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Abstract Despite the successes of the Standard Model
of particle physics, it is known to suffer from a number
of deficiencies. Several of these can be addressed within
non-supersymmetric theories of grand unification based on
SO(10). However, achieving gauge coupling unification in
such theories is known to require additional physics below
the unification scale, such as symmetry breaking in multi-
ple steps. Many such models are disfavored due to bounds
on the proton lifetime. Corrections arising from threshold
effects can, however, modify these conclusions. We analyze
all seven relevant breaking chains with one intermediate sym-
metry breaking scale, assuming the “survival hypothesis” for
the scalar masses. Two are allowed by proton lifetime and two
are disfavored by a failure to unify the gauge couplings. The
remaining three unify at a too low scale, but can be salvaged
by various amounts of threshold corrections. We parametrize
this and thereby rank the models by the size of the threshold
corrections required to save them.

1 Introduction

Grand unified theories (GUTs) in general [1], and in partic-
ular models based on the SO(10) gauge symmetry [2], are
popular extensions of the Standard Model (SM) of particle
physics. They can provide solutions to a number of open
questions in the SM, such as the nature of charge quantiza-
tion, anomaly cancellation, and the existence of three sepa-
rate gauge groups [3]. Of a more phenomenological nature,
SO(10) models naturally account for the generation of small
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neutrino masses through the type I [4–8] or type II [9–11]
seesaw mechanisms.

A prerequisite of grand unification is that the evolution
of the SM gauge couplings with energy scale, governed by
the renormalization group equations (RGEs), must be such
that they unify. It is well-known that the gauge couplings
do not unify in non-supersymmetric (non-SUSY) models
unless intermediate symmetry breaking scales or fields with
intermediate-scale masses are added, but that successful
gauge coupling unification can be achieved in the minimal
supersymmetric SM [12–14]. On the other hand, since the
SO(10) group is of rank five, which is one larger than the
SM gauge group, the symmetry breaking may occur in mul-
tiple steps [15–28]. This modifies the evolution of the gauge
couplings in a way that can allow their unification even in
non-SUSY models.

Currently, the most constraining experimental prediction
of GUTs is the instability of protons. The additional lepto-
quark scalar and gauge bosons that reside at the scale of unifi-
cation MGUT in general mediate proton decay. This, together
with the non-observation of proton decay, places a lower
bound on the value of MGUT. In turn, this can disfavor some
of the possible intermediate gauge groups since they predict
a value of MGUT that is too low [29].

Threshold corrections [30,31] are loop level corrections
arising from fields lying at and around the scale of sym-
metry breaking that modify the matching conditions of the
gauge couplings of the models above and below the energy
scale of symmetry breaking. This can in turn modify the
value of MGUT and thereby save some of the models that
were previously disfavored [27,32–39]. Furthermore, since
threshold corrections modify the matching conditions of the
gauge couplings, they can allow for unification in models
where the gauge couplings do not unify [40–42]. The thresh-
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old corrections also impact the intermediate scale MI, which
is relevant, for example, for neutrino masses.

In this work, we consider the direct breaking of SO(10)

to the SM as well as all relevant models with one interme-
diate symmetry breaking scale. For the model with direct
breaking to the SM, we study how the threshold corrections
may allow for unification without the addition of intermediate
symmetries. For the models with an intermediate symmetry
breaking step in which unification is achieved, we investigate
how the threshold corrections affect MGUT and MI. Thereby,
we quantify how large threshold corrections are required in
order to save the models that a priori predict a proton life-
time that is too short. The renormalization group (RG) run-
ning is performed at two-loop level, with the one-loop level
result given for comparison. We do not take into account any
restrictions on MI from neutrino masses in order to refrain
from making too many assumptions about the models. This
work differs significantly from recent works dealing with
threshold correction [36,39,42,43] in that we consider all
possible breaking chains with at most one intermediate step
and treat all models in the same way. This, together with our
comprehensive numerical analysis of the effect of thresh-
old corrections, allows a simple and quantitative comparison
between the plausibility of the different breaking chains.

In Sect. 2, we discuss the models that are analyzed in
this work and present the solutions to the RGEs. We com-
ment on which models achieve gauge coupling unification
and the prediction for the proton lifetime in each of the mod-
els. Then, in Sect. 3, we describe the computation of threshold
corrections. In Sect. 4, we present the results of the threshold
corrections for the different models. Finally, in Sect. 5, we
summarize our findings and conclude.

2 Models

In this section, we discuss the eight models that we investi-
gate in this work. Furthermore, we give some details on the
particle content that is involved in each model and comment
on the RG running.

The most minimal non-SUSY SO(10)-based model is one
in which the gauge symmetry is broken directly to the SM.
Following this logic, the next-to-minimal breaking chains
are those with one intermediate gauge symmetry. The possi-
ble intermediate breaking chains may be seen, for example,
in Refs. [26,44]. Here, we consider the direct breaking of
SO(10) to the SM as well as all models with one intermedi-
ate symmetry breaking scale with at least two group factors
in the intermediate symmetry. The reason that we require at
least two group factors is that if there is only one, e.g. SU(5),
then the intermediate symmetry does not impact the possi-
bility of gauge coupling unification, unless lighter fields are
added as in e.g. Ref. [45].

In all models, the fermionic particle content consists of
three generations of the spinorial 16F . In order to accommo-
date realistic fermion mass and mixing parameters, the scalar
sector contains a complexified 10H representation [46–48]
and a 126H representation. In order to retain some predictiv-
ity of the Yukawa sector of SO(10), we impose a Peccei–
Quinn (PQ) symmetry [49,50], which forbids one of the
two independent couplings between the fermions and the
10H [51]. This is not necessary for SO(10) model build-
ing, but is often invoked in realistic models. In general, the
breaking of the PQ symmetry leads to the axion domain wall
problem, in which domain walls between different vacua are
generated and dominate the Universe [52]. We do not analyze
this problem in detail in the models investigated in this work,
but note that there exist solutions, such as the Lazarides–Shafi
mechanism [53].

We assume that below the intermediate symmetry break-
ing scale MI, only the SM particle content survives and all
other multiplets have masses around either MGUT or MI. This
is in accordance with the “survival hypothesis”, namely that
scalars acquire the largest possible mass that is compatible
with the symmetry breaking [16,54–56].

To one-loop order in perturbation theory, gauge couplings
evolve from one scale M to another scale μ according to

α−1
i (μ) = α−1

i (M) − ai
2π

ln
( μ

M

)
, (1)

where the index i denotes the group to which the gauge cou-
pling corresponds. The coefficient ai , known as the β coeffi-
cient, is determined by the particle content that exists in the
relevant energy regime. It is given by [57,58]

ai = −11

3
C2(Gi ) + 4

3
κF S2(Fi ) + 1

3
κS S2(Si ), (2)

where C2(r) is the quadratic Casimir and S2(r) [sometimes
also denoted C(r)] is the Dynkin index of the representation
r , related to the quadratic Casimir by

S2(r) = d(r)

d(G)
C2(r), (3)

where G refers to the adjoint representation and d(r) denotes
the dimension of representation r . Furthermore, Fi is the
representation that the fermions belong to and Si is the rep-
resentation of the scalars. The coefficient κF is 1 for Dirac
fermions and 1/2 for Weyl fermions and κS is 1 for complex
scalars and 1/2 for real scalars.

To two-loop order in perturbation theory, the gauge cou-
plings obey the differential equation

d α−1
i (μ)

d ln μ
= − ai

2π
−

∑
j

bi j

8π2α−1
j (μ)

, (4)
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where the two-loop coefficients are given by [57,58]

bi j = −34

3
[C2(Gi )]

2 δi j + κF

[
4C2(Fj ) + 20

3
C2(Gi )δi j

]
S2(Fi )

+κS

[
4C2(S j ) + 2

3
C2(Gi )δi j

]
S2(Si ). (5)

There is also a contribution from the Yukawa coupling to the
two-loop β function above. However, since the RG running
of the Yukawa couplings is somewhat model-dependent, we
neglect that term in Eq. (5). The β coefficients ai and bi j for
the models considered are listed in Table 2 in Appendix A.

Given the values of the gauge couplings at the electroweak
scale MZ � 91.1876 GeV [59],

(
α−1

3 (MZ ), α−1
2 (MZ ), α−1

1 (MZ )
)

= (8.50, 29.6, 59.0),

(6)

the system of RGEs can be solved.1 Depending on the β func-
tions, precise gauge coupling unification may be obtained. If
it is possible, then that model is an allowed model for grand
unification.

