|T (ω)|2 |T (ω)|2 |T (ω)|2

l = 1, n = 0, α = 0.4, � = 0.02

0 0.000773933 0.00108008 0.000104834

0.4 0.00804935 0.0176695 0.000716339

0.8 0.80129 0.932633 0.181766

1.0 0.985614 0.99713 0.847873

1.2 0.99943 0.999939 0.989076

l = 1, n = 0, α = 0.1, � = 0.02

0 0.0020804 0.00297354 0.000500328

0.4 0.0171343 0.0377988 0.00275507

0.8 0.817021 0.937127 0.307556

1.0 0.982834 0.996419 0.868466

1.2 0.999061 0.999892 0.987348

l = 1, n = 0, α = 0.15, � = 0.02

0 0.00186814 0.0028915 0.000138091

0.4 0.0157618 0.0361107 0.000928069

0.8 0.814444 0.933686 0.300518

1.0 0.983062 0.996153 0.902012

1.2 0.999105 0.999882 0.992818

l = 1, n = 0, α = 0.15, � = 0.08

0 0.00221037 0.00275257 0.000266319

0.4 0.0251606 0.0502415 0.00216865

0.8 0.906484 0.968742 0.52664

1.0 0.993986 0.998805 0.951385

1.2 0.999791 0.999978 0.997278

l = 1, n = 0, α = 0.15, � = 0.02

0 0.00186903 0.00268915 0.000421534

0.4 0.0157688 0.0348879 0.00237434

0.8 0.814445 0.936004 0.290641

1.0 0.983062 0.99645 0.865661

1.2 0.999105 0.999897 0.987467

l = 2, n = 0, α = 0.15, � = 0.02

0 0.0000821326 0.000103032 0.0000164771

0.4 0.000328439 0.000454599 0.000053879

0.8 0.0205558 0.0375335 0.00187998

1.0 0.301218 0.468458 0.0262424

1.2 0.861667 0.920698 0.371926

same story as we have observed above: for all three types
of perturbations studied in this work, the behaviours are
quite similar for the real vs. imaginary parts of ω when
we (i) varied α, keeping � fixed and (ii) varied �, keep-
ing α fixed. In the case (i), the Re(ω) grows as −Im(ω)

decreases while for the case (ii), Re(ω) decreases as −Im(ω)

decreases.

5 Eikonal QNMs, Lyapunov exponents and null
geodesics

In the previous section we studied the quasi-normal frequen-
cies for the four dimensional Gauss–Bonnet deSitter black
hole solution employing third order WKB and Padé approx-
imants. In this section, we would be interested in looking at
the QNFs in the eikonal limit i.e. for very very large l values.

It has been well known that for static spacetimes, the
scalar, electromagnetic and Dirac perturbations have sim-
ilar behaviour in the eikonal limit [96] and their effective
potential in this limit could be simultaneously given by

Veikonal = l(l + 1)
f (r)

r2 (21)

Exploiting this simple observation and the fact that the peak
of the effective potentials in the eikonal limit, r0, coincides
with that of the unstable null geodesics rp, Cardoso et.al. [86]
showed that the QNFs of a spherically symmetric, asymp-
totically non-AdS black hole, in the eikonal limit could be
expressed by a very simple formula, which only depends on
the metric function f (r) and the position of the unstable null
geodesic rp, given by

ωQNM = pl − i(n + 1/2)|λ| (22)

where, p =
√

f p
r2
p

and

λ = 1√
2

√√
√
√−r2

p

f p

(
d2

dr2∗
f

r2

)

r=rp

(23)

where the subscript p denotes that the corresponding quantity
has been calculated at the unstable null radius rp and r∗ is
the tortoise coordinate. Physically, p denotes the angular
frequency of the unstable orbiting photons and λ denotes the
principle Lyapunov exponent at the unstable null geodesics.
We find the eikonal frequency using the third order WKB
approximation for all three types of perturbation and from
the approximate formula Eq. (22) and report the numbers in
Table 3. The convergence of the frequencies with each other
and with the approximate formula with the increasing value
of l is evident from the table.

6 Greybody factor

In this section we discuss the frequency dependent reflection
and transmission coefficient, R(ω) and T (ω) respectively, for
a scattering process of the scalar, EM and Dirac wave from
the black hole. This case is different from the quasi normal
frequency calculation since we relax the boundary condition
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Table 5 Qualitative changes in
the greybody factor and the
quasinormal frequency for all
three cases i.e. scalar,
electromagnetic and Dirac cases
with increasing values of α, �

and l. An increase/decrease in a
particular quantity has been
shown by an up/down arrow

Parameter changes Greybody factor |T (ω)|2 Quasinormal frequency ω

Re (ω) Im (ω)

Scalar case

α ↑ ↓ ↑ ↑
� ↑ ↑ ↓ ↑
l ↑ ↓ ↑ ↑

Electromagnetic case

α ↑ ↓ ↑ ↑
� ↑ ↑ ↓ ↑
l ↑ ↓ ↑ ↓

Dirac case

α ↑ ↓ ↑ ↑
� ↑ ↑ ↓ ↑
l ↑ ↓ ↑ ↓

of no-incoming wave from infinity. After scattering off of
the effective potential, the asymptotic behaviour of the wave
could be written in tortoise coordinate as

