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Abstract A large number of observables can be con-
structed from differential decay rate based on the polariza-
tion of final state while considering decay of a neutral meson
(P0 or P̄0) to two vector particles. But all of these observ-
ables are not independent to each other since there are only a
few independent theoretical parameters controlling the whole
dynamics and therefore various relations among observables
emerge. In this paper, we have studied the behaviour of
observables for neutral meson decaying to two vectors in
presence of T and CPT violations in mixing accompanied
by both direct and indirectCP violations. We have expressed
all of the fourteen unknown theoretical parameters for this
scenario in terms observables only and constructed the com-
plete set of thirty four relations among observables whose
violation would signify the existence of some new Physics
involving direct violation of CPT . In addition, using this
formalism we have studied three special cases too: (a) SM
scenario, (b) SM plus direct CP violation (c) SM plus T and
CPT violation in mixing.
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1 Introduction

CPT invariance is one of the most fundamental principles
in Physics. It is believed that any natural process must be
described by a CPT invariant Lagrangian. According to
CPT theorem, any quantum field theory involving point-
particles in flat Minkowski space, delineated by Hermitian,
local, Lorentz-invariant Lagrangian (or Hamiltonian), is cer-
tainly CPT invariant [1,2]. The primary proof of this theo-
rem was given by Lüders, Pauli and others [3–7] (an updated
version of this approach can be found in Ref. [8]) depend-
ing on the formulation of Hamiltonian (or Lagrangian) for
quantum field theory. Later on the theorem was proven rig-
orously by Jost and others [9–11] in the axiomatic formal-
ism of quantum field theory based on the assumptions of
Lorentz invariance, existence of unique vacuum state and
weak local commutativity obeying ‘right’ statistics. The line
of proof in this approach mainly depends on Wightman
axioms, Wightman functions, the Wightman reconstruction
theorem and Bargmann-Hall-Wightman theorem on complex
Lorentz transformations [11–13].

Nonetheless, there are various models in literature that
violates CPT by evading some of the necessary conditions
of CPT theorem. Both the approaches, mentioned above,
address CPT theorem for fundamental particles only and
they fail to handle the same with QCD bound states (although
Ref. [14] that uses dynamical principle and variation of
action methods of Schwinger [7] claims a third way to prove
CPT theorem incorporating bound states too). Open Bosonic
strings, which are not point-like object, can go through spon-
taneous CPT violation [15]. Again, violation of Lorentz
symmetry may also lead to CPT violation [16–22]. Non-
trivial space-time topology could be a reason for CPT viola-
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tion, e.g. the vacuum state for a model with one of the three
spatial dimensions compactified into a circle of cosmologi-
cal size fails to be Lorentz invariant which in turn produce
violation of CPT symmetry [23,24]. However, it should be
kept in mind that the above condition is not a necessary one,
for example QFT on non-commutative space-time can give
rise to Lorentz invariance violating effects while conserving
CPT [25–28]. A certain class of models can violate CPT
through non-locality too while preserving Lorentz symme-
try [29–31]. Non-point interactions, which are also a possible
source of CPT violation, emerge in some models where par-
ticle and antiparticle are both contained in the same isospin
multiplet [32–36]. CPT violation may arise from modifica-
tions of conventional quantum mechanics due to gravitational
effects [37,38], specially near event horizon where inacces-
sibility of full information leads to non-unitarity of states.
Quantum-mechanical decoherence in quantum gravity could
also be responsible for CPT breaking [39,40]. It has been
shown in Refs. [41–43] that Abelian Chern-Simons like terms
in Lagrangian as well as fields with infinite components also
violate CPT .

Given its great importance to theoretical Physics, much
attention has been devoted to scrutinize the plausibility
of CPT symmetry experimentally. The observed equality
between masses and life times of particle and antiparti-
cle with striking precision [44], which is a consequence of
CPT invariance, obligates us to believe that CPT is a good
symmetry of nature. But, these quantities are mainly domi-
nated by strong or electromagnetic interactions and therefore,
the possibility for existence of tiny CPT violating effects
mediated by weak interactions, which might remain unde-
tected in direct measurements, cannot be ruled out. Apart
from neutrino sector, mixing of neutral pseudoscalar meson(
K 0, D0, B0

d , B0
s

)
with its own antiparticle, in this regard,

is a promising place to search for CPT violating effects [45–
49] as it is predominantly a second order electroweak phe-
nomenon. However, in addition to CPT violating effects,
since the most general mixing matrix involves T andCP vio-
lation as well, all those effects must be considered together.

In literature, there exist extensive studies on probing T ,
CP and CPT violation using leptonic, semi-leptonic, two
pseudoscalars and one pseudoscalar plus one vector decay
modes of neutral pseudoscalar meson [50–67]. But the modes
with neutral pseudoscalar mesons decaying to two vectors(
P0 or P̄0 → V1V2

)
are not very well assessed in light of

CPT violation. Refs. [68–70] consider the SM scenario (i.e.
CP violation in mixing only ) and its extension to models
withCPT conserving generic new physics effects only while
probing two vectors decay modes of B-mesons. Howbeit,
Ref. [71] has taken CPT violation into account for describ-
ing the mode B0

s → J/ψ φ and Ref. [72] has discussed
about triple products and angular observables for B → V1V2

decays in context ofCPT violation. Furthermore, two vectors

decay modes of neutral mesons have been studied in Ref. [73]
contemplating T , CP and CPT violation in mixing only. In
this paper, we have extended the idea of Ref. [73] to search for
T and CPT violation in mixing through P0 → V1V2 decays
using helicity-based analysis in presence of CP violation in
decay as well as in mixing. Notwithstanding, the presence
of CP violation in decay changes the scenario drastically
and complicate all the equations compared to Ref. [73] and
consequently recasting the whole approach for this analysis
is essential. It should also be noted that we do not consider
any specific model that might lead to CPT violation which
implies that it’s a model-independent approach.

While dealing with oscillations of neutral pseudoscalar
mesons (P0, P̄0), usually a common final state f , to which
both P0 and P̄0 can decay, is considered. When f contains
two vectors, there emerge three transversity amplitudes for
each of the transitions P0 → f and P̄0 → f depending
on the orbital angular momentum of the final state. This fact
helps us to construct a large number of observables from
time-dependent differential decay rates of the two modes.
But, all of the observables will not be independent to each
other since independent theoretical parameters are lesser in
number than the observables. Therefore, various relations
among observables appear automatically. These relations
have already been addressed in context SM scenario in Refs.
[69,70,73], where first two references consider two vector
decay modes of B0

d only with vanishing width deference
between the physical states. Moreover, Ref. [73] talks about
these relations in the presence of T ,CP andCPT violation in
mixing. In this paper we advance one step further by explor-
ing these relations in the presence of CP violation in decay
in addition to T , CP and CPT violating effects in mixing.
These new relations will break down only if any CPT vio-
lating effect is present in decay itself. Furthermore, we have
used our formalism to study the relations among observables
for SM scenario, SM plus direct CP violation case and SM
plus indirect violation of T and CPT scenario, which are
three special cases of our picture.

The paper is organized as follows. In the next section (Sect.
2), we briefly describe the theoretical formalism for CPT
violation in P0 − P̄0 mixing and express the time dependent
differential decay rates of P0 and P̄0 in terms of the mix-
ing parameters. In Sect. 3, we construct helicity-dependent
observables from the differential decay rates and express the
“dummy observables” in terms of them as well as small T
and CPT violating parameters. Section 4 deals with solving
unknown theoretical parameters in terms of observables. The
relations among observables in present scenario have been
established in Sect. 5. In Sect. 6, we use this formalism to
find the relations among observables for three special cases:
(a) SM scenario (CP violation in mixing only), (b) SM plus
direct CP violation, (c) SM plus T and CPT violation in
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mixing. The phenomenological aspects have been discussed
in Sect. 7 and finally, we summarize and conclude in Sect. 8.

2 Theoretical framework

Let us first briefly review the most general formalism incor-
porating CPT and T violation for P0 − P̄0mixing, which
has already been discussed in Refs. [2,64,73]. In the flavour
basis (P0, P̄0), the mixing Hamiltonian can be expressed in
terms of two 2 × 2 Hermitian matrices, namely mass-matrix
M and decay-matrix �, as M − (i/2)�. Since three Pauli
matrices σ j along with identity matrix I constitute a com-
plete set of bases spanning the whole vector-space of 2 × 2
matrices, one can write:

M − i

2
� = E sin θ cos φ σ1 + E sin θ sin φ σ2

+ E cos θ σ3 − i D I (2.1)

where E, θ, φ and D are complex entities in general. Com-
paring both sides of this equation, we obtain:

D = i

2
(M11 + M22) + 1

4
(�11 + �22),

E cos θ = 1

2
(M11 − M22) − i

4
(�11 − �22),

E sin θ cos φ = Re M12 − i

2
Re �12,

E sin θ sin φ = − Im M12 + i

2
Im �12.

(2.2)

where Mi j and �i j are (i, j)-th elements ofM and � matrices
respectively.

