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Abstract We investigate the time-dependent entanglement
entropy in the AdS space with a dS boundary which repre-
sents an expanding spacetime. On this time-dependent space-
time, we show that the Ryu–Takayanagi formula, which is
usually valid in the static spacetime, provides a leading con-
tribution to the time-dependent entanglement entropy. We
also study the leading behavior of the entanglement entropy
between the visible and invisible universes in an inflation-
ary cosmology. The result shows that the quantum entan-
glement monotonically decreases with time and finally sat-
urates a constant value inversely proportional to the square
of the Hubble constant. Intriguingly, we find that even in
the expanding universes, the time-dependent entanglement
entropy still satisfies the area law determined by the physical
distance.
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1 Introduction

Recently, considerable attention has been paid to the quantum
entanglement which is one of the important physical concepts
to figure out important quantum features of a variety of phys-
ical system. Although the entanglement entropy is concep-
tually well defined in the quantum field theory (QFT) [1–4],
calculating it for interacting QFTs is usually a difficult and
formidable task. In this situation, holography recently pro-
posed in the string theory [5–8] allows us to evaluate such
a nontrivial entanglement entropy nonperturbatively even in
strongly interacting systems [9–18]. By applying the holo-
graphic technique, in this work, we investigate the time-
dependent quantum entanglement of an expanding system
and inflationary cosmology.

In order to calculate the entanglement entropy, one first
divides a system into two subsystems, A and B, and then
evaluate the reduced density matrix of A defined as the trace
over B. In this case, two subsystems are divided by an entan-
gling surface and an observer living in A cannot receive any
information from B. This situation is very similar to the black
hole [19,20]. An observer living at the asymptotic bound-
ary cannot get any information from the inside of the black
hole. Because of this similarity, there were many attempts to
understand the Bekenstein–Hawking entropy in terms of the
entanglement entropy [21–33]. Furthermore, the similarity
between the black hole horizon and the entangling surface
has led to a new and fascinating holographic formula to cal-
culate the entanglement entropy on the dual gravity side.
Although the holographic method has not been proved yet,
it was checked that the holographic formula perfectly repro-
duces the known results of a two-dimensional conformal field
theory (CFT) [34–40].

In a cosmological model described by a dS space [41,42],
there exists a specific surface called the cosmic event hori-
zon. An observer living at the center of a dS space cannot
see the outside of the cosmic event horizon and, moreover,
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the cosmic event horizon radiates similar to the black hole
horizon. From the quantum entanglement point of view, the
cosmic event horizon naturally divides a universe into two
parts. One is a visible universe which we can see in future
and the other is called an invisible universe. In this case, the
invisible universe means that an observer living in a visible
universe cannot see the outside of the cosmic event hori-
zon even after infinite time evolution. Although the visible
and invisible universes are casually disconnected from each
other, the quantum correlation between them can still exist.
Therefore, it would be interesting to investigate the quantum
entanglement between the visible and invisible universes,
which may give us new insights about the outside of our vis-
ible universe and the effect of the invisible universe on the
cosmology of the visible universe.

In order to investigate the quantum entanglement between
two subsystems in the expanding universe, we take into
account an AdS space with a dS boundary space [43,44]
which has also been studied by others from the different
viewpoint [45,46]. The minimal surface extended to such
an AdS space corresponds to the entanglement entropy of an
expanding space defined at the boundary of the AdS space
[41]. Since we take into account a time-dependent geometry,
we need to consider the covariant formulation [11] instead of
the Ryu–Takayanagi (RT) formula defined on a constant time
slice [9,10]. However, we show that the RT formula with a
fixed time gives rise to the leading contribution to the covari-
ant formulation. Even in this case, the time dependence of the
subsystem size leads to a nontrivial time dependence of the
entanglement entropy. Consequently, the RT formula with
the time-dependent entangling region can well approximate
the leading term of the covariant entanglement entropy. In
this work, we check this points analytically and numerically
by comparing the results of the RT and covariant formulas.

Before studying the entanglement entropy of a visible uni-
verse, we first consider a subsystem whose boundary expands
in time, unlike the cosmic event horizon. In this case, the
entanglement entropy in the early time era increases by the
square of the cosmological time τ , whereas it in the late time
era grows up exponentially by e(d−2)Hτ for a d-dimensional
QFT. If we take the cosmic event horizon as an entangling
surface, the entanglement entropy shows a totally different
behavior. The cosmic event horizon at τ = 0 is located at
the equator of a (d − 1)-dimensional sphere and monotoni-
cally decreases as the cosmological time elapses. In the late
inflation era, the cosmic event horizon approaches a constant
value proportional to the inverse of Hubble constant. Sim-
ilarly, the corresponding entanglement entropy also mono-
tonically decreases and approaches a constant value. In the
present work, intriguingly, we find that the time-dependent
entanglement entropy in the expanding universe still satisfies
the area law determined by not the comoving distance but the
physical distance.