The relevant experimental prediction of grand unification
related to the scale of unification is proton decay. From the
scale of grand unification and the coupling strength gGUT

at that scale, the proton lifetime in the most constraining
channel can be computed as [60,61]

�(p → e+π0) � mp

64π f 2
π

g4
GUT

M4
GUT

A2
Lα2

H Fq , (7)

where fπ � 139 MeV is the pion decay constant, AL �
2.726 is a renormalization factor, αH � 0.012 GeV3 is the
hadronic matrix element, and Fq � 7.6 is a quark-mixing
factor. With these numerical factors, the proton lifetime in
this channel can be estimated by

τ(p → e+π0) � (7.5×1035 yr)

(
MGUT

1016 GeV

)4 (
0.03

αGUT

)2

.

(8)

Since proton decay has not been experimentally observed,
there is a lower bound on the lifetime of the proton. The
most constraining one is from Super-Kamiokande [62–64]
with the bound τ(p → e+π0) > 1.67 × 1034 year at 90 %
confidence level. Any model must be able to accommodate
a proton lifetime longer than the experimental bound.

In what follows, we employ the conventions that gauge
couplings, β coefficients, and representations of fields appear

1 Note that we use the central values and neglect their uncertainties.
Taking into account the uncertainties, the largest of which is about 0.8 %
on α3(MZ ) [59], would impact the computed scales MI and MGUT by
less than 5 %, which does not affect our conclusions.

in the order in which the gauge group is written. For example,
in SU(3)C × SU(2)L ×U(1)Y , the first entry corresponds to
SU(3)C, the second to SU(2)L, and the third to U(1)Y . For
representations of fields, Abelian charges are always listed
as subscripts.

2.1 No Intermediate Symmetry

The direct breaking of the SO(10) symmetry to the SM gauge
group G321 = SU(3)C × SU(2)L × U(1)Y can be achieved
with a 144H taking a vacuum expectation value (vev) in the
appropriate direction [65]. We then assume that all multi-
plets from within the 144H have masses at MGUT. Assigning
a non-zero PQ charge to the 144H allows it to also break the
PQ symmetry at MGUT since the vev of a charged component
of the field results in spontaneous symmetry breaking. Fur-
ther, we assume that from the 10H and the 126H , only one
combination of the SU(2)L doublets survives below MGUT.
This is the SM Higgs doublet [48], such that the SM particle
content is recovered below MGUT. The other fields that are
not part of the SM field content reside at MGUT. These are
listed in Table 3 in Appendix B.

From the particle content described above, the β coeffi-
cients ai and bi j may be computed. They are listed in Table 2
in Appendix A. The resulting evolution of the SM gauge
couplings is shown in Fig. 1a. As is well known, the gauge
couplings fail to unify.

2.2 SU(4) × SU(2) × SU(2)

A popular model of intermediate symmetry in the breaking
of SO(10) is the Pati–Salam (PS) model, based on the gauge
symmetry G422 = SU(4)C × SU(2)L × SU(2)R [66]. It is
a maximal subgroup of SO(10) and contains the SM gauge
group G321 as a subgroup. The fermions are embedded in this
model as (4, 2, 1) ⊕ (4, 1, 2).

Models based on a Pati–Salam intermediate symmetry
have been investigated extensively in the literature [10,35,
47,67–72]. In this work, we follow the model described in
Ref. [73], in which the SO(10) symmetry is broken by a
vev in the 210H . To break the PS symmetry as well as the
PQ symmetry down to G321, we employ a vev in the 126H

together with a complex 45H with a non-zero PQ charge.
The reason that two separate vevs are needed even though

the 126H has a non-zero PQ charge is to break the linear
combination of PQ, B − L , and T3,R which is otherwise left
invariant [48,51,51,74]. Although the minimal choice of an
extra representation for the breaking of the PQ symmetry
could be considered to be a singlet, we will not use this. The
reason is that singlets have mass terms that are unprotected
by any symmetry and this choice would therefore introduce
unnecessary fine-tuning. Thus a 45H is introduced.
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Between MGUT and MI, the scalar fields are (1, 2, 2)

from the 10H , (15, 2, 2) ⊕ (10, 1, 3) from the 126H , and
(1, 1, 3) from the 45H . From these, the β coefficients, listed
in Appendix 1, can be computed. The fields that lie at MGUT

and MI are given in Table 4 in Appendix B.
To compute the RG running in this model, one also

requires the matching conditions between the SM and the
PS models. The gauge couplings of the model based on G422

at MI are derived from the gauge couplings of the SM by

α−1
4 (MI) = α−1

3 (MI), (9)

α−1
2L (MI) = α−1

2 (MI), (10)

α−1
2R (MI) = 5

3
α−1
Y (MI) − 2

3
α−1

3 (MI). (11)

The resulting RG evolution is shown in Fig. 1b. At two-loop
level, the solutions for the scales gives an intermediate scale
of MI ≈ 2.64 × 109 GeV and a unification scale of MGUT ≈
3.72×1016 GeV, corresponding to a proton lifetime of τp ≈
1.2×1038 yr.2 Hence, it is clear that the PS model is allowed
by the proton lifetime limit.

2.3 SU(4) × SU(2) × SU(2) × D

This model is based on a PS gauge symmetry with an addi-
tional left-right D parity which acts on the fields such that
(r4, rL, rR) → (r4, rR, rL) [75–78]. For a previous analysis
of a similar model see e.g. Ref. [35,36].

In order to preserve D parity when breaking the SO(10)

symmetry, a 54H can be used. The breaking of the G422D

symmetry can be achieved using the 126H . A 45H is used to
also break the PQ symmetry, as described in Sect. 2.2.

Between MGUT and MI, we have (1, 2, 2) from the 10H

and (15, 2, 2) ⊕ (10, 1, 3) ⊕ (10, 3, 1) from the 126H . Note
that the latter is needed only to preserve D parity of the model.
From the 45H , we have (1, 1, 3) ⊕ (1, 3, 1), where, again,
the latter representation only serves to conserve D parity.
Note that the difference between this model and the one in
Ref. [36] is that they do not include the 45H and that they
place (6, 1, 1) from the 126H at MI due to considerations of
the scalar potential, which are beyond the scope of this work.
The fields that lie at MGUT and MI are given in Table 5 in
Appendix 1.

With the particle content described, we can compute the
β coefficients which are given in Appendix A. The match-
ing conditions are the same as for the PS model, namely
Eqs. (10)–(11), with the additional constraint thatα−1

2L = α−1
2R

due to D parity. With these, one can calculate the RG evo-
lution of the gauge couplings and the required intermediate
scale for their unification, as shown in Fig. 1c. At two-loop

2 In comparison, at one-loop level, the scales are MI ≈ 1.28×1011 GeV
and MGUT ≈ 1.96 × 1016 GeV, corresponding to a proton lifetime of
τp ≈ 1.3 × 1037 year.

level, the intermediate scale is MI ≈ 4.34×1013 GeV and the
unification scale is MGUT ≈ 7.45 × 1014 GeV, giving a pro-
ton lifetime of τp ≈ 3 × 1031 year, below the experimental
lower limit, as previously noted in e.g. [29].3

2.4 SU(4) × SU(2) × U(1)

The gauge group G421 = SU(4)C × SU(2)L × U(1)R is
a subgroup of the PS gauge group, but it may be reached
directly by breaking the SO(10) symmetry. This is possible
by assigning a vev to the appropriate direction of the 45H .
Models based on this gauge group have been previously ana-
lyzed in e.g. Refs. [33,51,79]. The breaking of G421 down to
G321 can then be done using a vev of (10, 1)1 from the 126H .
Since now the 45H , which carries a PQ charge, is used to
break the symmetry at MGUT, the PQ symmetry will also
be broken at that scale. Contrary to the previously discussed
models, we do not need to include two separate vevs to break
the remaining linear combination of charges, since now both
B − L and R remain unbroken at MGUT.

To compute the β coefficients between MI and MGUT,
we first need to list the various fields that are present
between those two scales. For the fermions, we have (4, 2)0⊕
(4, 1)1/2 ⊕ (4, 1)−1/2. The scalars are (1, 2)−1/2 from the
10H and (15, 2)−1/2 ⊕ (10, 1)−1 from the 126H . The result-
ing β coefficients are found in Appendix 1 and the resulting
gauge coupling unification can be seen in Fig. 1d. The match-
ing conditions between G321 and G421 are identical to those
given in Eqs. (10)–(11), with the replacement α−1

2R (MI) →
α−1

1R (MI). The fields that lie at MGUT and MI are given in
Table 6 in Appendix B.