The mass eigenstates or physical states |PL〉 and |PH 〉 are
the eigenvectors of the mixing Hamiltonian M− (i/2)� and
they can be expressed as linear combinations of the flavour
eigenstates (|P0〉 and |P̄0〉) as follows:

|PL 〉 = p1|P0〉 + q1|P̄0〉, |PH 〉 = p2|P0〉 − q2|P̄0〉,
(2.3)

where p1 = N1 cos θ
2 , q1 = N1 eiφ sin θ

2 , p2 = N2 sin θ
2 ,

q2 = N2 eiφ cos θ
2 with N1, N2 being two normalization fac-

tors and the L ,H tags indicating light and heavy physical
states, respectively. Since, the physical states, as given by
Eq. (2.3), depend only on the complex parameters θ and φ,
they are called the mixing parameters for P0 − P̄0 system.
It should be noted that the physical states are not orthogonal
in general since the mixing matrix is non-Hermitian.

The time evolution of flavour states (|P0〉 ≡ |P0(t = 0)〉
and |P̄0〉 ≡ |P̄0(t = 0)〉) is given by:

|P0(t)〉 = h+|P0〉 + h− cos θ |P0〉 + h−eiφ sin θ |P̄0〉,
|P̄0(t)〉 = h+|P̄0〉 − h− cos θ |P̄0〉 + h−e−iφ sin θ |P0〉,

where, h± =e−i
(
M−i �

2

)
t
[
ei
(
�M−i ��

2

)
t
2 ± e−i

(
�M−i ��

2

)
t
2

2

]
.

(2.4)

Here, M = (MH + ML)/2, �M = MH − ML , � = (�H +
�L)/2 and�� = �H−�L with ML ,H and�L ,H to be masses
and decay widths of the light and heavy mass eigenstates
respectively which can be found from the eigenvalues of the
mixing Hamiltonian and measured directly in experiments.

Let us now consider a final state f to which both P0 and
P̄0 can decay. Using Eq. (2.4), the time dependent decay
amplitudes for the neutral mesons are given by:

Amp(P0(t) → f )= h+A f +h− cos θA f +h−eiφ sin θĀ f ,

Amp(P̄0(t) → f )= h+Ā f −h− cos θĀ f +h−e−iφ sin θA f ,

(2.5)

where A f = 〈 f |H�F=1|P0〉 and Ā f = 〈 f |H�F=1|P̄0〉
with H�F=1 indicating the Hamiltonian related to the tran-
sition from flavour states to f . Therefore, incorporating the
mixing, the time dependent decay rates �(P0(t) → f ) and
�(P̄0(t) → f ) can be expressed as:

d�

dt
(P0(t) → f )

= 1

2
e−�t

[
sinh (��t/2)

{
2Re

(
cos θ |A f |2 + eiφ sin θA∗

f Ā f

)}

+ cosh (��t/2)
{
|A f |2 + | cos θ |2|A f |2 + |eiφ sin θ |2|Ā f |2

+2Re
(
eiφ cos θ∗ sin θA∗

f Ā f

)}

+ cos(�Mt)
{
|A f |2 − | cos θ |2|A f |2 − |eiφ sin θ |2|Ā f |2

−2Re
(
eiφ cos θ∗ sin θA∗

f Ā f

)}

− sin(�Mt)
{

2Im
(

cos θ |A f |2 + eiφ sin θA∗
f Ā f

)}]
, (2.6)

d�

dt
(P̄0(t) → f )

= 1

2
e−�t

[
sinh (��t/2)

{
2Re

(
− cos θ∗|Ā f |2 + eiφ

∗
sin θ∗A∗

f Ā f

)}

+ cosh (��t/2)
{
|Ā f |2 + | cos θ |2|Ā f |2 + |e−iφ sin θ |2|A f |2

−2Re
(
eiφ

∗
cos θ sin θ∗A∗

f Ā f

)}

+ cos(�Mt)
{
|Ā f |2 − | cos θ |2|Ā f |2 − |e−iφ sin θ |2|A f |2

+ 2Re
(
eiφ

∗
cos θ sin θ∗A∗

f Ā f

)}

+ sin(�Mt)
{

2Im
(
− cos θ∗|Ā f |2 + eiφ

∗
sin θ∗A∗

f Ā f

)}]
. (2.7)
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3 Observables

3.1 T and CPT violating parameters

The properties of M and � matrices in light of T and CPT
symmetries have been discussed in Ref. [75]. First, if CPT
invariance holds, then, independently of T symmetry [64,
73],

M11 = M22, �11 = �22 �⇒ θ = π

2
(Using Eq. (2.2)).

(3.1)

Secondly, if T invariance holds, then, independently of CPT
symmetry [64,73],

�∗
12

�12
= M∗

12

M12
�⇒ Im φ = 0 (Using Eq. (2.2)). (3.2)

Hence, incorporating T , CP and CPT violation in P0 −
P̄0 mixing, we parametrize θ and φ as [64,73]:

θ = π

2
+ ε1 + iε2 and φ = − 2β + iε3 (3.3)

where β is theCP violating weak mixing phase, ε1 and ε2 are
CPT violating parameters and ε3 is T violating parameter
other than CP violation. The notation of Belle, BaBar and
LHCb collaborations [52–55] is a bit different from ours;
however, the two notations are related to each other by the
following transformation [64,73]:

cos θ ↔ −z, sin θ ↔
√

1 − z2, eiφ ↔ q

p
,

or, equivalently: ε1 = Re(z), ε2 = Im(z), ε3 = 1 −
∣∣∣
q

p

∣∣∣.

(3.4)

3.2 Decay rates and observables

Any state consisting of two vectors can have three differ-
ent values for orbital angular momentum quantum number
{0, 1, 2}which correspond to the polarization states {0,⊥, ‖},
respectively. Since CPT violation in decay has not been
considered, the decay amplitudes for modes and conjugate
modes can be expressed in terms of transversity amplitudes
as [68–70,72,73]:

A f (P
0 → V1V2) =A0g0 + A‖g‖ + i A⊥g⊥,

Ā f (P̄0 → V1V2) = Ā0g0 + Ā‖g‖ − i Ā⊥g⊥.
(3.5)

where the factors gλ with λ ∈ {0, ‖,⊥} are the coefficients
of transversity amplitudes (Aλ or Āλ) in linear polarization
basis and depend only on the kinematic angles [74].

Now, using Eqs. (2.6)–(3.5), the time-dependent decay
rates for P0(t) → V1V2 and P̄0(t) → V1V2 modes can be
written as [68–73]:

d�

dt
(P0(t) → V1V2

)

= e−�t
∑

λ≤σ

[
�λσ cosh

(��t

2

)
+ ηλσ sinh

(��t

2

)

+�λσ cos
(
�Mt

)− ρλσ sin
(
�Mt

)
]
gλgσ , (3.6)

d�

dt
(P̄0(t) → V1V2

)

= e−�t
∑

λ≤σ

[
�̄λσ cosh

(��t

2

)
+ η̄λσ sinh

(��t

2

)
+ �̄λσ cos

(
�Mt

)

+ρ̄λσ sin
(
�Mt

)]
gλgσ . (3.7)

where both λ and σ take the value {0, ‖,⊥}. It is important to
note that in the entire paper we have considered a particular
ordering for the combination λσ with λ �= σ and they are
{⊥ 0, ⊥‖, ‖ 0}. For defining the observables, we have taken
the convention of Ref. [73]. On the other hand, Refs. [68–
70] use a bit different notations involving some additional
negative signs. Hence, several inferences of our paper may
differ from their results by some signs only; however, all the
outcomes of our paper are self-consistent.

Now, we see from Eq. (3.6) that for each of the helicity
combinations, there are four types of observables
(�λσ , ηλσ ,�λσ , ρλσ ) and six such helicity combinations are
possible. Hence, we get total 24 observables for P0(t) →
V1V2 mode. Similarly, there will be 24 different observ-
ables (�̄λσ , η̄λσ , �̄λσ , ρ̄λσ ) for P̄0((t) → V1V2 mode too,
as shown in Eq. (3.7). These observables can be measured by
performing a time dependent angular analysis of P0(t) →
V1V2 and P̄0(t) → V1V2 [68–70]. The procedure described
in Ref. [72] can be helpful in this regard. On the other hand,
probing polarizations of the final state particles may also aid
in measurement of these observables. It should be noticed
that Ref. [68–70] did not consider sinh

(
��t

2

)
terms in the

decays of B0
d and B̄0

d since �� is consistent with zero [44]. In
that case, ηλσ and η̄λσ remain undetermined and one should
work with remaining (18 + 18) = 36 observables only for
a mode and its conjugate mode. However, we have kept all
the terms in our analysis since a general scenario has been
considered here.