The rest of this paper is organized as follows: In Sect.
2, we briefly review an AdS space with a dS boundary. On
this background, we study the entanglement entropy of an
expanding system for d = 2, 3, 4 cases in Sect. 3. In Sect. 4,
we introduce a cosmic event horizon and divide a universe
into visible and invisible universes and then, study the quan-
tum correlation between the visible and invisible universes in
the inflationary cosmology. Finally, we finish this work with
some concluding remarks in Sect. 5.

2 AdS space with a dS boundary

Consider a (d + 1)-dimensional AdS space which can be
embedded into a (d + 2)-dimensional flat manifold with two
time signatures. Denoting the (d+2)-dimensional flat metric
as

ds2 = −dY 2−1 − dY 2
0 + δi j dY

idY j , (2.1)

where i and j run from 1 to d, the Lorentz group of this
(d+2)-dimensional flat space is given by SO(2, d). In order
to obtain a (d + 1)-dimensional AdS metric, we impose the
following constraint

− R2 = −Y 2−1 − Y 2
0 + δi j Y

iY j . (2.2)

Then, the hypersurface satisfying the constraint represents a
(d +1)-dimensional AdS space with an AdS radius R. Since
the imposed constraint is also invariant under the SO(2, d)

transformation, the resulting AdS geometry becomes a (d +
1)-dimensional space invariant under the SO(2, d) transfor-
mation which is nothing but the isometry group of the AdS
space. There exist a variety of parametrization satisfying the
above constraint. In this work, we focus on the parametriza-
tion which allows a d-dimensional de Sitter (dS) space at
the boundary. Now, let us parametrize the coordinates of the
ambient space as [41]

Y−1 = R cosh
ρ

R
, Y0 = R sinh

ρ

R
sinh

t

R
and

Y i = Rni sinh
ρ

R
cosh

t

R
, (2.3)

where ni indicates a d-dimensional orthonormal vector sat-
isfying δi j ni n j = 1. The resulting AdS metric then gives rise
to

ds2 = dρ2 + sinh2
( ρ

R

)

[
−dt2 + R2 cosh2

(
t

R

)(
dθ2 + sin2 θd�2

d−2

)]
, (2.4)

where dθ2 + sin2 θd�2
d−2 indicates a metric of a (d − 1)-

dimensional unit sphere. According to the AdS/CFT corre-
spondence, the boundary of this AdS space defined at ρ = ∞
can be regarded as the space-time we live in. Above the
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boundary metric shows a dS space which can describes an
inflationary cosmology.

In order to divide the boundary space into two subsys-
tems, let us first assume that we are at θ = 0 and that two
subsystems are bordered at θo. For convenience, we call the
subsystem we are in is an observable system and the other
subsystem an unobservable system. In general, the border
is called the entangling surface in the entanglement entropy
study. Although we do not get any information from the unob-
servable system, the quantum state of the observable system
can be affected from the unobservable system due to the non-
trivial quantum entanglement. Let us assume that the entire
system is described by a pure state |�〉 represented by the
product of two subsystem’s states [9,10,18,34–36,47–49]

|�〉 = |ψ〉o |ψ〉u , (2.5)

where |ψ〉o and |ψ〉u indicate the states of the observable
and unobservable systems, respectively. Then, the reduced
density matrix of the observable system is given by tracing
over the unobservable part

ρo = Tr u |�〉 〈�| , (2.6)

and the entanglement entropy is defined by the Von Neumann
entropy

SE = −Tr o ρo log ρo. (2.7)

Although the entanglement entropy is conceptually well
defined in a quantum field theory, it is not easy to cal-
culate it in general cases. Even for those cases, we can
apply the covariant or RT formula and get more information
about the entanglement entropy. In this work, following the
holographic proposition, we will discuss the entanglement
entropy of the expanding system in Eq. (2.4).

3 Entanglement entropy on the expanding system

Above, we have discussed the entanglement entropy between
the observable and unobservable systems. However, it is not
still clear how we can divide the observable and unobservable
systems. One simple choice is to take a constant θo. Under
this simple choice, the size of the two subsystems gradually
increases as time elapses. The set-up with a constant θo may
be useful to describe an expanding material or to figure out
the entanglement entropy of a time-dependent subsystem. On
the other hand, it is also interesting to take into account the
time-dependent entangling surface. In this section, we first
investigate the entanglement entropy defined by a constant
θo and then discuss further the entanglement entropy of infla-
tionary cosmology in the next section. As will be discussed
in the next section, eternal inflation usually has a horizon
outside of which we can not measure classically. The exis-
tence of such a horizon can seriously affect the entanglement

entropy in the late time era. In this section, anyway, we focus
on the entanglement entropy of an expanding material like
an expanding quark-gluon plasma in the RHIC experiments.
The expanding material system is usually too small to com-
pare the horizon of our universe so that we do not need to
consider the effect of the horizon in this section.