At two-loop level, the resulting scales are MI ≈ 1.57 ×
1011 GeV and MGUT ≈ 2.69 × 1014 GeV, giving a proton
lifetime of τp ≈ 5.8 × 1029 year.4 Thus, as noted previously
in the literature [29], this model is ruled out by proton decay
bounds.

2.5 SU(3) × SU(2) × SU(2) × U(1)

Another subgroup of the PS gauge group is G3221 =
SU(3)C × SU(2)L × SU(2)R × U(1)B−L , as studied in e.g.
Refs. [35,51,80–87]. This may be reached by direct breaking
of the SO(10) symmetry by e.g. a vev in the 45H . Similar to
the G421 model, the PQ symmetry is broken at MGUT by the
45H so that only one vev is required to break the symmetry

3 At one-loop level, the scales are MI ≈ 5.00×1013 GeV and MGUT ≈
1.40×1015 GeV, resulting in a proton lifetime of τp ≈ 3.7×1032 year,
which is also too short.
4 At one-loop level, the scales are MI ≈ 1.35×1011 GeV and MGUT ≈
4.60 × 1014 GeV, corresponding to a proton lifetime of τp ≈ 5.1 ×
1030 year.
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at MI. The breaking of G3221 down to G321 can be achieved
with (1, 1, 3)2 from the 126H .

Computing the β-functions between MI and MGUT, we
first note that the fermions are embedded as (3, 2, 1)1/3 ⊕
(1, 2, 1)−1 ⊕ (3, 1, 2)−1/3 ⊕ (1, 1, 2)1. The scalars that are
between those two scales are (1, 2, 2)0 from the 10H as
well as (1, 2, 2)0 ⊕ (1, 1, 3)−2 from the 126H . Based on
these fields, the β coefficients can be found in Appendix 1.
The fields that lie at MGUT and MI are given in Table 7 in
Appendix B.

In this model, the matching condition at MI is more
involved than in the above-discussed models due to the fact
that the B − L needs to be appropriately normalized. Before
normalization, the hypercharge Y may be expressed as

Y = B − L

2
− T3R . (12)

In order to normalize these charges, the hypercharge Y is
multiplied by the GUT normalization factor of

√
3/5 and the

B − L charge is multiplied by
√

3/8. From this, one can
derive the matching conditions of the appropriately normal-
ized gauge couplings, namely

α−1
Y = 2

5
α−1
B−L + 3

5
α−1
R . (13)

In order to invert this relation, we face the issue that we are
matching three gauge couplings to four. Thus, we introduce
the parameter x such that α−1

B−L(MI) = xα−1
R (MI). This

parameter is then solved for together with the scales MGUT

and MI such that gauge coupling unification is achieved. The
resulting matching conditions are

α−1
3 (MI) = α−1

3 (MI), (14)

α−1
2L (MI) = α−1

2 (MI), (15)

α−1
2R (MI) =

(
2

5
x + 3

5

)−1

α−1
Y (MI), (16)

α−1
B−L(MI) = x

(
2

5
x + 3

5

)−1

α−1
Y (MI). (17)

The RG running is shown in Fig. 1e.
Solving for the scales that result in unification, we obtain

at two-loop level MI ≈ 1.57×1010 GeV and MGUT ≈ 5.18×
1015 GeV with the parameter x ≈ 1.38, resulting in a proton
lifetime of τp ≈ 9.4 × 1034 year.5 Therefore, this model is
allowed by proton lifetime considerations.

5 At one-loop level, the result is MI ≈ 6.59 × 109 GeV and MGUT ≈
1.39 × 1016 GeV with the parameter x ≈ 1.43, resulting in τp ≈ 5.0 ×
1036 year.

2.6 SU(3) × SU(2) × SU(2) × U(1) × D

A similar model to the one in Sect. 2.5 but with a surviving D
parity may be constructed. In this case, the SO(10) symmetry
is broken down to the group G3221D = SU(3)C × SU(2)L ×
SU(2)R × U(1)B−L × D by a vev in the 210H , which con-
serves the D parity. Such models have been previously stud-
ied in e.g. Refs. [35,76,77,84,85,88]. Then,G3221D is broken
to G321 using (1, 1, 3)2 from the 126H . The PQ symmetry is
broken at MI by (1, 1, 3)0 from the 45H .

The fermion embedding is the same as in Sect. 2.5. For the
scalars, between MGUT and MI, there is (1, 2, 2)0 from the
10H . From the 126H , we have (1, 1, 2)0 for the SM Higgs
and (1, 1, 3)−2 for the symmetry breaking. To conserve D
parity, we also need to have (1, 3, 1)2. From the 45H , we
have (1, 1, 3)0 which is used to break the PQ symmetry as
well as (1, 3, 1)0 in order to conserve D parity. The fields
that lie at MGUT and MI are given in Table 8 in Appendix B.

From these fields, the β coefficients may be calculated
and are given in Appendix A. Although this model has a
similar gauge structure to the one in Sect. 2.5, the matching
conditions become somewhat simpler due to the requirement
that α−1

2L = α−1
2R . This removes the extra freedom introduced

by the parameter x above and the matching conditions simply
read

α−1
3 (MI) = α−1

3 (MI), (18)

α−1
2L (MI) = α−1

2 (MI), (19)

α−1
2R (MI) = α−1

2 (MI), (20)

α−1
B−L(MI) = 5

2
α−1
Y (MI) + 3

2
α−1

2 (MI). (21)

The resulting gauge coupling running is shown in Fig. 1f.
The scales that result in gauge coupling unification with

at two-loop level are MI ≈ 3.13 × 1011 GeV and MGUT ≈
6.31 × 1014 GeV, resulting in a proton lifetime of τp ≈
1.9 × 1031 yr.6 This model is therefore disfavored due to
its prediction of the proton lifetime.

2.7 SU(3) × SU(2) × U(1) × U(1)

A subgroup of the G3221 group is G3211 = SU(3)C ×
SU(2)L × U(1)R × U(1)B−L , which may also be reached
directly by breaking the SO(10) symmetry. In order to do so,
the singlet inside the 210H which also breaks G421 and G3221

must take a vev. For models based on this gauge group, see
e.g. Refs. [32,79,82]. The breaking ofG3211 down toG321 can
then be achieved using (1, 1)1,2 in the 126H . In order to also
break the remaining combination of the Abelian charges and

6 At one-loop level, the scales are MI ≈ 1.69×1011 GeV and MGUT ≈
1.29 × 1015 GeV, with a proton lifetime of τp ≈ 3.3 × 1032 year.
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the PQ symmetry, a vev must be taken by one of the singlets
in the 45H .

The fermions are embedded as (3, 2)0,1/3 ⊕ (1, 2)0,−1 ⊕
(3, 1)−1/2,−1/3 ⊕ (3, 1)1/2,−1/3 ⊕ (1, 1)1/2,1 ⊕ (1, 1)−1/2,1.
The scalars that contribute to the RG running of the gauge
couplings are (1, 2)−1/2,0 from the 10H and (1, 2)−1/2,0 as
well as (1, 1)1,2 from the 126H . The field from the 45H does
not contribute since it is a singlet.

From this, one can compute the β coefficients, given in
Appendix 1, as well as the RG running using the same match-
ing conditions as in Sect. 2.5, replacing α−1

2R by α−1
1R . Note

that in general the RG running is affected by kinetic mix-
ing between the two Abelian gauge factors [27,89–92]. The
result is shown in Fig. 1g, from which it is clear that unifi-
cation is not achieved in this model. The reason is that the
slopes of the two lines corresponding to the Abelian gauge
couplings are too similar, meaning that they do not converge.7

Therefore, this model is disfavored on that ground and no
prediction of the proton lifetime can be made.

2.8 SU(5) × U(1)

The final model considered is the breaking of SO(10) to a
model of the SU(5) type. The reason that SU(5) is not con-
sidered on its own is that an intermediate symmetry that is a
simple group does not help in achieving gauge coupling uni-
fication and instead changes the problem to requiring unifi-
cation of the three gauge couplings at MI, unless one departs
from the “survival hypothesis” and allow intermediate-mass
fields. We therefore consider the flipped SU(5) model, i.e.
G51 = SU(5)×U(1)X [93–97], in which the mixing between
the external U(1)X and the Abelian charge from inside SU(5)

to produce the hypercharge has the potential to help achieve
gauge coupling unification.