3.3 Parametric expansion of observables

Comparing Eqs. (2.6) and (2.7) to Eqs. (3.6) and (3.7) one
can easily infer that all of the observables will be functions of
the complex quantities θ and φ. As T andCPT violations are
expected to be very small [52–55,66,76,77], we can expand
all the observables in terms of ε j ( j ∈ {1, 2, 3}) keeping
up to the linear orders. However, following Refs. [69,70], if
we divide all the transversity amplitudes into CP conserving
and CP violating parts, it would become very complicated to
handle all the unknown parameters. So, we implement a new
method to reduce the complexity. After substitution of Eqs.
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(3.3) and (3.5) into Eqs. (2.6) and (2.7), while expanding the
differential decay rates in terms of ε j ( j ∈ {1, 2, 3}), we find
that only twenty four combinations of helicity amplitudes Aλ

and Āλ appear as the coefficients of ε j . Denoting ξ = e−2iβ ,
we define these twenty four combinations as follows:

�′
λλ = 1

2 (|Aλ|2 + | Āλ|2),
�′

λλ = 1
2 (|Aλ|2 − | Āλ|2),

�′⊥i = −Im (A⊥A∗
i − Ā⊥ Ā∗

i ) ,

�′⊥i = −Im (A⊥A∗
i + Ā⊥ Ā∗

i ),

�′‖0 = Re (A‖A∗
0 + Ā‖ Ā∗

0),

�′‖0 = Re (A‖A∗
0 − Ā‖ Ā∗

0),

ρ′
i i = Im (ξ A∗

i Āi ),

η′
i i = Re (ξ A∗

i Āi ),

ρ′⊥⊥ = −Im (ξ A∗⊥ Ā⊥),

η′⊥⊥ = −Re (ξ A∗⊥ Ā⊥),

ρ′⊥i = − Re
[
ξ(A∗⊥ Āi + A∗

i Ā⊥)
]
,

η′⊥i = Im
[
ξ(A∗⊥ Āi + A∗

i Ā⊥)
]
,

ρ′‖0 = Im
[
ξ(A∗‖ Ā0 + A∗

0 Ā‖)
]
,

η′‖0 = Re
[
ξ(A∗‖ Ā0 + A∗

0 Ā‖)
]
,

(3.8)

where i ∈ {0, ‖} and λ ∈ {0, ‖,⊥}. It should be noted that
the quantities, mentioned above, which we name as “dummy-
observables”, are not observables, in general; rather they are
some theoretical tools for our convenience. Now, using Eqs.
(3.6) and (3.7) one can express the actual observables in terms
of the dummy-observables as well as the T and CPT violat-
ing parameters ε j . For our purpose, we invert those equations
and express dummy-observables as functions of the original
ones keeping only the linear orders in ε j as follows:

�′
i i = ε1ηi i + (1 + ε3)�i i + ε2ρi i − ε3�i i ,

η′
i i = (1 + ε3)ηi i + ε1�i i + ε1�i i ,

�′⊥⊥ = ε1η⊥⊥ + (1 + ε3)�⊥⊥ + ε2ρ⊥⊥ − ε3�⊥⊥,

η′⊥⊥ = (1 + ε3)η⊥⊥ + ε1�⊥⊥ + ε1�⊥⊥,

�′⊥i = ε1η⊥i + (1 + ε3)�⊥i + ε2ρ⊥i − ε3�⊥i ,

η′⊥i = (1 + ε3)η⊥i + ε1�⊥i + ε1�⊥i ,

�′‖0 = ε1η‖0 + (1 + ε3)�‖0 + ε2ρ‖0 − ε3�‖0,

η′‖0 = (1 + ε3)η‖0 + ε1�‖0 + ε1�‖0,

�′
i i = −ε1ηi i − ε3�i i − ε2ρi i + (1 + ε3)�i i ,

ρ′
i i = ε2�i i + (1 + ε3)ρi i + ε2�i i ,

�′⊥⊥ = −ε1η⊥⊥ − ε3�⊥⊥ − ε2ρ⊥⊥ + (1 + ε3)�⊥⊥,

ρ′⊥⊥ = ε2�⊥⊥ + (1 + ε3)ρ⊥⊥ + ε2�⊥⊥,

�′⊥i = −ε1η⊥i − ε3�⊥i − ε2ρ⊥i + (1 + ε3)�⊥i ,

ρ′⊥i = ε2�⊥i + (1 + ε3)ρ⊥i + ε2�⊥i ,

�′‖0 = −ε1η‖0 − ε3�‖0 − ε2ρ‖0 + (1 + ε3)�‖0,

ρ′‖0 = ε2�‖0 + (1 + ε3)ρ‖0 + ε2�‖0,

(3.9)

where i ∈ {0, ‖}. It is evident from above relations that the
dummy-observables become original observable only when
there is no T and CPT violation in mixing. Now, we use

the same trick for the observables of conjugate mode too and
taking i ∈ {0, ‖} rewrite the dummy-observables in terms of
them as follows:

�′
i i = −ε1η̄i i + (1 − ε3)�̄i i + ε2ρ̄i i + ε3�̄i i ,

η′
i i = (1 − ε3)η̄i i − ε1�̄i i − ε1�̄i i ,

�′⊥⊥ = −ε1η̄⊥⊥ + (1 − ε3)�̄⊥⊥ + ε2ρ̄⊥⊥ + ε3�̄⊥⊥,

η′⊥⊥ = (1 − ε3)η̄⊥⊥ − ε1�̄⊥⊥ − ε1�̄⊥⊥,

�′⊥i = −ε1η̄⊥i + (1 − ε3)�̄⊥i + ε2ρ̄⊥i + ε3�̄⊥i ,

η′⊥i = (1 − ε3)η̄⊥i − ε1�̄⊥i − ε1�̄⊥i ,

�′‖0 = −ε1η̄‖0 + (1 − ε3)�̄‖0 + ε2ρ̄‖0 + ε3�̄‖0,

η′‖0 = (1 − ε3)η̄‖0 − ε1�̄‖0 − ε1�̄‖0,

�′
i i = −ε1η̄i i − ε3�̄i i + ε2ρ̄i i − (1 − ε3)�̄i i ,

ρ′
i i = ε2�̄i i + (1 − ε3)ρ̄i i + ε2�̄i i ,

�′⊥⊥ = − ε1η̄⊥⊥ − ε3�̄⊥⊥ + ε2ρ̄⊥⊥ − (1 − ε3)�̄⊥⊥,

ρ′⊥⊥ = ε2�̄⊥⊥ + (1 − ε3)ρ̄⊥⊥ + ε2�̄⊥⊥,

�′⊥i = −ε1η̄⊥i − ε3�̄⊥i + ε2ρ̄⊥i − (1 − ε3)�̄⊥i ,

ρ′⊥i = ε2�̄⊥i + (1 − ε3)ρ̄⊥i + ε2�̄⊥i ,

�′‖0 = −ε1η̄‖0 − ε3�̄‖0 + ε2ρ̄‖0 − (1 − ε3)�̄‖0,

ρ′‖0 = ε2�̄‖0 + (1 − ε3)ρ̄‖0 + ε2�̄‖0.

(3.10)

4 Solutions of the theoretical parameters

In this section, we discuss how to solve for the unknown
theoretical quantities in terms of observables. These theo-
retical parameters are six helicity amplitudes (Aλ, Āλ with
λ ∈ {0, ‖,⊥}), which are complex entities and three param-
eters ε j ( j ∈ {1, 2, 3}) related to T and CPT violation in
mixing. It should be noted that the CP violating weak phase
β cannot be probed directly in the presence of direct CP vio-
lation; it can only be measured if there is no CP violation
in decay itself. Now, it is impossible to measure the absolute
phases for all the helicity amplitudes; rather relative phases
can be estimated. Hence, we define the following quantities
that indicate the relative phases of five transversity ampli-
tudes with respect to A⊥:

�i = Arg[Ai ] − Arg[A⊥], and �̄λ = Arg[ Āλ] − Arg[A⊥]
(4.1)

where ‘Arg’ implies argument of a complex number, i ∈
{0, ‖} and λ ∈ {0, ‖,⊥}. Thus we have to solve for fourteen
unknown parameters (three of |Aλ|, three of | Āλ|, three of
ε j , two of �i and three of �̄λ).