3.1 Comments on the entanglement entropy in the
expanding system

Before investigating the entanglement entropy, we need
to discuss several important issues appearing in the time-
dependent geometry. For simplicity, let us first focus on the
d = 2 case which can give us a simple solvable toy model. For
d = 2, the dual geometry reduces to the three-dimensional
AdS space

ds2 = dρ2 + sinh2
( ρ

R

)

[
−dt2 + R2 cosh2

(
t

R

)
dθ2

]
. (3.1)

If we look at the boundary space of this AdS space with a fixed
ρ, the boundary metric has the form of the cosmological-type
metric depending on time. In order to describe the entangle-
ment entropy on the time-dependent background, we assume
that the observable system is in the range of

− θo

2
≤ θ ≤ θo

2
. (3.2)

For convenience, we can also introduce a new coordinate
R/z = sinh(ρ/R). In terms of the new coordinate, the pre-
vious AdS3 metric can be reexpressed as

ds2 = R2dz2

z2(1 + z2/R2)

+ R2

z2 [−dt2 + R2 cosh2(t/R) dθ2]. (3.3)

Here, we assume that the AdS boundary is located at z = ε �
1. Then, the value of θ0 specifies the size of the subsystem.
More precisely, the subsystem size l is given by

l(t) = R2

ε
cosh(t/R) θ0. (3.4)

Due to the time-dependent background geometry, the min-
imal surface corresponding to the entanglement entropy is
described by the following covariant formula [11]

SE = R

4G

∫ θo
2

− θo
2

dθ

1

z

√
z′2

1 + z2/R2 − t ′2 + R2 cosh2(t/R), (3.5)

where the prime indicates a derivative with respect to θ .
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The smoothness of the minimal surface and the invariance
under θ → −θ requires z′ = 0 and t ′ = 0 at the turning
point z∗ and, consequently, the minimal surface extends only
to 0 ≤ z ≤ z∗. Since the above action does not explicitly
depend on θ , there exists a conserved charge

H = − R2 cosh2(t/R)

4Gz
√

z′2
1+z2/R2 − t ′2 + R2 cosh2(t/R)

. (3.6)

At the turning point, the conserved charge simply reduces to

H = − R cosh(t∗/R)

4Gz∗
, (3.7)

where t∗ denotes the value of t at the turning point. Compar-
ing these two relations, we obtain

z′ = ±
√
R2 + z2

√
z2

[
t ′2 − R2 cosh2 (t/R)

] + R2z2∗ cosh4 (t/R) sech2 (t∗/R)

Rz
.

(3.8)

This relation shows that, when z approaches 0 at the bound-
ary, z′ must diverge regardless of the value of t ′. In the holo-
graphic entanglement entropy calculation, as will be seen,
the main contribution usually comes from a small z region,
so that it is important to know the asymptotic behavior of t ′ to
determine the leading behavior of the entanglement entropy.
For example, if the asymptote of t ′ is proportional to z′, we
must take into account the contribution of t ′ at leading order.
On the other hand, if the value of t ′ at the boundary does not
diverge, the contributions of t ′ can be regarded as a higher
order correction and the leading contribution comes only
from z′. As a consequence, knowing the asymptotic behavior
of t ′ becomes important to determine the leading behavior of
the entanglement entropy.

In order to see the asymptote of t ′, we rewrite t ′ as a
function of z′ by combining the above two relations

t ′ = ±
R

√
z2z′2 − (

R2 + z2
)

cosh2 (t/R)
(
z2∗ cosh2 (t/R) sech2 (t∗/R) − z2

)

z
√
R2 + z2

.(3.9)

This relation does not allow us to fix the asymptotic form
of t ′ because of opposite signs of two leading terms even
for z → 0. In order to determine the asymptotic form of
t ′, we need to investigate further the equation of motion for
z. When replacing t ′ and t ′′ with z, z′ and z′′ by using Eq.
(3.9), the equation of motion for z is generally given by a
very complicated form. In order to determine the asymp-
totic form of t ′, however, it is sufficient to see the leading
behavior of the obtained complicated equation. To do so, let
us first consider the scaling behavior of z at the boundary
which is useful to pick up the equation governing the leading
contribution. When z approaches 0 at the boundary, z′ must
diverges as 1/z. This fact implies that z should involve the
factor like δ1/2 = √

θo − θ . At the boundary, therefore, z
and its relatives must be scaled by z → δ1/2z, z′ → δ−1/2z′,

and z′′ → δ−3/2z′′ at leading order. Note that z′ and z′′ can
also have other terms differently scaled by z′ → δ−az′ with
a < 1/2 and z′′ → δ−bz′′ with b < 3/2. However, those
terms generally lead to higher order corrections. Substitut-
ing the above leading scaling behaviors into the equation of
motion, we finally obtain the leading equation governing the
asymptotic behavior of z