The model which we construct, motivated by minimality,
is one in which the SO(10) symmetry is broken by a vev in
the 45H . In order to break the symmetry down to G321, one
can use the 240 from within the 45H together with the 502

from within the 126H .
Between MGUT and MI, the fermions are embedded as

101 ⊕ 5−3 ⊕ 15. The scalars are 240 from the 45H for the
breaking together with 502 for the breaking and 45−2 for the
SU(2)L doublet from within the 126H . From the 10H , we
have 5−2 also for the SM Higgs. The resulting β coefficients
can be found in Appendix A.

To compute the RG running, the Abelian charge must
be normalized by a factor of 1/

√
40. Normalizing also the

hypercharge by its usual GUT factor, the matching conditions

7 The effect of kinetic mixing is expected to be on the level of a few per-
cent [92] and will therefore not be large enough to allow for gauge cou-
pling unification. This motivates our choice to neglect it in the present
work.

for the gauge couplings at MI can be derived. One must also
take into account that since the SU(5) group contains the
SU(3)C × SU(2)L part of G321, these must match at MI. The
unification of α−1

2 and α−1
3 therefore determines MI. Hence,

the matching conditions read

α−1
5 (MI) = α−1

3 (MI) = α−1
2 (MI), (22)

α−1
1X (MI) = 25

24
α−1
Y (MI) − 1

24
α−1

2 (MI). (23)

Using these matching conditions, the RG running may be
computed and is displayed in Fig. 1h. As is shown, gauge
coupling unification is not achieved in this model due to the
diverging lines of α−1

5 and α−1
1X . To rectify this, the model

would need to be made more complicated in order to either
significantly change the RG running between MI and MGUT

or to change the RG running in the SM region so as to change
MI.

2.9 Gauge coupling running

The RG running of the gauge couplings for all models dis-
cussed in Sect. 2 are displayed in Fig. 1. In this figure, the
inverse gauge couplings α−1

i are plotted as functions of the
energy scale μ. Results to two-loop (one-loop) order are
shown by the solid (dashed) lines and the corresponding
scales that result in gauge coupling unification are displayed
as vertical lines. For the two models in which gauge cou-
pling unification is not achieved, namely the models based
on G3211 and G51, representative intermediate scales are cho-
sen. Particularly for the model based onG51, this corresponds
to the scale at which the gauge couplings corresponding to
SU(3)C and SU(2)L unify. The gauge coupling that each
color corresponds to is given by the label in the figure. The
subscript of each α−1 denotes which of the gauge group fac-
tors it corresponds to.

3 Threshold corrections

The results presented in Sect. 2 assume that the matching
of two models occurs at tree-level, meaning that the gauge
couplings of the subgroup are equal to a linear combination
of the gauge couplings of the group from which it originates.
At higher-loop orders, the matching conditions are modified
by threshold corrections.

For the symmetry breaking of a groupGm to another group
Gn at a scale Mm→n , the matching condition with threshold
corrections reads

α−1
n (Mm→n) = α−1

m (Mm→n) − λmn

12π
, (24)
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Fig. 1 RG running of the
inverse gauge couplings in the
eight different models
considered. The results to
two-loop (one-loop) order are
shown as solid (dashed) lines.
For the models without gauge
coupling unification,
representative values for the
scales were chosen. GUT
normalization of hypercharge is
used throughout. RG running of
the inverse gauge couplings in
the eight different models
considered. The results to
two-loop (one-loop) order are
shown as solid (dashed) lines.
For the models without gauge
coupling unification,
representative values for the
scales were chosen. GUT
normalization of hypercharge is
used throughout

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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where the one-loop threshold corrections λmn are given by [30,
31]

λmn =
∑

i ∈ vectors

kVi S2(Vi )+
∑

i ∈ scalars

κSi kSi S2(Si ) ln

(
MSi

Mm→n

)
.

(25)

Here, the κSi are 1 or 2 for real or complex representations,
while kVi and kSi are the multiplicities of the vector and
scalar field, respectively, taking into account the dimension
of the representation under the other gauge group factors.
Note that we assume that all superheavy vector bosons have
masses which coincide with the symmetry breaking scale so
that there is no scale-dependent term for vectors. If there
were superheavy fermions, they would also contribute to the
threshold corrections. In what follows, we use the shorthand
notation ηi = ln(MSi /Mm→n).

Note that Eq. (24) holds when the matching of the gauge
couplings at tree-level is such that they are equal at the scale
of symmetry breaking. This is not the case, for example,
when breaking the G422 symmetry to G321, in which case the
hypercharge generator is a linear combination of one genera-
tor from SU(4)C and one from SU(2)R. The matching of the
gauge couplings in that and similar models involves forming
a linear combination of the gauge couplings of the broken
symmetry group. To each such term, one adds the threshold
correction. For more explicit details, we refer the reader to
Ref. [27].

Given the fields that lie around each energy scale as given
in Appendix 1, the threshold corrections to each of the gauge
couplings may be computed using Eq. (25). Since there is
one threshold correction corresponding to each gauge group
factor in the unbroken symmetry at the symmetry breaking
scale, one needs to use the representations under the unbroken
group of all the fields that lie at the symmetry breaking scale.
For each of the models in Sect. 2 that achieve gauge coupling
unification and the model without an intermediate symmetry
group, the threshold corrections to the matching conditions
have been computed and are presented in Appendix C. Note
that, in this work, we do not analyze the effects of threshold
corrections for the models based on G3211 andG51 since these
do not achieve gauge coupling unification.

4 Results

Given the threshold corrections given in Appendix C, we ran-
domly sample the masses of the scalars around the symmetry
breaking scale and thereby find how large the deviations from
the symmetry breaking scale are required to be in order to
save the models.

In the case of no intermediate symmetry, the impact of
the threshold effects on the matching conditions is such that
they can compensate for the difference between the gauge
couplings and therefore allow gauge coupling unification [41,
42]. That is, since threshold corrections are meant to account
for the failure of gauge coupling unification, we can compare
the difference of the gauge couplings with the size of the
threshold corrections. To this end, we define

�λi j (μ) = α−1
i (μ) − α−1

j (μ) = λ10
j − λ10

i

12π
. (26)

From the three gauge couplings in the SM, the failure of
gauge coupling unification can be demonstrated by the two
differences �λ32 and �λ21. For each energy scale, we can
plot the correlation of these two quantities, as is shown by
the red lines in Fig. 2, in which the solid line shows the result
with RG running at two-loop level and the dashed line at one-
loop level. These lines demonstrate the size of the threshold
corrections that would be required in order to obtain gauge
coupling unification.

From the expressions for the threshold corrections given in
Appendix 1, one may compute the size of the difference of the
threshold corrections, given values of the parameters ηi . We
randomly sample these parameters independently accord-
ing to uniform distributions in the regions ηi ∈ [− 1,+ 1],
ηi ∈ [− 2,+ 2], and ηi ∈ [− 3,+ 3]. These regions demon-
strate the possible size of threshold corrections that can be
obtained by allowing each scalar mass to vary within the
determined ranges. Although the masses of the scalar fields
are in general related, the scalar potential of realistic SO(10)

models is often complicated and involves many free parame-
ters. Therefore, there is a significant amount of freedom and
we assume that the masses are independent.

Computationally, each scan was performed on a comput-
ing cluster utilizing 48 cores each sampling at least 2 × 106

points.8 Following this, the convex hull was computed using
the ConvexHull routine from the SciPy [98] package
version 1.3.2 in Python 3.7.0, which produced the
blue shaded regions shown in Fig. 2. This was performed
by first sampling 104 points for each region and using the
ConvexHull routine to find the smallest convex polygon
containing the given points. From there, only the points on
the boundary were saved. When sampling the points, only
those that fell outside the initial boundary were saved and
were used to create the new boundary. This produced the
regions shown in Figs. 2 and 3. These figures were used to

8 The actual number of points varied between the models due to differ-
ent numerical complexity involved in solving the system of equations.
The two-loop results of G3221 was generated by sampling 2×106 points
per core, the two-loop results of G422 and G3221D by sampling 1 × 107

points per core, while all other results were generated by sampling
8 × 108 points per core.
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Fig. 2 Threshold effects to
allow for unification of the SM
gauge couplings. The difference
between gauge couplings
α−1

3 − α−1
2 and α−1

2 − α−1
1 is

shown in the solid (dashed) red
line at two-loop (one-loop)
level. Numbers above the lines
are the energy scales in units of
GeV. The blue shaded regions
show the size of the threshold
corrections. Intersections
between the blue shaded regions
and the red lines correspond to
successful gauge coupling
unification

illustrate the results rather than scatter plots, since they better
demonstrate the fact that the sampled threshold corrections
span a region.