ψ(r∗) = T (ω)e−iωr∗ ; r∗ → −∞ (24)

ψ(r∗) = e−iωr∗ + R(ω)eiωr∗ ; r∗ → ∞ (25)

In the WKB approximation, the reflection coefficient is given
by

R(ω) =
(

1 + e−2π iβ
) 1

2
(26)

where β, under the third order WKB approximation, is given
by

i
(
ω2 − V (r0)

)

√−2V ′′(r0)
− V2 − V3 (27)

where V2 and V3 is given by

V2 = −i�(n), (28)

V3 = −1
√

−2V ′′
0

(n) (29)

Conserving probability we get

γl = |T (ω)|2 = 1 − |R(ω)|2 (30)

where γl is the greybody factor. This method of finding the
reflection coefficient has been extensively employed in past
literature. Below we plot the behaviour of the reflection and
transmission coefficient, with the frequency of the wave, for
a wide range of parameter values in Fig. 4. The general nature
of the greybody factors for different types of waves is essen-
tially similar. The greybody factors decrease with an increas-
ing l and increasing coupling constant α. This also implies,

that the greybody factors for negative α would be greater
than positive ones. The greybody factors tend to increase
with an increase in the cosmological constant. Table 4 shows
the behaviour of the greybody factor for all three cases for
different sets of parameters α, � and l.

7 Conclusion and future directions

Very recently, it has been shown [41] that the EGB grav-
ity theory can be reconstructed in a particular way where
the Gauss–Bonnet coupling can be re-scaled as α/(D − 4).
This theory in four space time dimension, the novel 4D
EGB theory, defined as a D → 4 limit at the level of
equations of motion admits black hole solutions in asymp-
totically flat and (anti)-de Sitter spaces. The quasinormal
modes of the scalar, gravitational and Fermionic fields for
the asymptotically flat black holes in this background were
already studied [42,59]. Motivated by this, in this paper,
we have extended the calculations to asymptotically de Sit-
ter space time and evaluated the quasinormal modes of
massless scalar, electromagnetic and Dirac field respec-
tively. We summarise the results of our study in Table
5.

We find that both the oscillation frequency and the damp-
ing time decrease with increasing values of the cosmolog-
ical constant �. On the other hand, we observe that as the
Gauss–Bonnet coupling α decreases and eventually crosses
over to negative values, the real part of the frequency starts
decreasing whereas the imaginary part also starts to become
more negative, implying that the damping increases. For
positive increasing values of alpha the real part of the fre-
quency increases. This remains the qualitative feature of all
the three different types of perturbations that we have con-
sidered in this paper. From our results we can figure out

123



Eur. Phys. J. C (2020) 80 :760 Page 13 of 14 760

the the stability of the scalar and electromagnetic pertur-
bations can be confirmed from the positive definite poten-
tial, however, the Dirac case is a bit different. The posi-
tive definiteness of the potential of any one of the potentials
for any one of the chiralities does not help in asymptoti-
cally de Sitter black hole backgrounds because the potential
for both chiralities will have negative gaps [88,89]. Thus,
one may require to perform a full time domain analysis in
order to understand the stability feature of the space time
under Dirac perturbation. The present study therefore can
only give the qualitative nature of variations of the QN
frequencies with the Gauss–Bonnet coupling and cosmo-
logical constant as far as fermionic perturbation is con-
cerned.

Along with the quasinormal modes, we have also per-
formed the calculation of the greybody factor for all three
different types of perturbations. We have figured out that the
general feature of the greybody factors for the three different
types of perturbation fields is essentially similar. The grey-
body factor decreases with an increasing l and an increase
in the Gauss–Bonnet coupling constant α. Finally, the grey-
body factors tend to increase with an increase in the cosmo-
logical constant. This behaviour could be easily explained
by looking at Fig. 1. The fraction of the wave transmitted
upon scattering depends inversely on the height of the effec-
tive potential. With an increase in α, the effective potential
increases for all three cases and hence the transmission coef-
ficient decreases. On the other hand with an increase in �,
the effective potential decreases and hence the transmission
coefficient increases. The dependence on l could similarly
be seen from Eqs. (13), (14) and (17). The effective potential
for all three cases increases with an increase in l and hence
the transmission coefficient decreases.

Novel four dimensional EGB gravity has created a lot of
uproar ever since it was proposed. The importance of the the-
ory lies in the fact that so far which was a higher dimensional
theory (the Gauss–Bonnet term was only a topological term
in four dimensions), can now be applied in the context of four
dimensional space time in which we live in – this can open up
many interesting windows in the study of alternative theories
of gravity. Moreover, having a look at the AdS branch will
also be interesting in its own right. Calculations of the pertur-
bations and the stability study of the novel 4D Gauss–Bonnet
black hole in AdS background will be an important future
extension of the present work. This may also be important
to understand the AdS/CFT conjecture, since quasinormal
modes describe the approach to equilibrium in the confor-
mal field theory side.

Note added: On the day of the submission of the present
manuscript, a paper appeared in arXiv [97] which also deals
with the same type of perturbations discussed here. While
the paper [97] gave the time domain analysis, which we did

not present here, our work contains some more additional
studies on greybody factor and eikonal limits.
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