0 = z3z′′ + R2z2∗sech2 (z∗/R) cosh4 (to/R) , (3.10)

where to indicates time at the boundary, t (θo). This equation
allows the following general solution

z =
√
z2∗ cosh4 (to/R) sech2 (t∗/R) − c4

1R
2 (c2 + θ) 2

c1
,

(3.11)

where c1 and c2 are two integral constants. The constraint,
z = 0 at θ = θo, determines one of parameters in terms of
the others

t∗ = R cosh−1

⎛
⎝ z∗ cosh2 (to/R)

R
√
c4

1θ
2
o + 2c2c4

1θo + c2
2c

4
1

⎞
⎠ . (3.12)

Substituting t∗ and the solution z in Eq. (3.11) into Eq. (3.9)
and taking the limit z → 0, we finally see that t ′ has the
following value at the boundary

t ′ = R

√
cosh2

(
to
R

)
− c4

1 (c2 + θo) 2 − c2
1. (3.13)

This result shows that t ′ is finite at the boundary. Therefore,
t ′2 in Eq. (3.5) leads to only higher order corrections for a
three-dimensional AdS space.

Above we showed that t ′2 in the covariant formula
(3.5) does not contribute the leading behavior of the time-
dependent entanglement entropy. Therefore, if we are inter-
ested only in the leading behavior of the entanglement
entropy, we can set t ′2 = 0 in Eq. (3.5). This fact implies
that the leading entanglement entropy can be calculated by
taking a constant t in the covariant formulation. Since the
covariant formulation at a fixed t is reduced to the RT for-
mula, the above discussion indicates that the RT formula can
be a good approximation of the covariant formulation at least
at leading order. Even in this case, the leading entanglement
entropy still has a nontrivial time-dependence because the
entangling region is generally time-dependent in the expand-
ing universe.

3.2 Time-dependence of the leading entanglement entropy

In the previous section, we showed that the RT formula can be
a good approximation of the covariant formulation. In this
section, we will analytically calculate the time-dependent
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entanglement entropy by using the RT formula and then com-
pare the result of the RT formula with the numerical result
of the covariant formula. We will also show that these two
results are well matched, as mentioned before. After this
consistency check, in the next sections, we will study the
time-dependent entanglement entropy of a four-dimensional
inflationary universe.

Let us first consider the case with a constant θo. Then,
±θo/2 correspond to two boundaries of the observable sys-
tem. Since we took a constant θo, the size of the observ-
able system usually expands in the expanding system. More
precisely, the size of the observable system is given by
sinh(
/R) cosh(t/R)Rθo at the AdS boundary denoted by
ρ = 
. This shows that the size of the observable system
increases by cosh(t/R). Since cosh(t/R) is invariant under
the time reversal, from now on we take into account only
the non-negative time period, 0 ≤ t < ∞. This implies
that the observable system begins the expansion at t = 0.
If we take 
 as an infinity, it usually leads to a divergence
which is related to a UV divergence of the dual field theory.
In this case, 
 is usually introduced to regularize the UV
divergence. From now on, we consider 
 as a large but finite
value. This finite 
 can be related to the renormalized energy
scale which may be associated with the energy scale of the
expanding universe.

In order to get more physical intuition about the entangle-
ment entropy on the time-dependent geometry, let us consider
several particular limits. We first define the turning point as
ρ∗ which corresponds to the minimum value extended by
the minimal surface in the ρ-coordinate. In the case with
ρ∗/R � 1, we can calculate the entanglement entropy
analytically but perturbatively even for higher dimensional
cases. This parameter range corresponds to the UV limit and
may give rise to a good guide line to figure out physical impli-
cation of the numerical study. Ignoring higher order correc-
tions caused by the t ′2 term as explained before, the leading
contribution to the entanglement entropy for ρ∗/R � 1 is
governed by [50–54]

SE = 1

4G

∫ θo/2

−θo/2
dθ

√
ρ′2 + R2

4
e2ρ/R cosh2 (t/R). (3.14)

Solving the equation of motion derived from it, θo at a given
t is determined by the turning point

θo = 4

eρ∗/R cosh(t/R)
. (3.15)

When θo and t are given, the turning point is inversely deter-
mined as a function of θo and t

eρ∗/R = 4

θo

1

cosh(t/R)
. (3.16)

Note that t/R must not be large in order to obtain a large
ρ∗/R. This fact implies that the approximation with ρ∗/R �

1 is valid only in the early time era. In addition, this result
shows that the turning point moves into the interior of the
AdS space as time evolves.