The intersection of the blue shaded regions and the red
lines shows the size of the threshold corrections that lead to
unification of the SM gauge couplings at a particular scale.
For example, with RG running at two-loop level, threshold
corrections with ηi ∈ [− 2,+ 2] can provide unification, but
only at a range of scales around MGUT � (5 × 1013 − 5 ×
1015) GeV, with a slightly narrower range at one-loop level.
This corresponds to a proton lifetime of τp ≈ 5 × 1034 year,
which is allowed but close to the current bound. With ηi ∈
[− 3,+ 3], a larger range of values of MGUT are allowed, and
gauge coupling unification can then be successfully achieved.

For the models with an intermediate symmetry that
achieve gauge coupling unification without threshold cor-
rections, the effect of threshold corrections on the scales MI

and MGUT were found. This was performed by solving the
matching conditions to determine the two scales as functions
of the ηi parameters. Then, the ηi were individually sam-
pled in the same way as described above for Fig. 2. Regions
of possible scales for ηi ∈ [− 1,+ 1], ηi ∈ [− 2,+ 2],
and ηi ∈ [− 3,+ 3] are plotted in Fig. 3, again using the
ConvexHull routine. The red shaded regions denote the
range of possible scales with RG running at two-loop level
and the black contours show the same at one-loop level. The
scales obtained in the absence of threshold corrections are
denoted by a “×” (“�”) for the two-loop (one-loop) result.

To investigate if the models which were originally dis-
favored due to a too short proton lifetime can be saved
by threshold corrections, the nearly horizontal grey shaded
region denotes a too short proton lifetime. Thus, points in
the shaded region are ruled out. This line was computed by
first calculating the proton lifetime for the randomly sam-
pled points and then using a Support Vector Machine (SVM)
from the scikit-learn package [99] version 0.19.2
in Python 3.7.0 to find the equation of the line that
best separates the two classes. This line separates the two
classes well and was observed to be nearly identical for
the one-loop and two-loop RG running. The slanted shaded
region is the forbidden region corresponding to MI > MGUT.
Note that there also exist bounds on MI, such as right-
handed neutrino masses in the type I seesaw mechanism or
leptogenesis [100–105]. Other possible experimental con-
straints on GUTs may come from neutron-antineutron oscil-
lations [106–110] induced by the breaking of B − L or
topological defects [39,78,86,111–118] from the breaking
of some of the symmetries considered. The stability of these
topological defects varies between different models, making
some more problematic than others. For more details, see e.g.
Refs. [39,86,111,113]

For the model based on G422, it was already allowed with-
out threshold corrections. As shown in Fig. 3a, they have
quite a large effect on the scales. The model based on G422D

has smaller threshold corrections, as displayed in Fig. 3b,
due to the absence of the 210H . This model was disfavored
without threshold corrections and is saved by threshold cor-
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(a) (b)

(c)

(d) (e)

Fig. 3 Variations in the scales due to threshold corrections for the
models which achieve gauge coupling unification. The red shaded
regions show the results with RG running at two-loop level, while the
full, dashed, and dotted contours show the results at one-loop level.
Concentric regions show the scales for the thresholds in the range

ηi ∈ [− 1,+ 1], [− 2,+ 2], and [− 3,+ 3], respectively. The scales
without threshold corrections are marked with a “×” (“�”) for the two-
loop (one-loop) result. The grey shaded regions are forbidden by a too
short proton lifetime and MI > MGUT

rections with ηi ∈ [− 1,+ 1]. Turning to the model based on
G421 shown in Fig. 3c, it was disfavored without threshold
corrections and is still disfavored by a too short proton life-
time with ηi ∈ [− 3,+ 3]. It requires ηi ∈ [− 4,+ 4] in order

to predict a long enough proton lifetime. The model based
on G3221 shown in Fig. 3d was also allowed without thresh-
old corrections. Lastly, the model based on G3221D, shown in
Fig. 3e, predicted a too short proton lifetime in the absence
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Table 1 Comparison of the viability of the models considered. The sec-
ond column (“GCU”) denotes whether or not gauge coupling unification
is achieved without threshold corrections. The next four columns show
if the predicted proton lifetime is above the lower bound for various
sizes of threshold corrections. A checkmark (“✓”) denotes an allowed

model whereas a cross (“✗”) denotes a disfavored model. The dashes in
the last two rows signify that we did not investigate threshold correc-
tions in those models. The results given are with RG running at two-loop
level. Results at one-loop level may be found in the main text and the
figures

Model GCU ηi ∈ [− 3,+ 3] ηi ∈ [− 2,+ 2] ηi ∈ [− 1,+ 1] No thresh

G321 ✗ ✓ ✓ ✗ ✗

G422 ✓ ✓ ✓ ✓ ✓

G422D ✓ ✓ ✓ ✓ ✗

G421 ✓ ✗ ✗ ✗ ✗

G3221 ✓ ✓ ✓ ✓ ✓

G3221D ✓ ✓ ✓ ✓ ✗

G3211 ✗ – – – –

G51 ✗ – – – –

of threshold corrections. Only a small amount of threshold
corrections are required to save it, since part of the region
with ηi ∈ [− 1,+ 1] is above the grey shaded region. We
summarize these findings in Table 1.

5 Summary and conclusions

Unification in models in which the SO(10) gauge symmetry
breaks to the SM directly or with one intermediate symmetry
breaking have been investigated. Particularly, we have con-
sidered non-SUSY models, in which it is known that achiev-
ing gauge coupling unification is more difficult than in their
SUSY counterparts.

We have solved the RG running in these models and stud-
ied whether or not gauge coupling unification is achieved
and, if so, whether or not the prediction for the proton life-
time is above the experimental lower bound. Gauge coupling
unification was achieved in models with G422, G422D, G421,
G3221, or G3221D as intermediate symmetries. Of these, only
G422 and G3221 predicted a proton lifetime that is above the
experimental lower bound, with τp ≈ 1.2 × 1038 year and
τp ≈ 9.4×1034 year, respectively. These two models are the
well-studied PS and left-right models.

Threshold corrections have been computed for the model
with direct breaking as well as the models in which gauge
coupling unification occurred. For the model with direct
breaking, we have found that gauge coupling unification
can be achieved with a long enough proton lifetime if ηi ∈
[− 2,+ 2]. This holds with RG running at both one-loop and
two-loop level.

The models with intermediate symmetries for which the
predicted proton lifetimes are too short can be saved by invok-
ing threshold corrections, given that they are large enough.
For the models based on G422D and G3221D, it is sufficient to
have ηi ∈ [− 1,+ 1], both with one-loop and two-loop level
RG running. The model based on G421, on the other hand,

requires larger threshold corrections. With RG running at
one-loop level, the proton decay bound can be evaded with
ηi ∈ [− 3,+ 3], while at two-loop level, ηi ∈ [− 4,+ 4] is
required. It should be noted that already for ηi ∈ [− 3,+ 3],
the perturbation from the relevant scale is quite large (a fac-
tor of about 20). Such a large deviation may therefore not be
considered to be very natural, since a significant amount of
fine-tuning may be necessary. The main point of this work is
to illustrate this trade-off between naturalness and viability
in the various models based on SO(10).

The results in this work assume the specific model details
as described in Sect. 2. It should be noted that it is possible to
modify some of these details while still achieving the same
symmetry breaking chain. However, the results reported in
this work can be seen as representative of these models. Fur-
thermore, in the construction of the models, we have not
taken into account any constraints from the scalar poten-
tial. It would be interesting to investigate this since there can
be correlations between the masses of the scalars that could
impact the results.