For convenience, we define nine angular quantities as fol-
lows:

ωλσ = Arg [Aλ] − Arg [Aσ ] , ω̄λσ = Arg[ Āλ] − Arg[ Āσ ],
ϕmeas

λ = − 2β + Arg
[
Āλ

]− Arg [Aλ] . (4.2)
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where (λ, σ ) ∈ {0, ‖,⊥}. As mentioned earlier, we will con-
sider the combination λσ to be one of {⊥ 0, ⊥‖, ‖ 0} only;
one should not be bothered about reverse ordering. Now,
instead of the five relative phases of the transversity ampli-
tudes we use five of the above-defined angular entities (three
of ϕmeas

λ and two of ω⊥i ) as our unknown parameters to
solve for. The rest four angular quantities in Eq. (4.2) will be
used later in order to find relations among various observ-
ables. The relative phases of helicity amplitudes can easily
be expressed in terms of the five angular entities mentioned
above in the following way:

�i = −ω⊥i , �̄i = ϕmeas
i + 2β − ω⊥i , �̄⊥ = ϕmeas⊥ + 2β,

(4.3)

where i ∈ {0, ‖}. Thus the fourteen theoretical parameters
that we are going to solve are three of |Aλ|, three of | Āλ|,
three of ε j , two of ω⊥i and three of ϕmeas

λ .
The modulus of helicity amplitudes are given by:

|Aλ| = √
�λλ + �λλ and | Āλ| =

√
�̄λλ + �̄λλ .

(4.4)

The value of sin �meas
λ can be found by solving the following

cubic equation:

sin3 �meas
λ −

⎛

⎝ρr
λλ + ρ̄r

λλ√
1 − C2

λ

⎞

⎠ sin2 �meas
λ +

(
C2

λ − �r
λλ − �̄r

λλ

1 − C2
λ

)

sin �meas
λ

+ Cλ√
1 − C2

λ

[
ρr

λλ

1 + Cλ

− ρ̄r
λλ

1 − Cλ

]
= 0, (4.5)

where �meas
i = ϕmeas

i and �meas⊥ = −ϕmeas⊥ in the above
expression.

The quantities with superscript ‘r’ and Cλ are defined as:

Cλ =
(
�λλ − �̄λλ + �λλ − �̄λλ

)

(
�λλ + �̄λλ + �λλ + �̄λλ

) and

Yr
λλ = Yλλ(

�λλ + �̄λλ + �λλ + �̄λλ

) , (4.6)

where (Y ≡ ρ, ρ̄, �, �̄) with λ ∈ {0, ‖,⊥} . Knowing
�meas

i form the above equations, the T and CPT violat-
ing parameters in mixing can be obtained from the following
equations:

ε1 =−
(

2

sin 2ϕmeas
λ

)⎡

⎣ ρ̄rλλ

1−Cλ
− ρrλλ

1+Cλ
− �r

λλ − �̄r
λλ√

1 − C2
λ

sin �meas
λ

⎤

⎦ ,

ε2 = − (ρrλλ + ρ̄rλλ) +
√

1 − C2
λ sin �meas

λ ,

ε3 = −Cλ − csc �meas
λ

[

ρrλλ

√
1 − Cλ

1 + Cλ
− ρ̄rλλ

√
1 + Cλ

1 − Cλ

]

.

(4.7)

Thus we solve for twelve of the fourteen unknown parame-
ters. To obtain the solutions we have inverted the expressions
for �′

λλ, �′
λλ and ρ′

λλ in Eqs. (3.9) and (3.10) and then use

the definitions of those dummy-observables from Eq. (3.8). It
should be noticed that each of ε j ( j ∈ {1, 2, 3}) can obtained
in three ways since λ ∈ {0, ‖,⊥}. This fact will be used later
to find some relations among observables. Now, the remain-
ing two angular quantities ω⊥i (i ∈ {0, ‖}) are calculated in
the following way:

�⊥i + �⊥i = �′⊥i + �′⊥i = −2 Im (A⊥A∗
i )

(Using Eqs. (3.8) and (3.9))

�⇒ ω⊥i = Arg[A⊥] − Arg[Ai ]
= sin−1

(
− �⊥i + �⊥i

2
√

(�⊥⊥ + �⊥⊥)(�i i + �i i )

)
.

(4.8)

5 Relations among observables

In this section we are going to derive complete set of rela-
tions among observables for the scenario with T and CPT
violation in mixing along with CP violation in both mixing
and decay. As discussed before, we have forty eight observ-
ables combining mode and conjugate mode, but the num-
ber of unknown theoretical parameters are fourteen. There-
fore, we must have forty eight minus fourteen equals to thirty
four relations among observables. If we simply substitute the
solutions of unknown parameters into Eqs. (3.8)–(3.10), we
would overcount the number of independent relations among
observables.

Firstly, it is evident from Eq. (4.7) that each of the ε j

( j ∈ {1, 2, 3}) can express in three ways depending on the
value of λ. Hence, one will give the solution for ε j while the
rest two can be recast as relations among observables and this
happens for each ε j . Thus we have two times three equals to
six relations among observables which are the following:

(
sin 2ϕmeas

i

sin 2ϕmeas⊥

)[
ρ̄r⊥⊥

1 − C⊥
− ρr⊥⊥

1 + C⊥
− �r⊥⊥ − �̄r⊥⊥√

1 − C2⊥
sin �meas⊥

]

=
[

ρ̄r
ii

1 − Ci
− ρr

ii

1 + Ci
− �r

ii − �̄r
ii√

1 − C2
i

sin �meas
i

]
(5.1)

√
1−C2

i sin �meas
i −

√
1 − C2⊥ sin �meas⊥ =(ρr

ii +ρ̄r
ii )−(ρr⊥⊥+ρ̄r⊥⊥)

(5.2)

(Ci − C⊥) + csc �meas
i

[
ρr
ii

√
1 − Ci

1 + Ci
− ρ̄r

ii

√
1 + Ci

1 − Ci

]

= csc �meas⊥
[
ρr⊥⊥

√
1 − C⊥
1 + C⊥

− ρ̄r⊥⊥

√
1 + C⊥
1 − C⊥

]
(5.3)

where i ∈ {0, ‖}. The above six relations can be interpreted
from a different perspective too. Looking at Eqs. (4.4) – (4.7),
it can be realized that eighteen observables (three for each of
�λλ, �λλ, ρλλ, �̄λλ, �̄λλ and ρ̄λλ) have been used to solve
for twelve different quantities (three for each |Aλ|, | Āλ|, ε j

and sin ϕmeas
λ ). Hence, eliminating the unknown quantities,
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one should get eighteen minus twelve equals to six relations
among observables which are given by Eqs. (5.1)–(5.3).

Secondly, as mentioned in the last section, we have used
only five angular quantities so far (three of �λ and two of
ω⊥i ). The rest four (ω‖0 and three of ω̄λσ ), as defined in Eq.
(4.2), will now be used to find four relations among observ-
ables. Let us first express these angles in terms of observables
as follows:

�‖0+�‖0 = �′‖0 + �′‖0 = 2 Re (A‖A∗
0) (Using Eqs. (3.8) and (3.9))

�⇒ ω‖0 = Arg[A‖] − Arg[A0]

= cos−1
(

�‖0 + �‖0

2
√

(�‖‖ + �‖‖)(�00 + �00)

)
,

(5.4)

�̄‖0+�̄‖0 = �′‖0 − �′‖0 = 2 Re ( Ā‖ Ā∗
0) (Using Eqs. (3.8) and (3.9))

�⇒ ω̄‖0 = Arg[ Ā‖] − Arg[ Ā0]

= cos−1
(

�̄‖0 + �̄‖0

2
√

(�̄‖‖ + �̄‖‖)(�̄00 + �̄00)

)
,

(5.5)

�̄⊥i+�̄⊥i = �′⊥i − �′⊥i = 2 Im ( Ā⊥ Ā∗
i ) (Using Eqs. (3.8) and (3.9))

�⇒ ω̄⊥i = Arg[ Ā⊥] − Arg[ Āi ]

= sin−1
(

�̄⊥i + �̄⊥i

2
√

(�̄⊥⊥ + �̄⊥⊥)(�̄i i + �̄i i )

)
,

(5.6)

where i ∈ {0, ‖}. Now, from the definitions of these angles, as
shown in Eq. (4.2), it easy to establish the following relations:

ω̄λσ =ϕmeas
λ −ϕmeas

σ +ωλσ and ω‖0 =ω⊥0−ω⊥‖
(5.7)

where (λ, σ ) ∈ {0, ‖,⊥} and hence the first equation con-
tains three relations. Using the expressions of ω‖0 and ω̄λσ

from Eqs. (5.4)–(5.6) and finding the expressions for ϕmeas
λ

from Eq. (4.5) one can get four relations among observables
from Eq. (5.7).