Performing the integral of the entanglement entropy with
the obtained solution, the resulting entanglement entropy
reduces to

SE =
[
(
 − ρ∗) + R log 2

]

2G
. (3.17)

This result together with Eq. (3.16) shows that the entangle-
ment entropy increases by t2 for t/R � 1

SE ∼ R log θo + 
 − R log 2

2G
+ t2

4GR
. (3.18)

If t/R > 1, on the other hand, it increases linearly in time

SE ∼ R log θo + 
 − 2R log 2

2G
+ t

2G
. (3.19)

Now, let us take into account a more general case without
the constraint ρ∗/R � 1. The general form of the entangle-
ment entropy reads from Eq. (3.1)

SE = 1

4G

∫ θo/2

−θo/2
dθ

√
ρ′2 + R2 sinh2(ρ/R) cosh2(t/R). (3.20)

After solving the equation of motion, performing the integral
gives rise to

θo

2
=

∫ ∞

ρ∗
dρ

sinh
(

ρ∗
R

)

R cosh
( t
R

)
sinh

(
ρ
R

) √
sinh2

(
ρ
R

) − sinh2
(

ρ∗
R

) (3.21)

= 1

cosh(t/R)

[π

2
− arctan (sinh(ρ∗/R))

]
.

Rewriting it leads to the following relation

sinh(ρ∗/R) = cot

(
θo cosh(t/R)

2

)
, (3.22)

which reproduces the previous result in Eq. (3.16) for
ρ∗/R � 1. In the general case, the resulting entanglement
entropy reads

SE = 


2G
+ R log

[
sin

( 1
2θo cosh(t/R)

)]

2G
. (3.23)

When θo cosh(t/R) � 1, this result again reproduces the
previous results obtained in the early inflation era. Notice
that the bulk geometry has the shift symmetry, θ → θ +�θ .
If we choose the subsystem size as θ0, this symmetry causes
to change the size of the subsystem. This fact certainly shows
that the entanglement entropy depends on the subsystem size.
For d = 2, the boundary dS spacetime in the global patch is
homeomorphic to R × S1 where R indicates the time direc-
tion and the spatial part is given by a circle which is periodic.
For this reason, the periodicity naturally appears in the entan-
glement entropy.

It is worth noting that the resulting entanglement entropy
is well defined only in the time range of 0 ≤ t < t f , where
t f satisfies θo cosh(t f /R) = 2π . After this critical time t f ,
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Fig. 1 We take ε = 1/1000, R = 100, θo = 1/10 and G = 1

the logarithmic term of the entanglement entropy is not well
defined. Now, let us define another critical time tm satisfy-
ing θo cosh(tm/R) = π . At this critical time (t = tm), the
observable and unobservable systems have the same size.
In this case, the turning point is located at ρ∗ = 0 and the
entanglement entropy has a maximum value, SE = 
/(2G).
Near tm (t < tm), the entanglement entropy approaches this
maximum value slowly by −(tm − t)2

SE ≈ 


2G
− θ2

o sinh2 (tm/R)

16GR
(tm − t)2 + O

(
(tm − t)4

)
.

From these results, we can see that the entanglement entropy
of the observable system increases by t2 in the early time and
saturates the maximum value at a finite time tm . After tm , the
entanglement entropy rapidly decreases as shown in figure 1.
Therefore, we can summarize the entanglement entropy of a
two-dimensional expanding system as follows

• In the early time with ρ∗/R � 1 and t/R � 1, the
entanglement entropy increases by t2.

• In the intermediate era with ρ∗/R � 1 and t/R > 1, the
entanglement entropy increases linearly as time evolves.

• In the late time with ρ∗/R ∼ 0 and t ≈ tm , the entangle-
ment entropy slowly increases by −(tm − t)2 and finally
saturates the maximum value at t = tm .

• After tm , the entanglement entropy rapidly decreases and
vanishes after finite time evolution. Since the entangle-
ment entropy must be positive, this fact implies that the
quantum entanglement between two subsystems disap-
pears after a finite time elapse.

In Fig. 1, we plot the exact entanglement entropy given in
Eq. (3.23), which shows the expected time dependence of the
previous analytic calculation.

It has been well known that the entanglement entropy of
a two-dimensional CFT dual to an AdS3 has a logarithmic
divergence and its coefficient is proportional to the central
charge of the dual CFT [9,10]. However, the above result
for AdS3 with the dS2 boundary shows a linear divergence

(∼ 
) instead of the logarithmic one. This is because the
coordinate used in this work is different from the one usually
used in Ref. [9,10,40]. This fact becomes manifest in the
z-coordinate. In the UV limit (z → 0) with t/R � 1, z is
related to ρ by eρ/R ∼ R/z and the metric in Eq. (3.3) is
reduced to

ds2 ≈ R2dz2

z2 + R2

z2

[
−dt2 + R2

4
dθ2

]
, (3.24)

which is locally equivalent to the AdS space in the Poincare
patch. Thus, the linear divergence appearing in Eq. (3.23)
can be reinterpreted as a logarithmic one in the z-coordinate
system, 
/R = − log(ε/R), where ε indicates the UV cut-
off of the z-coordinate. As a result, the linear divergence
obtained here is consistent with the known logarithmic one
up to the coordinate transformation.