Additionally, we have not taken into account any bounds
on physics related to MI. This may in some of the models be
related to neutrino masses and/or leptogenesis. Furthermore,
we have neglected the effect that perturbing the scalar fields
around MI has on the RG running, as investigated for example
in Ref. [36]. For larger perturbations, this effect may become
substantial and have an effect on the conclusions. Another
effect that may have an impact on our results is the existence
of Planck-suppressed higher-dimensional operators, espe-
cially when MGUT is large. As discussed in Refs. [119–121],
such operators can modify the field strength tensor of the
unbroken subgroup and hence have an effect on the matching
conditions of the gauge couplings. Furthermore, the inclu-
sion of Planck-suppressed higher-dimensional operators can
affect the proton decay rate [122,123]. The above mentioned
points, together with the investigation of the two models that
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were not considered here, namely those based on G3211 and
G51, would make for an interesting future study.
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Appendix A: Beta coefficients

The β coefficients for the models discussed in Sect. 2 are
listed in Table 2. The second column lists the β functions at
one-loop level and the third column lists them at two-loop
level.

Table 2 β coefficients at one-loop and two-loop levels in each of the
eight models considered. The order in which the β functions for each
model are listed is the same order in which the gauge group factors are
listed, following the conventions in the rest of this work

Model 1-loop level 2-loop level

G321 (− 7,− 19
6 , 41

10 )

⎛
⎜⎝

− 26 9
2

11
10

12 35
6

9
10

44
5

27
10

199
50

⎞
⎟⎠

G422 (− 7
3 , 2, 28

3 )

⎛
⎜⎝

2435
6

105
2

249
2

525
2 73 48

1245
2 48 835

3

⎞
⎟⎠

G422D ( 2
3 , 28

3 , 28
3 )

⎛
⎜⎝

3551
6

249
2

249
2

1245
2

835
3 48

1245
2 48 835

3

⎞
⎟⎠

G421 (− 7,− 2
3 , 10)

⎛
⎜⎝

265
2

57
2

43
2

285
2

115
3 8

645
2 24 51

⎞
⎟⎠

G3221 (− 7,− 8
3 ,− 2, 11

2 )

⎛
⎜⎜⎜⎝

− 26 9
2

9
2

1
2

12 37
3 6 3

2

12 6 31 27
2

4 9
2

81
2

61
2

⎞
⎟⎟⎟⎠

G3221D (− 7,− 4
3 ,− 4

3 , 7)

⎛
⎜⎜⎜⎝

− 26 9
2

9
2

1
2

12 149
3 6 27

2

12 6 149
3

27
2

4 81
2

81
2

115
2

⎞
⎟⎟⎟⎠

G3211 (− 7,− 3, 14
3 , 9

2 )

⎛
⎜⎜⎜⎝

− 26 9
2

3
2

1
2

12 8 1 3
2

12 3 8 15
2

4 9
2

15
2

25
2

⎞
⎟⎟⎟⎠

G51 (− 8
3 , 22

3 )

(
14594

15
129
10

1548
5

79
10

)

Appendix B: Fields at each scale

In this appendix, we list the scalar and vector fields that lie
at each of the scales in the models considered. Except for
the model based on G321 which has only one scale, the fields
that lie at MGUT are listed in the third column and the fields
that lie at MI are listed in the forth and fifth columns. The
fourth column lists them as representations of the intermedi-
ate group and the fifth column lists them as representations
of the SM.

The fields for the G321 model are listed in Table 3, for the
G422 model in Table 4, for the G422D model in Table 5, for the
G421 model in Table 6, for the G3221 model in Table 7, and
finally for the G3221D model in Table 8.
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Table 3 Scalar and vector fields that have masses around MGUT in the G321 model

SO(10) G321

Scalars 10H H1(3, 1)−1/3, H2(3, 1)1/3, φ(1, 2)− 1/2

126H L1(1, 3)1, L2(3, 3)1/3, L3(6, 3)− 1/3, R1(3, 1)−1/3, R2(3, 1)− 4/3, R3(3, 1)2/3,

R4(6, 1)4/3, R5(6, 1)1/3, R6(6, 1)−2/3, R7(1, 1)−2, R8(1, 1)− 1, R9(1, 1)0,

S1(3, 1)−1/3, S2(3, 1)1/3, T1(3, 2)1/6, T2(3, 2)7/6, T3(8, 2)− 1/2, T4(8, 2)1/2,

T5(1, 2)−1/2, T6(1, 2)1/2, T7(3, 2)−7/6, T8(3, 2)−1/6,

144H A1(8, 1)− 1, A2(8, 1)0, A3(6, 1)−1/3, A4(6, 1)2/3, A5(3, 1)−1/3, A6(3, 1)2/3,

A7(3, 1)1/3, A8(3, 1)4/3, B1(8, 2)1/2, B2(6, 2)−1/6, B3(3, 2)−5/6, B4(3, 2)−1/6,

C1(3, 3)−1/3,C2(3, 3)2/3,C3(1, 3)−1,C4(1, 3)0, D1(3, 2)−7/6, D2(3, 2)−1/6,

D3(3, 2)5/6, D4(1, 2)−1/2, D5(1, 2)1/2, D6(1, 2)3/2, E1(3, 1)−1/3, E2(3, 1)2/3,

E3(1, 1)−1, E4(1, 1)0, F1(3, 2)−1/6, F2(1, 2)1/2

Vectors 45 (3, 2)−5/6, (3, 2)1/6, (3, 2)−1/6, (3, 2)5/6, (3, 1)2/3, (3, 1)−2/3,

(1, 1)−1, (1, 1)0, (1, 1)1

Table 4 Scalar and vector fields that have masses around MGUT and MI in the G422 model

SO(10) G422 (fields at MGUT) G422 (fields at MI) G321 (fields at MI)

Scalars 10H H(6, 1, 1) �(1, 2, 2) φ(1, 2)−1/2

45H δ1(15, 1, 1), δ2(1, 3, 1), κ(1, 1, 3) κ1(1, 1)1, κ2(1, 1)−1, κ3(1, 1)0

δ3(6, 2, 2)

126H �L (10, 3, 1), S(6, 1, 1) �R(10, 1, 3), R1(3, 1)−1/3, R2(3, 1)−4/3, R3(3, 1)2/3,

R4(6, 1)4/3, R5(6, 1)1/3, R6(6, 1)−2/3,

R7(1, 1)−2, R8(1, 1)−1, R9(1, 1)0

T (15, 2, 2) T1(3, 2)1/6, T2(3, 2)7/6, T3(8, 2)−1/2,

T4(8, 2)1/2, T5(1, 2)−1/2, T6(1, 2)1/2,

T7(3, 2)−7/6, T8(3, 2)−1/6

210H �L (15, 3, 1),�R(15, 1, 3),

ξ1(10, 2, 2), ξ2(10, 2, 2),

ξ3(15, 1, 1), ξ4(6, 2, 2),

S′(1, 1, 1)

Vectors 45 (6, 2, 2) (15, 1, 1), (3, 1)2/3, (3, 1)−2/3, (1, 1)0

(1, 1, 3) (1, 1)1, (1, 1)−1
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Table 5 Scalar and vector fields that have masses around MGUT and MI in the G422D model

SO(10) G422D (fields at MGUT) G422D (fields at MI) G321 (fields at MI)

Scalars 10H H(6, 1, 1) �(1, 2, 2) φ(1, 2)−1/2

45H δ1(15, 1, 1), δ3(6, 2, 2) κ(1, 1, 3), κ1(1, 1)−1, κ2(1, 1)0, κ3(1, 1)1

δ2(1, 3, 1) δ2(1, 3)0

54H ζ0(1, 1, 1), ζ1(1, 3, 3),

ζ2(6, 2, 2), ζ3(20′, 1, 1)

126H S(6, 1, 1) �L (10, 3, 1), L1(1, 3)1, L2(3, 3)1/3, L3(6, 3)−1/3

�R(10, 1, 3), R1(3, 1)−1/3, R2(3, 1)−4/3, R3(3, 1)2/3,

R4(6, 1)4/3, R5(6, 1)1/3, R6(6, 1)−2/3,

R7(1, 1)−2, R8(1, 1)−1, R9(1, 1)0

T (15, 2, 2) T1(3, 2)1/6, T2(3, 2)7/6, T3(8, 2)−1/2,

T4(8, 2)1/2, T5(1, 2)−1/2, T6(1, 2)1/2,

T7(3, 2)−7/6, T8(3, 2)−1/6

Vectors 45 (6, 2, 2) (15, 1, 1), (3, 1)2/3, (3, 1)−1/3, (1, 1)0

(1, 1, 3) (1, 1)1, (1, 1)−1

Table 6 Scalar and vector fields that have masses around MGUT and MI in the G421 model

SO(10) G421 (fields at MGUT) G421 (fields at MI) G321 (fields at MI)