Thirdly, using �′
λσ and �′

λσ for (λ �= σ ), we have solved
for two independent angular quantities ω⊥i , as given by
Eq. (4.8), and established four independent relations among
observables, given by Eq. (5.7). However, we see from Eqs.
(3.9) and (3.10) that there are total twelve equations involv-
ing �′

λσ and �′
λσ with (λ �= σ ) combining the mode and

conjugate mode. Therefore, we must have six more relations
involving them. Actually, so far we have used (�′

λσ + �′
λσ )

for mode and (�′
λσ − �′

λσ ) for conjugate mode separately.
Now, equating the expressions for (�′

λσ + �′
λσ ) from both

mode and conjugate mode and repeating it for (�′
λσ − �′

λσ )

too we derive the rest six relations as:

�λσ + �λσ =(1 − 2ε3) (�̄λσ −�̄λσ ) − 2ε1 η̄λσ +2ε2 ρ̄λσ ,

�̄λσ +�̄λσ =(1 + 2ε3) (�λσ −�λσ )+2ε1 ηλσ + 2ε2 ρλσ ,

(5.8)

where (λ, σ ) ∈ {0, ‖,⊥} and σ �= λ . Here, one has to use
the solutions for ε j from Eq. (4.7). It should be noticed that
each of two equations in Eq. (5.8) contains three relations for
three different combination of λ and σ with σ �= λ .

Fourthly, all the expressions related to ρ′
λλ have already

been used in solving the unknown parameters and deducing
the first six relations among observables. But none of the
expressions involving ρ′

λσ with λ �= σ has been used yet. Let
us first rewrite ρ′

λσ in terms of observables and the measured
angles (ϕmeas

λ and ωλσ ) as follows:

ρ′⊥i = − Re
[
ξ(A∗⊥ Āi + A∗

i Ā⊥)
]

= −
√

(�⊥⊥ + �⊥⊥)(�̄i i + �̄i i ) cos (ϕmeas
i − ω⊥i )

−
√

(�i i + �i i )(�̄⊥⊥ + �̄⊥⊥) cos (ϕmeas⊥ + ω⊥i ),

(5.9)

ρ′‖0 = Im
[
ξ(A∗‖ Ā0 + A∗

0 Ā‖)
]

=
√

(�‖‖ + �‖‖)(�̄00 + �̄00) sin (ϕmeas
0 − ω‖0)

+
√

(�00 + �00)(�̄‖‖ + �̄‖‖) sin (ϕmeas‖ + ω‖0),

(5.10)

where i ∈ {0, ‖}. Now using the six equations involving ρ′
λσ

with λ �= σ from Eqs. (3.9) and (3.10) six more relations
among observables can be obtained with the help of Eq. (4.7).

Lastly, the expressions for η′
λσ ∀ (λ, σ ) ∈ {0, ‖,⊥} have

not been utilized so far since ηλσ and η̄λσ become non-
measurable in the systems with vanishing �� (like B0

d ). That
is why we have tried to eliminate them from most of our
solutions and relations (although Eq. (5.8) contains them).
Nonetheless, one can overcome the problem for systems
with vanishing �� as well as find the rest of the relations
in case of general P0 − P̄0 systems. We have to express
η′

λσ ∀ (λ, σ ) ∈ {0, ‖,⊥} in terms of observables and the
measured angles (ϕmeas

λ and ωλσ ) first (like ρ′ in the last
paragraph) as follows:

η′
i i = Re

(
ξ A∗

i Āi
) =

√
(�i i + �i i )(�̄i i + �̄i i ) cos ϕmeas

i , (5.11)

η′⊥⊥ =− Re
(
ξ A∗

i Āi
)=−

√
(�⊥⊥+�⊥⊥)(�̄⊥⊥ + �̄⊥⊥) cos ϕmeas⊥ ,

(5.12)

η′⊥i = Im
[
ξ(A∗⊥ Āi + A∗

i Ā⊥)
]

=
√

(�⊥⊥ + �⊥⊥)(�̄i i + �̄i i ) sin (ϕmeas
i − ω⊥i )

+
√

(�i i + �i i )(�̄⊥⊥ + �̄⊥⊥) sin (ϕmeas⊥ + ω⊥i ),

(5.13)

η′‖0 = Re
[
ξ(A∗‖ Ā0 + A∗

0 Ā‖)
]

=
√

(�‖‖ + �‖‖)(�̄00 + �̄00) cos (ϕmeas
0 − ω‖0)

+
√

(�00 + �00)(�̄‖‖ + �̄‖‖) cos (ϕmeas‖ + ω‖0), (5.14)

where i ∈ {0, ‖}. Now, substituting the above relations into
to twelve equations involving η′

λσ ∀ (λ, σ ) ∈ {0, ‖,⊥} in
Eqs. (3.9) and (3.10), the remaining twelve relations among
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observables can be established. For vanishing ��, those
twelve relations can be used for theoretical estimation of ηλσ

and η̄λσ which can used in Eq. (5.8) to verify those observ-
able relations. Thus excluding the last twelve relations, we
have total twenty two observable relations in vanishing ��

scenario, whereas in general cases we have total thirty four
relations among observables. Some of these relations will
get violated only if there exists direct violation of CPT (i.e.
violation in the decay itself.)

6 Special cases

In this section, we will study following three special cases
using our formalism.

6.1 SM scenario

In SM scenario, there is no violation of T (apart from CP
violating effects) and CPT in mixing. Hence, ε j = 0 ∀ j ∈
{1, 2, 3} which readily infer from Eqs. (3.9) and (3.10) that

�λσ = �̄λσ , ηλσ = η̄λσ , �λσ = − �̄λσ , ρλσ = ρ̄λσ ,

(6.1)

where (λ, σ ) ∈ {0, ‖,⊥}. It should be kept in mind that
the forty eight equations in Eqs. (3.9) and (3.10) have been
recast as solutions of fourteen theoretical parameter, as given
in Sect. 4, and thirty four relations among observables, as
described in Sect. 5. Therefore, the twenty four relations
in Eq. (6.1) are also embedded in the solutions or relations
among observables. But it would take a bit more algebraic
complexity to dig them out from there and so we simply
derive them from Eqs. (3.9) and (3.10).

The other constrain in SM is that each of helicity ampli-
tudes for mode and the conjugate mode are equal to each other
(i.e. Aλ = Āλ). Equating the modulus of helicity amplitudes
one gets the following three relations from Eqs. (4.4) and
(6.1):

�λλ = 0 ∀ λ ∈ {0, ‖,⊥}, (6.2)

and hence, |Aλ| = √
�λλ ∀ λ ∈ {0, ‖,⊥}. (6.3)

On the other hand, equating the phases one would get the
following three relations from Eq. (4.2):

ωλσ = ω̄λσ ∀ (λ, σ ) ∈ {0, ‖,⊥} �⇒ �‖0 = 0 and

�⊥i = 0 with i ∈ {0, ‖}. (6.4)

Here, we have used the Eq. (4.8) and Eqs. (5.4)–(5.6) for the
expressions of ωλσ and ω̄λσ . The expressions for ω⊥i and

ω‖0 in this scenario turn out to be following which will be
used later:

ω⊥i = sin−1
(

− �⊥i

2
√

�⊥⊥�i i

)
and ω‖0 = cos−1

(
�‖0

2
√

�‖‖�00

)
.

(6.5)

From Eq. (4.2), we also get that ϕmeas
λ = −2β. Combining

this information with Eqs. (4.5), (4.6), (6.1) and (6.2) results
in following two relations:

ρi i

�i i
= − ρ⊥⊥

�⊥⊥
with i ∈ {0, ‖}, (6.6)

along with the expression of sin 2β as:

sin 2β = − sin ϕmeas
λ = −

(
ρ00

�00

)
. (6.7)

Thus first part of Eq. (5.7) (i.e. ω̄λσ = ϕmeas
λ −ϕmeas

σ +ωλσ )
gets satisfied automatically. After a couple of discussions we
will come back to the second part of the equation.

Now, substituting the Eqs. (5.9) and (5.10) into Eq. (3.9)
and using the expressions of angular quantities ω⊥i , ω‖0 and
ϕmeas

λ from Eqs. (6.5) and (6.7) along with Eqs. (6.1) and
(6.2), one arrives at the following three relations:

ρ2⊥i

4�⊥⊥�i i − �2⊥i

= �2
00 − ρ2

00

�2
00

with i ∈ {0, ‖}, (6.8)

and,
ρ‖0

�‖0
= ρ00

�00
. (6.9)

In the same way, using the expressions for η′
λσ in Eqs.