Above we studied the leading behavior of the time-
dependent entanglement entropy by applying the RT formula.
To check the validity of the RT formula as the leading approx-
imation of the covariant formulation, we also calculated the
entanglement entropy of the covariant formula numerically.
Figure 2 shows that the analytic result of the RT formula is
well matched to the numerical result of the covariant formu-
lation, as mentioned before. This fact is an additional evi-
dence for our previous prescription that the RT formula can
give rise to the leading contribution to the time-dependent
entanglement entropy.

3.3 Higher dimensional expanding systems

Now, let us consider the higher dimensional case with d ≥ 3.
In terms of the z coordinate, the previous (d+1)-dimensional
AdS metric in Eq. (2.4) can be rewritten as

ds2 = R2dz2

z2(1 + z2/R2)

+ R2

z2

[
−dt2 + R2 cosh2(t/R)

(
dθ2 + sin2 θd�2

d−2

)]
, (3.25)

where the boundary is located at z = 0. On this background,
the covariant holographic entanglement entropy is governed
by

SE = �d−2R2d−3 coshd−2(t/R)

4G
∫ θo

0
dθ

sind−2 θ

zd−1

√
z′2

1 + z2/R2 − t ′2 + R2 cosh2(t/R), (3.26)

where we take the range of θ as 0 ≤ θ ≤ θo instead of
−θo/2 ≤ θ ≤ θo/2. Varying this action, the configuration
of a minimal surface is usually determined by two highly
nontrivial differential equations. Note that in the higher
dimensional case there is no well-defined conserved quantity
because the above entanglement entropy explicitly depends
on θ . Due to this reason, unfortunately, it is not easy to fix
the value of t ′ at the boundary. Inevitably, a numerical study
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Fig. 2 The blue curve
represents an analytical result
and the dotted green line
represents a numerical one. The
horizontal axis denotes the
boundary time. Numerical input
data: a R = 100, ε = 0.0008,
θ = 0.1993 and G = 1. b
R = 1, ε = 0.00005,
θ = 1.5658 and G = 1

(a) (b)

is required to understand the time-dependent entanglement
entropy in a higher dimensional expanding system.

Now, we ask whether we can still use the RT formula as
a leading approximation of the above covariant formulation.
Although we cannot determine the value of t ′ at the boundary,
we can still argue that the RT formula is useful to understand
the leading entanglement entropy even in the higher dimen-
sional expanding system. Near the boundary with z → 0,
since t is finite, the leading behavior of the entanglement
entropy is determined by the values of z′ and t ′. In this case,
we can think of two situations. If t ′/z′ approaches zero at the
boundary, the effect of t ′ can be ignored and the RT formula
becomes a good leading approximation similar to the previ-
ous AdS3 case. However, when t ′/z′ = a at the boundary,
we cannot ignore the effect of t ′. Even in this case, a must be
smaller than 1 to have a real entanglement entropy. This fact
implies that the square root inside of the above entanglement
entropy is again proportional to z′ up to a constant multipli-
cation,

√
1 − a2. As a consequence, the resulting covariant

entanglement entropy must be proportional to the result of the
RT formula at leading order. In other words, the time depen-
dence of the entanglement entropy at leading order can still
be well described by the RT formula with t ′ = 0 up to a
constant multiplication even in the higher dimensional case.
Following this prescription, from now on we utilize the RT
formula to determine the leading time dependence of the
entanglement entropy in the expanding system.

We first discuss the entanglement entropy of the observ-
able system in the early time with t/R � 1. Assuming that
the observable system is very tiny in the early time, then
we can take θo � 1. In this case, the minimal surface is
extended only to the UV region represented as 0 ≤ z ≤ z∗
with z∗/R � 1. This is because z∗/R is usually proportional
to θo at t = 0, as will be seen. Due to the small size of the
observable system, the AdS metric in the early time can be
well approximated by

ds2 ≈ R2dz2

z2(1 + z2/R2)
+ R2

z2 [−dt2 + R2 cosh2(t/R)

(
dθ2 + θ2d�2

d−2

)
]. (3.27)

On this background, the entanglement entropy reduces to

SE = �d−2R2d−3 coshd−2(t/R)

4G
∫ θo

0
dθ

θd−2

zd−1

√
z′2

1 + z2/R2 + R2 cosh2(t/R). (3.28)

In order to find a perturbative solution satisfying z/R ≤
z∗/R � 1, we introduce a small parameter λ for indicating
the smallness of the solution. Then, the perturbative expan-
sion of the solution can be parametrized as

z(θ) = λ
(
z0(θ) + λz1(θ) + λ2z2(θ) + · · ·

)
. (3.29)

When varying this perturbative solution with respect to θ , it
is worth noting that the derivative of the solution, z′(θ), must
be expanded as

z′(θ) = z′0(θ) + λz′1(θ) + λ2z′2(θ) + · · · . (3.30)

This is because θ has the same order of z/R in the early time.
Before performing the explicit calculation, let us think about
the parity transformation, z → −z and θ → −θ . Under
this parity transformation, we can easily see that the metric
in Eq. (3.27) and the entanglement entropy are invariant. If
we transforms λ → −λ instead of zn in Eq. (3.29), only z2n

terms give rise to the consistent transformation with z → −z.
Due to this reason, the z2n+1 terms automatically vanish. As a
consequence, we can set z1(θ) = 0 without loss of generality.