Scalars 10H H1(6, 1)0, H2(1, 2)1/2

45H δ1(15, 1)0, δ2(1, 3)0,

δ3(6, 2)1/2, δ4(6, 2)−1/2,

δ5(1, 1)−1, δ6(1, 1)0,

δ7(1, 1)1

126H �R1(10, 1)0,�R2(10, 1)1 �R(10, 1)−1, R1(6, 1)4/3, R2(3, 1)2/3, R3(1, 1)0

T0(15, 2)1/2, T (15, 2)−1/2 T1(8, 2)1/2, T2(3, 2)7/6, T3(3, 2)−1/6,

T4(1, 2)1/2

�L (10, 3)0, S(6, 1)0,

Vectors 45 (1, 1)1, (1, 1)−1, (15, 1)0 (3, 1)2/3, (3, 1)−2/3, (1, 1)0

(6, 2)1/2, (6, 2)−1/2

Table 7 Scalar and vector fields that have masses around MGUT and MI in the G3221 model

SO(10) G3221 (fields at MGUT) G3221 (fields at MI) G321 (fields at MI)

Scalars 10H H1(3, 1, 1)−2/3, H2(3, 1, 1)2/3 �(1, 2, 2)0 φ(1, 2)−1/2

45H δ1(3, 2, 2)−2/3, δ2(3, 2, 2)2/3,

δ3(8, 1, 1)0, δ4(3, 1, 1)4/3,

δ5(3, 1, 1)−4/3, δ6(1, 1, 1)0,

δ7(1, 3, 1)0, κ(1, 1, 3)0

126H R1(6, 1, 3)2/3, R2(3, 1, 3)−2/3, �R(1, 1, 3)−2, R3(1, 1)0, R4(1, 1)−1, R5(1, 1)−2

T1(8, 2, 2)0, T2(3, 2, 2)4/3, T (1, 2, 2)0 T4(1, 2)−1/2, T5(1, 2)1/2

T3(3, 2, 2)−4/3,

L1(6, 3, 1)−2/3, L2(3, 3, 1)2/3,

L3(1, 3, 1)2, S1(3, 1, 1)−2/3,

S2(3, 1, 1)2/3

Vectors 45 (3, 2, 2)−2/3, (3, 2, 2)2/3, (1, 1, 3)0 (1, 1)−1, (1, 1)0, (1, 1)1

(3, 1, 1)4/3, (3, 1, 1)−4/3

123
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Table 8 Scalar and vector fields that have masses around MGUT and MI in the G3221D model

SO(10) G3221D (fields at MGUT) G3221D (fields at MI) GSM (fields at MI)

Scalars 10H H1(3, 1, 1)−2/3, H2(3, 1, 1)2/3 �(1, 2, 2)0 φ(1, 2)−1/2

45H δ1(3, 2, 2)−2/3, δ2(3, 2, 2)2/3, κ(1, 1, 3)0, κ1(1, 1)−1, κ2(1, 1)0, κ3(1, 1)1

δ3(8, 1, 1)0,

δ4(3, 1, 1)4/3, δ5(3, 1, 1)−4/3, δ7(1, 3, 1)0 δ7(1, 3)0

δ6(1, 1, 1)0

126H L1(6, 3, 1)−2/3, L2(3, 3, 1)2/3, �L (1, 3, 1)2, L3(1, 3)1

R1(6, 1, 3)2/3, R2(3, 1, 3)−2/3, �R(1, 1, 3)−2, R3(1, 1)0, R4(1, 1)−1, R5(1, 1)−2

T1(8, 2, 2)0, T2(3, 2, 2)4/3, T (1, 2, 2)0 T4(1, 2)−1/2, T5(1, 2)1/2

T3(3, 2, 2)−4/3,

S1(3, 1, 1)−2/3, S2(3, 1, 1)2/3

210H �L1 (8, 3, 1)0, �L2 (3, 3, 1)4/3,

�L3 (3, 3, 1)−4/3, �L4 (1, 3, 1)0,

�R1 (8, 1, 3)0, �R2 (3, 1, 3)4/3,

�R3 (3, 1, 3)−4/3, �R4 (1, 1, 3)0,

ξ1,1(6, 2, 2)2/3, ξ1,2(3, 2, 2)−2/3,

ξ1,3(1, 2, 2)−2, ξ2,1(6, 2, 2)−2/3,

ξ2,2(3, 2, 2)2/3, ξ2,3(1, 2, 2)2,

ξ3,1(8, 1, 1)0, ξ3,2(3, 1, 1)4/3,

ξ3,3(3, 1, 1)−4/3, ξ3,4(1, 1, 1)0,

ξ4,1(3, 2, 2)−2/3, ξ4,2(3, 2, 2)2/3,

S′(1, 1, 1)0

Vectors 45 (3, 2, 2)−2/3, (3, 2, 2)2/3, (1, 1, 3)0 (1, 1)−1, (1, 1)0, (1, 1)1

(3, 1, 1)4/3, (3, 1, 1)−4/3

Appendix C: Threshold effects

In this appendix, we list the threshold corrections for the six
models considered. They have been computed using Eq. (25)
and the table of fields at each scale in Appendix 1. We employ
the notation that ηi = ln(Mi/M), where Mi is the mass of
each scalar and M is the symmetry breaking scale at which
the thresholds apply.

1. Standard model

In the G321 model, the threshold corrections at MGUT are

λ10
3 = 5 + ηH1 + ηH2 + 6ηA1 + 6ηA2 + 5ηA3 + 5ηA4

+ηA5 + ηA6 + ηA7 + ηA8 + 12ηB1

+10ηB2 + 2ηB3 + 2ηB4 + 3ηC1 + 3ηC2

+2ηD1 + 2ηD2 + 2ηD3 + ηE1 + ηE2 + 2ηF1

+3ηL2 + 15ηL3 + ηR1 + ηR2 + ηR3 + 5ηR4

+5ηR5 + 5ηR6 + ηS1 + ηS2 + 2ηT1 + 2ηT2

+18ηT3 + 18ηT4 + 2ηT7 + 2ηT8 , (C1)

λ10
2 = 6 + 8ηB1 + 6ηB2 + 3ηB3 + 3ηB4

+12ηC1 + 12ηC2 + 4ηC3 + 4ηC4 + 3ηD1 + 3ηD2

+3ηD3 + ηD4 + ηD5 + ηD6 + 3ηF1 + ηF2

+4ηL1 + 12ηL2 24ηL3 + 3ηT1 + 3ηT2 + 8ηT3

+8ηT4 + ηT5 + ηT6 + 1ηT7 + 1ηT8 + ηφ, (C2)

λ10
1 = 8 + 2

5
ηH1 + 2

5
ηH2 + 48

5
ηA1

+4

5
ηA3 + 16

5
ηA4 + 2

5
ηA5 + 8

5
ηA6 + 2

5
ηA7 + 32

5
ηA8

+24

5
ηB1 + 2

5
ηB2 + 5ηB3 + 1

5
ηB4 + 6

5
ηC1

+24

5
ηC2 + 18

5
ηC3 + 49

5
ηD1 + 1

5
ηD2 + 5ηD3

+3

5
ηD4 + 3

5
ηD5 + 27

5
ηD6 + 2

5
ηE1 + 8

5
ηE2

+6

5
ηE3 + 1

5
ηF1 + 3

5
ηF2 + 18

5
ηL1 + 6

5
ηL2

+12

5
ηL3 + 8

5
ηR1 + 2

5
ηR2 + 32

5
ηR3 + 64

5
ηR4

+4

5
ηR5 + 16

5
ηR6 + 24

5
ηR7 + 6

5
ηR8 + 2

5
ηS1

+2

5
ηS2 + 1

5
ηT1 + 49

5
ηT2 + 24

5
ηT3 + 24

5
ηT4

+3

5
ηT5 + 3

5
ηT6 + 49

5
ηT7 + 1

5
ηT8 + 3

5
ηφ. (C3)

123
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2. SU(4) × SU(2) × SU(2)

In the G422 model, the threshold corrections at MGUT are

λ10
4 = 4 + 2ηH + 2ηS + 18η�L + 12η�L + 12η�R

+12ηξ1 + 12ηξ2 + 4ηξ3 + 4ηξ4 + 8ηδ1

+8ηδ3 , (C4)

λ10
2L = 6 + 40η�L + 30η�L + 10ηξ1 + 10ηξ2

+6ηξ4 + 4ηδ2 + 12ηδ3, (C5)

λ10
2R = 6 + 30η�R + 10ηξ1 + 10ηξ2 + 6ηξ4 + 12ηδ3 . (C6)

At MI, they are

λ422
3 = 1 + ηR1 + ηR2 + ηR3 + 5ηR4 + 5ηR5 + 5ηR6

+2ηT1 + 2ηT2 + 12ηT3 + 12ηT4 + 2ηT7

+2ηT8 , (C7)

λ422
2 = ηφ + 3ηT1 + 3ηT2 + 8ηT3 + 8ηT4 + ηT5

+ηT6 + 3ηT7 + 3ηT8 , (C8)

λ422
1 = 14

5
+ 3

5
ηφ + 6

5
ηκ1 + 6

5
ηκ2

+2

5
ηR1 + 32

5
ηR2 + 8

5
ηR3 + 64

5
ηR4

+4

5
ηR5 + 16

5
ηR6 + 24

5
ηR7

+6

5
ηR8 + 1

5
ηT1 + 49

5
ηT2

+24

5
ηT3 + 24

5
ηT4 + 3

5
ηT5 + 3

5
ηT6 + 49

5
ηT7 + 1

5
ηT8 .