(5.11)–(5.14), the following six relations for i ∈ {0, ‖} can be
achieved with the help of a bit of algebraic and trigonometric
operations:

ηi i

�i i
= η‖0

�‖0
= − η⊥⊥

�⊥⊥
, (6.10)

η⊥i

ρ⊥i
+ η‖0

ρ‖0
= 0, (6.11)

η2‖0 + ρ2‖0 = �2‖0, (6.12)

Finally, we use the last part of Eq. (5.7) (i.e. ω‖0 = ω⊥0 −
ω⊥‖) to reach the last relation:

�‖0 = 1

2�⊥⊥

[
�⊥0�⊥‖ + ρ⊥0ρ⊥‖

(
�2

00

�2
00 − ρ2

00

)]
(6.13)

Thus we have six unknown parameters (three of |Aλ|, two
of ω⊥i and one β) in this case to solve for which are given by
Eqs. (6.3), (6.5) (first part) and (6.7). Therefore, one should
get a complete set of forty two independent relations among
observables which consists of twenty four in Eq. (6.1), three
in each of Eqs. (6.2), (6.4) and (6.10), two in each of Eqs.
(6.6), (6.8), (6.11) and one in each of Eqs. (6.9), (6.12) and
(6.13) respectively. All the other expressions in Sect. 4 and 5
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satisfy automatically. Except the twenty four relations in Eq.
(6.1), the other eighteen relation have already been discussed
in Ref. [73]. These relations will get violated by the presence
of direct CP violation or some CPT non-conserving new
Physics effects.

6.2 SM plus direct CP violation

In this case also ε j = 0 ∀ j ∈ {1, 2, 3} which immediately
imply from Eqs. (3.9) and (3.10) that

�λσ = �̄λσ , ηλσ = η̄λσ , �λσ = −�̄λσ , ρλσ = ρ̄λσ ,

(6.14)

where (λ, σ ) ∈ {0, ‖,⊥} like the SM scenario. However, the
presence of directCP violation in this case makes the helicity
amplitudes of the mode to be different from that of the conju-
gate mode. Thus, here we have eleven theoretical parameters
(three for each of |Aλ|, | Āλ| and ϕmeas

λ respectively and two
of ω⊥i ) which follows from Sect. 4 and Eq. (6.14) as:

|Aλ| = √
�λλ + �λλ, | Āλ| = √

�λλ − �λλ,

sin �meas
λ = ρλλ√

�2
λλ − �2

λλ

,

ω⊥i = sin−1
(

− �⊥i + �⊥i

2
√

(�⊥⊥ + �⊥⊥)(�i i + �i i )

)
.

(6.15)

It should be noticed that the other two solutions for sin �meas
λ

from the cubic equation in Eq. (4.5) are imaginary in general
since �λλ > �λλ is required for positive definiteness of | Āλ|.
With the help of Eqs. (6.14) and (6.15), the expressions for
ε j in Eq. (4.7) vanish automatically.

In this case, number of independent relations among
observables is forty eight minus eleven equals to thirty seven.
Among them twenty four are listed in Eq. (6.14). The remain-
ing thirteen can be found in the following way: (1) four rela-
tions can be found from Eq. (5.7), (2) three can be established
by substituting Eqs. (5.9) and (5.10) in to Eq. (3.9), 3) the
last six can be obtained by replacing Eqs. (5.11)–(5.14) into
Eq. (3.9). After a bit of mathematical jugglery, these thirteen
relations can be described in the following form:

�λλ =
√

�2
λλ + ρ2

λλ + η2
λλ, (6.16)

[
(

ρσσ

�σσ +�σσ
) + (

ρλλ

�λλ+�λλ
) − 2(

ρλσ

�λσ +�λσ
)

(
ησσ

�σσ +�σσ
) + (

ηλλ

�λλ+�λλ
) − 2(

ηλσ

�λσ +�λσ
)

]
= −

[( ηλλ

�λλ+�λλ

)− ( ησσ

�σσ +�σσ

)

(
ρλλ

�λλ+�λλ

)− (
ρσσ

�σσ +�σσ

)
]
, (6.17)

4

[
(�λλ + �λλ)(�σσ + �σσ )

(�λσ + �λσ )2

]
−
[( ρλλ

�λλ+�λλ

)+ (
ρσσ

�σσ +�σσ

)− 2
(

ρλσ

�λσ +�λσ

)

( ηλλ

�λλ+�λλ

)− ( ησσ

�σσ +�σσ

)
]2

= 1, (6.18)

[
4

(
ηλλρσσ − ησσ ρλλ

�2
λσ − �2

λσ

)
+
{( ρλλ

�λλ+�λλ

)+ (
ρσσ

�σσ +�σσ

)− 2
(

ρλσ

�λσ +�λσ

)

( ηλλ

�λλ+�λλ

)− ( ησσ

�σσ +�σσ

)
}]2

= 4

[
(�λλ − �λλ)(�σσ − �σσ )

(�λσ − �λσ )2

]
− 1, (6.19)

[
(�‖0 + �‖0)

2

(�00 + �00)(�‖‖ + �‖‖)

]
−
[
(�⊥0 + �⊥0)(�⊥‖ + �⊥‖)(�‖0 + �‖0)

(�⊥⊥ + �⊥⊥)(�00 + �00)(�‖‖ + �‖‖)

]

= 4 −
[

(�⊥0 + �⊥0)
2

(�⊥⊥ + �⊥⊥)(�00 + �00)

]
−
[

(�⊥‖ + �⊥‖)2

(�⊥⊥ + �⊥⊥)(�‖‖ + �‖‖)

]
, (6.20)

where (λ, σ ) ∈ {0, ‖,⊥} and λ �= σ . It should be noticed
that each of the four equations from Eqs. (6.16) to (6.19)
contains three relations for different values of λ and σ with
λ not being equal to σ , and Eq. (6.20) contains only one.
Violation of these relations would definitely imply existence
of CPT violating new Physics phenomenon.

6.3 SM plus T and CPT violation in mixing

In this case, one can follow the entire procedure described
in Sects. 4 and 5 to get the solutions of theoretical parame-
ters and find the relations among observables. But to reach
the expressions in the form of Ref. [73], that already dis-
cusses this scenario, one has to encounter various algebraic
complexities.

As there is no direct CP violation in this case, the helicity
amplitudes for mode and conjugate mode will be equal to
each other (like SM). All of the three ϕmeas

λ become −2β too.
Therefore, there will be total nine unknown parameters (three
of |Aλ|, two of ω⊥i , one β and three of ε j ). It implies that the
total number of independent relations among observables is
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forty eight minus nine equal to thirty nine. It should be noticed
from Sect. 6.1 that �λλ, �‖0, �⊥i , (

ρi i
�i i

+ ρ⊥⊥
�⊥⊥ ), ( ηi i

�i i
+ η⊥⊥

�⊥⊥ ),
(
ρi i
ηi i

− ρ⊥⊥
η⊥⊥ ), etc. were zero in SM case. However, inverting Eq.

(3.9) one can find that they are O(ε j ) in the present scenario.
Since we are keeping track up to the linear order terms in
ε j , any quadratic term involving the above expressions will
be neglected. The same rule applies for the observables of
conjugate mode too.

At first, using the equality of helicity amplitudes for mode
and conjugate mode, one achieve the following six relations
from Eqs. (4.4), (4.8), (5.4)–(5.7) (first part):

�λλ + �λλ =�̄λλ+�̄λλ, �⊥i + �⊥i = −(�̄⊥i + �̄⊥i ),

�‖0 + �‖0 = �̄‖0 + �̄‖0, (6.21)

where λ ∈ {0, ‖,⊥} and i ∈ {0, ‖}. Along with the above
six relations we also get the expressions for five unknown
parameters as:

|Aλ| = √
�λλ + �λλ and

ω⊥i = sin−1
(

− �⊥i + �⊥i

2
√

(�⊥⊥ + �⊥⊥)(�i i + �i i )

)
. (6.22)

At second, we use the three expressions for ϕmeas
λ (=

−2β) from Eq. (4.5) and six relations in Eqs. (5.1)–(5.3)
that equate the different expressions for ε j ( j ∈ {1, 2, 3}).
These nine expressions can be paraphrased as one equation
for sin 2β and eight relations among observables as follows:

sin 2β = − 1

2

( ρ00
�00

− ρ⊥⊥
�⊥⊥

)
, (6.23)

( ρ00
�00

− ρ⊥⊥
�⊥⊥

)
=
( ρ̄00

�̄00
− ρ̄⊥⊥

�̄⊥⊥

)
, (6.24)

�00
�00

= �‖‖
�‖‖

,
ρ00
�00

= ρ‖‖
�‖‖

,
�̄00

�̄00
= �̄‖‖

�̄‖‖
,

ρ̄00

�̄00
= ρ̄‖‖

�̄‖‖
, (6.25)

( ρ00 − ρ̄00
�00 + �00

)
+
( ρ⊥⊥ − ρ̄⊥⊥

�⊥⊥ + �⊥⊥
)