At leading order of λ, the entanglement entropy is given
by

S0 = �d−2R2d−3 coshd−2(t/R)

4G∫ θo

0
dθ

θd−2

zd−1
0

√
z′20 + R2 cosh2(t/R). (3.31)

In a higher dimensional theory unlike the d = 2 case, the
entanglement entropy relies on θ explicitly. Thus, there is no
well-defined conserved quantity, as mentioned before. This
fact implies that we must solve the second order differen-
tial equation to obtain the entanglement entropy. At leading
order, the minimal surface configuration can be determined
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by solving the equation of motion derived from S0

.0 = 2 cosh2(t/R)θ z0z′′0
R2 + 2(d − 2)z0z′30

R4

+2(d − 1) cosh2(t/R)θ z′20
R2

+2(d − 2) cosh2(t/R)z0z′0
R2

+2(d − 1) cosh4(t/R)θ. (3.32)

Despite the complexity of the equation of motion, it allows
the following simple and exact solution regardless of the
dimension d

z0

R
= cosh(t/R)

√
θ2
o − θ2. (3.33)

From this, we see that the turning point denoted by z∗ is
proportional to θo, as mentioned before,

z∗
R

= θo cosh(t/R). (3.34)

Note that this relation is derived from the leading order of
the entanglement entropy. If we further consider higher order
corrections, the turning point can vary with some small cor-
rections.

When a UV cut-off denoted by ε is given, we can easily see
from the background metric that the volume of the observable
system is given by

Vd−1 = �d−2R2(d−1) coshd−1(t/R)

d − 1

θd−1
o

εd−1 , (3.35)

while the area of the entangling surface becomes

Ad−2(t) = �d−2R
2(d−2) coshd−2(t/R)

θd−2
o

εd−2 . (3.36)

These formulas show that the area of the entangling surface
increases by coshd−2(t/R) as time evolves. At t = 0, in
particular, the area reduces to

Ād−2 = �d−2R
2(d−2) θd−2

o

εd−2 , (3.37)

which is determined by two parameters, ε and θo. In the
holographic study, the minimal surface is extended only to
ε ≤ z ≤ z∗, so that z∗ > ε must be satisfied for consistency.
Recalling further that z∗/R = θo at t = 0, we finally obtain
θo > ε/R. This fact implies that, when the expansion began
at t = 0, the observable system and the entangling surface
have the non-vanishing volume and area. In (3.36) and (3.37)
the parameters θ0 and ε describe the size of the horizon and
the energy scale of inflation universe, respectively. For this
reason, it is an interesting topic whether it can compare the
values of these parameters with the observational cosmolog-
ical data. To do that, we need to extend the present work to
a more realistic inflation model. Unfortunately, it is beyond

the scope of this paper. In this work, we focus on a qualitative
feature of the entanglement entropy in the evolving universe.

Now, let us consider the d = 3 case. Using the perturba-
tive expansion discussed before, the entanglement entropy is
expanded into

SE = S0 + S2 + · · · , (3.38)

with

S0 = �1R
3 cosh(t/R)

4G∫ θo−θc

0
dθ

θ

z2
0

√
z′20 + R2 cosh2(t/R), (3.39)

S2 = − �1R
4 cosh(t/R)

8G

∫ θo

0
dθ

θ
[
z3
0z

′2
0 + 4R2z2z

′2
0 − 2R2z0z

′
0z

′
2 + 4R4z2 cosh2(t/R)

]

R3z3
0

√
z′20 + R2 cosh2(t/R)

, (3.40)

where we set λ = 1 after the perturbative expansion and
introduce θc as a UV cut-off in the θ -direction. In the second
integral, θc was removed because it does not give any addi-
tional UV divergence. Substituting the leading order solution
in Eq. (3.33) into S0 and performing the integral, we finally
obtain the leading contribution to the entanglement entropy

S0 = �1R2√θo

4
√

2G
√

θc
− �1R2

4G
. (3.41)

The first correction caused by z2(θ) is determined by the
following differential equation

0 = z′′2 +
(
θ2
o − 2θ2

)

θ
(
θ2
o − θ2

) z′2 − 2θ2
o(

θ2
o − θ2

)
2
z2

+2R
√

θ2
o − θ2 cosh3(t/R). (3.42)

This equation allows an exact solution

z2 = c2 −
c2θo tanh−1

⎛
⎝

√
θ2
o−θ2

θo

⎞
⎠

√
θ2
o − θ2

+
6c1 +

(
θ4 − 4θ2

o θ2 + 3θ4
o + 4θ4

o log θ
)
R cosh3(t/R)