(C9)

3. SU(4) × SU(2) × SU(2) × D

In the G422D model, the threshold corrections at MGUT

are

λ10
4 = 4 + 2ηS + 2ηH + 8ηδ1 + 8ηδ3

+ 8ηζ2 + 16ηζ3 , (C10)

λ10
2L = 6 + 12ηδ3 + 12ηζ1 + 12ηζ2 , (C11)

λ10
2R = 6 + 12ηδ3 + 12ηζ1 + 12ηζ2 . (C12)

At MI, they are

λ422D
3 = 1 + 3ηL2 + 15ηL3 + ηR1 + ηR2 + ηR3

+ 5ηR4 + 5ηR5 + 5ηR6 + 2ηT1 + 2ηT2

+ 12ηT3 + 12ηT4 + 2ηT7 + 2ηT8 , (C13)

λ422D
2 = 4ηL1 + 12ηL2 + 24ηL3 + 3ηT1 + 3ηT2

+ 8ηT3 + 8ηT4 + ηT5 + ηT6 + 3ηT7

+ 3ηT8 + 4ηδ2 + ηφ, (C14)

λ422D
1 = 14

5
+ 6

5
ηκ1 + 6

5
ηκ2

+ 6

5
ηL1 + 2

5
ηL2 + 4

5
ηL3 + 2

5
ηR1

+32

5
ηR2 + 8

5
ηR3 + 64

5
ηR4

+ 4

5
ηR5 + 16

5
ηR6 + 24

5
ηR7 + 6

5
ηR8

+1

5
ηT1 + 49

5
ηT2 + 24

5
ηT3 + 24

5
ηT4 + 3

5
ηT5

+3

5
ηT6 + 49

5
ηT7 + 1

5
ηT8 + 3

5
ηφ. (C15)

4. SU(4) × SU(2) ×U (1)

In the G421 model, the threshold corrections at MGUT are

λ10
4 = 4 + 2ηH1 + 2ηS + 16ηT + 18η�L + 8ηδ1

+4ηδ3 + 4ηδ4 + 6η�R1 + 6η�R2 , (C16)

λ10
2 = 6 + ηH2 + 15ηT + 40η�L + 4ηδ2 + 6ηδ3

+6ηδ4 , (C17)

λ10
1 = 8 + ηH2 + 20ηR2 + 15ηT + 6ηδ3 + 6ηδ4

+2ηδ5 + 2ηδ7 . (C18)

At MI, they are

λ421
3 = 1 + 5ηR1 + ηR2 + 12ηT1 + 2ηT2 + 2ηT3 , (C19)

λ421
2 = 8ηT1 + 3ηT2 + 3ηT3 + ηT4 , (C20)

λ421
1 = 8

5
+ 64

5
ηR1 + 8

5
ηR2

+12

5
ηT1 + 49

5
ηT2 + 1

5
ηT3 + 3

5
ηT4 . (C21)

5. SU(3) × SU(2) × SU(2) × U(1)

In the G3221 model, the threshold corrections at MGUT are

λ10
3 = 5 + ηH1 + ηH2 + 15ηL1 + 3ηL2 + 15ηR1

+3ηR2 + ηS1 + ηS2 + 24ηT1 + 4ηT2

+4ηT3 + 4ηδ1 + 4ηδ2 + 6ηδ3 + ηδ4 + ηδ5, (C22)

λ10
2L = 6 + 24ηL1 + 12ηL2 + 4ηL3 + 16ηT1

+6ηT2 + 6ηT3 + 6ηδ1 + 6ηδ2 + 4ηδ7 , (C23)

λ10
2R = 6 + 24ηR1 + 12ηR2 + 16ηT1 + 6ηT2

+6ηT3 + 6ηδ1 + 6ηδ2 + 4ηκ, (C24)

λ10
1 = 8 + ηH1 + ηH2 + 6ηL1 + 3ηL2 + 9ηL3

+6ηR1 + 3ηR2 + ηS1 + ηS2 + 16ηT2

+16ηT3 + 4ηδ1 + 4ηδ2 + 4ηδ4 + 4ηδ5 . (C25)

At MI, they are

λ3221
3 = 0, (C26)

λ3221
2 = ηT4 + ηT5 + ηφ, (C27)

λ3221
1 = 6

5
+ 6

5
ηR4 + 24

5
ηR5

+ 3

5
ηT4 + 3

5
ηT5 + 3

5
ηφ. (C28)
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6. SU(3) × SU(2) × SU(2) × U(1) × D

In the G3221D model, the threshold corrections at MGUT are

λ10
3 = 5 + ηH1 + ηH2 + 15ηL1 + 3ηL2 + 15ηR1

+ 3ηR2 + ηS1 + ηS2 + 24ηT1 + 4ηT2 + 4ηT3

+ 4ηδ1 + 4ηδ2 + 6ηδ3 + ηδ4 + ηδ5

+ 20ηξ11
+ 4ηξ12

+ 20ηξ21
+ 4ηξ22

+ 6ηξ31
+ ηξ32

+ ηξ33
+ 4ηξ41

+ 4ηξ42
+ 18η�L1

+ 3η�L2
+ 3η�L3

+ 18η�R1
+ 3η�R2

+ 3η�R3
, (C29)

λ10
2L = 6 + 24ηL1 + 12ηL2 + 16ηT1 + 6ηT2

+ 6ηT3 + 6ηδ1 + 6ηδ2 + 12ηξ11
+ 6ηξ12

+ 2ηξ13

+ 12ηξ21
+ 6ηξ22

+ 2ηξ23
+ 6ηξ41

+ 6ηξ42
+ 32η�L1

+ 12η�L2
+ 12η�L3

+ 4η�L4
,

(C30)

λ10
2R = 6 + 24ηR1 + 12ηR2 + 16ηT1 + 6ηT2

+ 6ηT3 + 6ηδ1 + 6ηδ2 + 12ηξ11
+ 6ηξ12

+ 2ηξ13

+ 12ηξ21
+ 6ηξ22

+ 2ηξ23
+ 6ηξ41

+ 6ηξ42
+ 36η�L3

+ 12η�L4
+ 32η�R1

+ 12η�R2
,

(C31)

λ10
1 = 8 + ηH1 + ηH2 + 6ηL1 + 3ηL2 + 6ηR1

+ 3ηR2 + ηS1 + ηS2 + 16ηT2 + 16ηT3 + 4ηδ1

+ 4ηδ2 + 4ηδ4 + 4ηδ5 + 8ηξ11

+ 4ηξ12
+ 12ηξ13

+ 8ηξ21
+ 4ηξ22

+ 12ηξ23
+ 4ηξ32

+ 4ηξ33
+ 4ηξ41

+ 4ηξ42
+ 12η�L2

+ 12η�L3
+ 12η�R2

+ 12η�R3
. (C32)

At MI, they are

λ3221D
3 = 0, (C33)

λ3221D
2 = 4ηL3 + ηT4 + ηT5 + 4ηδ7 + ηφ, (C34)

λ3221D
1 = 6

5
+ 18

5
ηL3 + 6

5
ηR4

+ 24

5
ηR5 + 3

5
ηT4 + 3

5
ηT5 + 6

5
ηκ1 + 6

5
ηκ2 + 3

5
ηφ.

(C35)
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