= 0,
(�00 + �̄00

�00 + �00

)
+
(�⊥⊥ + �̄⊥⊥

�⊥⊥ + �⊥⊥
)

= 0,

(6.26)
(�00 + �̄00

�00 + �00

)
−
( ρ00

�00 + �00
+ ρ⊥⊥

�⊥⊥ + �⊥⊥
)

sin 2β = 0 (6.27)

With the help of the above expressions the values of ε2 and
ε3 in Eq. (4.7) can be written as:

ε2 = −1

2

( ρ00

�00 + �00
+ ρ⊥⊥

�⊥⊥ + �⊥⊥

)
,

ε3 = 1

2

( �00

�00 + �00
+ �⊥⊥

�⊥⊥ + �⊥⊥

)
. (6.28)

Thirdly, substituting the expressions for η′
λλ for λ ∈ {0, ‖

,⊥} from Eqs. (5.11) and (5.12) into Eqs. (3.9) and (3.10)
one would end up with following six relations:

η00

�00
= η‖‖

�‖‖
,

η̄00

�̄00
= η̄‖‖

�̄‖‖
, (6.29)

(
ρ00

�00
− ρ⊥⊥

�⊥⊥

)2

+
(

η00

�00
− η⊥⊥

�⊥⊥

)2

= 4 (6.30)

(
η00

�00
− η⊥⊥

�⊥⊥

)
=
( η̄00

�̄00
− η̄⊥⊥

�̄⊥⊥

)
(6.31)

ρ2
00 + η2

00

�2
00

= ρ2⊥⊥ + η2⊥⊥
�2⊥⊥

,
ρ̄2

00 + η̄2
00

�̄2
00

= ρ̄2⊥⊥ + η̄2⊥⊥
�̄2⊥⊥

(6.32)

It should be noticed that some of the above relations could
be further simplified as: �λλ =

√
η2

λλ + ρ2
λλ and �̄λλ =

√
η̄2

λλ + ρ̄2
λλ. Nonetheless, to reproduce the relations in Ref.

[73], we stick to the former ones only. Using the above rela-
tions, the expression for ε1 from Eq. (4.7) can be interpreted
as following:

ε1 = − 1

2

( ηi i

�i i + �i i
+ η⊥⊥

�⊥⊥ + �⊥⊥

)
. (6.33)

With the help of above relations involving ηλλ, one can also
abandon Eq. (6.27) and recast it as:
(

ηi i − η̄i i

�i i + �i i

)
+
(

η⊥⊥ + η̄⊥⊥
�⊥⊥ + �⊥⊥

)
= 0 (6.34)

Fourthly, we use the Eq. (5.8) to arrive at the expressions
for cos ωλσ and cos ω̄λσ that can be rewritten as the following
six relations:

[
(�⊥i + �⊥i )

2

(�i i + �i i )(�⊥⊥ + �⊥⊥)

]

+ 4X2
i �2

i i �
2⊥⊥
[

(�i i + �i i )(�⊥⊥ + �⊥⊥)

(�⊥⊥�i i + �i i�⊥⊥ + 2�⊥⊥�i i )2

]
= 4,

(6.35)
[

(�̄⊥i + �̄⊥i )
2

(�̄i i + �̄i i )(�̄⊥⊥ + �̄⊥⊥)

]

+ 4X̄2
i �̄2

i i �̄
2⊥⊥
[

(�̄i i + �̄i i )(�̄⊥⊥ + �̄⊥⊥)

(�̄⊥⊥�̄i i + �̄i i �̄⊥⊥ + 2�̄⊥⊥�̄i i )2

]
= 4,

(6.36)

�‖0

�‖0
= �00

�00
and

�̄‖0

�̄‖0
= �̄00

�̄00
, (6.37)

where

Xi =
[ 1
(
η⊥⊥ρi i − ηi iρ⊥⊥

)(
�i i + �i i

)(
�⊥⊥ + �⊥⊥

)
]

×
[(

�⊥i − �⊥i
)(

�⊥⊥�i i + �i i�⊥⊥
)

+ 2
(
�i i�⊥⊥�⊥i − �i i�⊥⊥�⊥i

)]
,

and,

123



Eur. Phys. J. C (2020) 80 :782 Page 11 of 14 782

X̄i =
[ 1
(
η̄⊥⊥ρ̄i i − η̄i i ρ̄⊥⊥

)(
�̄i i + �̄i i

)(
�̄⊥⊥ + �̄⊥⊥

)
]

×
[(

�̄⊥i − �̄⊥i
)(

�̄⊥⊥�̄i i + �̄i i �̄⊥⊥
)

+ 2
(
�̄i i �̄⊥⊥�̄⊥i − �̄i i �̄⊥⊥�̄⊥i

)]
,

with i ∈ {0, ‖}. It is very important to note that to get a cor-
rect Xi or X̄i up to O(ε j ) one should keep the quadratic
terms of ε j in the numerator and denominator separately
while defining Xi or X̄i , since the leading order terms in
both of the numerator and denominator are O(ε j ). Notwith-
standing, the relations in Eqs. (6.35) and (6.36) can be untan-
gle a bit by using cos ω⊥i = 1

2 Xi
√

�⊥⊥�i i and cos ω̄⊥i =
1
2 X̄i

√
�̄⊥⊥�̄i i .

Fifthly, by replacing the expressions for ρ′
λσ with λ �=

σ from Eqs. (5.9) and (5.10) into Eqs. (3.9) and (3.10), as
described in Sec. 5, one would end up with following six
relations:

ρ⊥i = 1

2

[
�⊥i

�i i�⊥⊥

{
ρ⊥⊥

(
�i i + �i i

)
+ρi i

(
�⊥⊥+�⊥⊥

)}

− Xi

{
�⊥⊥ηi i −�i iη⊥⊥

}]
, (6.38)

ρ̄⊥i = 1

2

[
�̄⊥i

�̄i i �̄⊥⊥

{
ρ̄⊥⊥

(
�̄i i + �̄i i

)+ ρ̄i i
(
�̄⊥⊥ + �̄⊥⊥

)}

− X̄i

{
�̄⊥⊥η̄i i − �̄i i η̄⊥⊥

}]
, (6.39)

ρ‖0

�‖0
= ρ00

�00
and

ρ̄‖0

�̄‖0
= ρ̄00

�̄00
, (6.40)

where i ∈ {0, ‖}. Similarly, substituting the expressions for
η′

λσ with λ �= σ from Eqs. (5.13) and (5.14) into Eqs. (3.9)
and (3.10), would lead to the following six relations:

η⊥i = 1

2

[
�⊥i

�i i�⊥⊥

{
η⊥⊥

(
�i i + �i i

)+ ηi i
(
�⊥⊥ + �⊥⊥

)}

+ Xi

{
�⊥⊥ρi i − �i iρ⊥⊥

}]
, (6.41)

η̄⊥i = 1

2

[
�̄⊥i

�̄i i �̄⊥⊥

{
η̄⊥⊥

(
�̄i i + �̄i i

)+ η̄i i
(
�̄⊥⊥ + �̄⊥⊥

)}

+ X̄i

{
�̄⊥⊥ρ̄i i − �̄i i ρ̄⊥⊥

}]
, (6.42)

η‖0

�‖0
= η00

�00
and

η̄‖0

�̄‖0
= η̄00

�̄00
. (6.43)

Finally, second part of Eq. (5.7) (ω‖0 = ω⊥0 − ω⊥‖)
indicates the last independent relation as:

(
�0‖ + �0‖

)
− 1

2

[ (�⊥0 + �⊥0)(�⊥‖ + �⊥‖)
(�⊥⊥ + �⊥⊥)

]

=
[ 2X0X‖ �00�‖‖ �2⊥⊥
(�⊥⊥�00 + �00�⊥⊥ + 2�⊥⊥�00)

]

×
[ (�00 + �00)(�‖‖ + �‖‖)(�⊥⊥ + �⊥⊥)

(�⊥⊥�‖‖ + �‖‖�⊥⊥ + 2�⊥⊥�‖‖)

]
, (6.44)

Thus, the expressions for nine theoretical parameters
(three of |Aλ|, two of ω⊥i , one β and three of ε j ) in this
scenario are given by five equations in Eq. (6.22), two expres-
sions in Eq. (6.28) and one in each of Eqs. (6.23) and (6.33).
On the other hand, the thirty nine relation among observables
are presented as: (a) six relations in Eq. (6.21), (b) seven
equations from Eqs. (6.24)–(6.26) (we have not counted Eq.
(6.27) since it has been recast as Eq. (6.34)), (c) six expres-
sions from Eqs. (6.29)–(6.32) and (d) twenty relations from
Eqs. (6.34)–(6.44). If some of these relations do not hold
true, that will indicate the presence of CPT or CP violation
in decay itself.

7 Phenomenology

Various experiments have been performed so far in order
to probe CPT violation in neutral meson mixing. Although
these experiments measure tiny non-zero values forCPT vio-
lating parameters, they become consistent to zero within 2σ

due to the presence of experimental error bars with compara-
ble size. In case of kaon system,CPT asymmetry is measured
from the semileptonic (π+l−ν̄l , π−l+νl ) decay modes of K 0

and K̄ 0 to estimate the CPT -violating complex parameter
δ whose real and imaginary parts are directly proportional
to ε1 and ε2 respectively in our notation. From the data of
KTeV collaboration [76], the real and imaginary parts of this
parameter are estimated to be: Re(δ) = (2.51±2.25)×10−4

and Im(δ) = (− 1.5 ± 1.6) × 10−5 which agree with CPT
conservation. In case of D0 − D̄0 system, CPT asymmetry,
which is constructed by comparing the time dependent decay
probabilities of the modes D0 → K−π+ and D̄0 → K+π−,
has been measured by FOCUS collaboration [77]. This mea-
surement leads to the estimation of CPT -violating complex
parameter ξ , whose real and imaginary parts are propor-
tional to ε1 and ε2 respectively, to be: Re(ξ) y − Im(ξ) x =
0.0083±0.0065±0.0041 where, x = �M

�
and y = ��

2�
. The

first measurement of CPT violation in B0 − B̄0 system was
performed by BaBar collaboration [52,53]. The last update
on it has been carried out by Belle collaboration [54]. For
this purpose, they have fitted the time dependent decay rate
of the chain: ϒ(4S) → B0

d B̄0
d → frec ftag , where one of

the B-meson decays to reconstructed final state frec at time
trec and the other one decays at time ttag to a final state ftag ,
that distinguishes between B0 and B̄0. Several hadronic and
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semileptonic decay modes of B0
d (J/ψKS , J/ψKL , D−π+,

D∗−π+, D∗−ρ+ and D∗−l+νl ) have been used in this case
to find the experimental value for the CPT -violating com-
plex parameter z as: Re(z) = (1.9 ± 3.7 ± 3.3) × 10−2 and
Im(z) = (− 5.7 ± 3.3 ± 3.3) × 10−3 which are consistent
with zero. Similarly, using the time dependent decay rate to
a CP eigenstate for the mode B0

s → J/ψK+K−, the CPT
violation in B0

s system has been measured by LHCb col-
laboration [55] as: Re(z) = − 0.022 ± 0.033 ± 0.005 and
Im(z) = 0.004 ± 0.011 ± 0.002 that also agrees with con-
servation of CPT . The dependence of the parameter z on ε1

and ε2 is already given by Eq. (3.4). On the other hand, direct
and indirect CP violations as well as T violation in neutral
meson mixing have also been measured at different occa-
sions [44]. However, during all these measurements, CPT
has always been assumed to be preserved which makes T
and CP violations equivalent to each other.

Due to unavailability of enough phase space, the kaon sys-
tem cannot decay to any vector meson. Nevertheless, for D0,
B0
d and B0

s systems, several decay modes with two vectors
in final state, to which both the pseudoscalar meson and its
antiparticle can decay, are accessible. As this paper addresses
direct CP violation with the decays P0 → f and P̄0 → f ,
we should focus on the final states f which are CP eigen-
states. The modes that can be considered for D0 system are
K ∗ K̄ ∗, ρ0φ, K ∗+K ∗−, ρ0ρ0, ρ+ρ−, etc. Similarly, for B0

d
systems, modes like φφ, ρ0ρ0, ρ+ρ−, ωω, K ∗ K̄ ∗, K ∗+K ∗−,
D∗+
s D∗−

s , etc. can be used. For B0
s system also, the modes

like φφ, ρ0ρ0, ρ+ρ−, K ∗ K̄ ∗, K ∗−K ∗−, D∗+
s D∗−

s , J/ψ φ,
etc. should be used. Many of these modes have already been
studied by several experimental groups [44]. But time depen-
dence of the decay rates for these modes has not been used
so far in connection with probing CPT violation.

Having said that, let us now consider the final states con-
sisting of two vectors with no definite CP . The general anal-
ysis, described up to Sect. 5, does not require the final state
f to be a CP eigenstate. So, one can use it for any final
state f to which both P0 and P̄0 can decay. In that case, the
decay rates for the channels P0 → f and P̄0 → f could be
very different from each other and the SM behaviour would
exactly be described by the scenario depicted in Sect. 6.2.
But the equations of Sects. 6.1 and 6.3 must not be used for
this particular scenario since these two sections inevitably
presume the final state f to be a CP eigenstate while impos-
ing the condition Aλ = Āλ for CP being conserved. Gen-
erally, if f does not represent a CP eigenstate, only one
of the channels between P0 → f and P̄0 → f becomes
dominant due to additional CKM suppression or presence
of extra W -boson propagator in the leading order Feynman
diagram of the other process. For example, this happens in
the decay channels like K̄ ∗ρ0 or K ∗±ρ∓ for D0 system,
D∗±K ∗∓, D∗±ρ∓, φK ∗, J/ψK ∗, etc., modes in case of B0

d
systems and D∗±

s ρ∓, φK ∗, J/ψK ∗, etc., channels for B0
s

systems. Nevertheless, it does not mean that all the observ-
ables for the disfavoured modes will be small enough in
magnitude. To elaborate, let us consider a SM scenario (i.e.
ε j = 0) with | Āλ/Aλ| � 1. Then, Eqs. (3.8)–(3.10) readily
imply that (ρλσ /�λσ ) ≈ (ρ̄λσ /�̄λσ ) � 1, (ηλσ /�λσ ) ≈
(η̄λσ /�̄λσ ) � 1 and �λσ ≈ �̄λσ ≈ �λσ ≈ −�̄λσ . So,
if we neglect the terms ηλσ and ρλσ with respect to �λσ

and �λσ and then integrate the time dependent decay rates
(given by Eqs. (3.6) and (3.7)) over time, we find the branch-
ing fractions for P0 → f and P̄0 → f to be: Br (P0 →
f ) ≈

( 1

�2 − ��2/4
+ 1

�2 + �M2

)∑

λ≤σ
�λσ gλgσ and

Br (P̄0 → f ) ≈
( 1

�2 − ��2/4
− 1

�2 + �M2

)∑

λ≤σ
�λσ

gλgσ . This clearly shows that �λσ might not be small
in this special case but still branching fraction for the
disfavoured transition could be small due to cancellation
between two large contributions coming from integration of
e−�t cosh(��t/2) and e−�t cos(�Mt) terms depending on
the values of �� and �M whereas for the dominant mode
these contributions add up to a larger value. However, due to
presence of large contributions from �λσ and �λσ , precise
measurement for ηλσ and ρλσ might be problematic in these
kind of channels.

Now, by examining the decay products of the produced
vectors, the helicity component for the two vector final state
can be obtained. Then studying angular analysis and time
dependence of the decay rates for P0 → f and P̄0 → f , all
the observables can be measured [68]. However, due to exis-
tence of several relations among observables, the T , CP and
CPT violating parameters can be expressed in various ways
involving different observables. But in experiment, all these
observables can be measured separately and hence several
measurements for same theoretical parameter can be per-
formed simultaneously which would help to reduce the error
bar allowing a more precise measurement for the unknown
parameter. Thus better results on CPT violation should be
expected from future runs of LHCb and Belle II.

8 Conclusion

In conclusion, we have studied the behaviour of observables
for neutral meson decaying to two vectors in the presence of
T , CP and CPT violation in mixing as well as CP violation
in decay. Polarizations of final state with two vectors pro-
vide us a large number of observables in these modes. The
final state should be chosen in such a way that both P0 and
P̄0 can decay to it. We extract all of the fourteen unknown
theoretical parameters in terms of the observables and then
discuss the procedure to establish the complete set of inde-
pendent relations among observables containing thirty four
equations. These relations can be used as the smoking gun
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signal to prove the existence of direct violation of CPT (if
any) since those effects only can lead to non-obedience of
them. Additionally, we explore three special cases e.g. SM
case, SM plus direct CP violation scenario and SM plus T
andCPT violation in mixing case. Using our new formalism,
we derive the expressions for unknown theoretical parame-
ters and construct the complete set of independent relations
among observables too in each special case. Experimental
verification for each of the sets will signify the existence of
some particular type of Physics. For example, the set of rela-
tions in SM plus T andCPT violation in mixing scenario can
be applied to probe direct violation of CPT or CP , the set of
relations in SM plus CP case can be implemented to confirm
the existence of any CPT violating new Physics (direct or
indirect), whereas the set of observable relations in SM sce-
nario should be used to detect direct CP violation or CPT
non-conserving new Physics.
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