6
√

θ2
o − θ2

, (3.43)

where c1 and c2 are two integral constants. These two inte-
gral constants must be fixed by imposing two appropriate
boundary conditions. The natural boundary conditions are
z2(θo) = 0 and z′(0) = 0. The first conditions implies that
the end of the minimal surface is located at the boundary,
while the second constraint is required to obtain a smooth
minimal surface at θ = 0. These two boundary conditions
determine two integral constants to be

c1 = −2θ4
o R log θo cosh3(t/R)

3
,

c2 = −2θ3
o R cosh3(t/R)

3
. (3.44)
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Fig. 3 We take ε = 1/1000,
R = 100, θo = 1/20 and G = 1

(a) (b)

Substituting the found perturbative solutions again into S2,
the first correction to the entanglement entropy is given by

S2 = −5θ2
o�1R2 cosh2(t/R)

36G
. (3.45)

Above the regulator θc is usually associated with the regu-
lator ε in the z-direction. Using the perturbative solution we
found, θc can be represented as a function of ε

θc = ε2

2θoR2 cosh2(t/R)
− 2ε3

9R3 cosh(t/R)
+ O(ε4) (3.46)

As a consequence, the resulting perturbative entanglement
entropy leads to

SE = θo�1R3 cosh(t/R)

4Gε

−�1R2
(
θ2
o cosh2(t/R) + 3

)

12G
+ O (ε) . (3.47)

Recalling the formula in Eq. (3.37), this entanglement
entropy can be rewritten as

SE = A1(t)R

4G
− �1R2

(
θ2
o cosh2(t/R) + 3

)

12G
+ O (ε) ,

(3.48)

where A1(t) indicates the area of the entangling surface at
a given time t . The leading contribution to the entanglement
entropy, as expected, satisfies the area law even in the time-
dependent space. Expanding it further in the early time, the
entanglement entropy leads to

SE = Ā1R

4G
− �1R2

4G
− θ2

o�1R2

12G

+
(

Ā1

8GR
− θ2

o�1

12G

)
t2 + O

(
t4

)
, (3.49)

where Ā1 = A1(0). This result shows that the entanglement
entropy in the early time increases by t2

SE (t) − SE (0) ≈
(

Ā1

8GR
− θ2

o�1

12G

)
t2. (3.50)

Fig. 4 We take ε = 1/1000, R = 100, θo = 1/20 and G = 1

It also shows that the increase of the entanglement entropy is
proportional to the area of the entangling surface at leading
order.

In order to see the entanglement entropy in the late time,
we must go beyond the perturbative expansion. After find-
ing a numerical solution satisfying Eq. (3.32), we investi-
gate how the corresponding entanglement entropy increases
in time. In Fig. 3, we depict the value of SE/

(
R2 cosh

(t/R)) and its time derivative. In Fig. 3a, the value of
SE/

(
R2 cosh(t/R)

)
approaches a constant in the late time.

This fact becomes manifest in Fig. 3b, where the time deriva-
tive of SE/

(
R2 cosh(t/R)

)
approaches zero in the late time.

Consequently, we can see that the entanglement entropy
increases exponentially (SE ∼ et/R) in the late time (see
Fig. 4).

Repeating the same calculation for d = 4, the entangle-
ment entropy of the d = 4 observable system, similar to the
d = 3 case, increases by t2 in the early time and exponen-
tially grows in the late time. In the late time, the increase of the
entanglement entropy is proportional to SE ∼ et/R for d = 3
and SE ∼ e2t/R for d = 4 which becomes manifest in Fig.
5. These results imply that the entanglement entropy of the
expanding observable system increases by t2 in the early time
regardless of d and in the late time grows by SE ∼ e(d−2)t/R

for a general d. For the black hole formation corresponding to
the thermalization of the dual field theory, the entanglement
entropy usually increases by t2 in the early time similar to the
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expanding observable system. However, in the late time of
the thermalization the entanglement entropy is saturated and
becomes a thermal entropy, while the entanglement entropy
of the expanding observable system increases exponentially
in the late time.

4 Entanglement entropy of the visible universe in the
inflationary cosmology

In the previous section, we studied the quantum entangle-
ment of the expanding observable system which is described
by the constant θo. In this section, we investigate the entan-
glement entropy of the visible universe in the inflationary
cosmology. In an inflationary model, there exists a natural
border dividing the entire universe into two parts. Because
of the growing scale factor in the inflationary model, there
exists an invisible universe which we cannot see forever. On
the other hand, the universe we can see is called the visible
universe and the boundary of the visible universes is called
cosmic event horizon which corresponds to the border of
the visible and invisible universes. In this case, the invisible
universe is casually disconnected from us. Due to the exis-
tence of the natural border of two universes in the inflationary
model, it would be interesting to study the quantum correla-
tion between them. In this section, we will investigate such
an entanglement entropy for a four-dimensional inflationary
cosmology.

Let us first define cosmic event horizon as the boundary of
the visible universe. From Eq. (3.25) for d = 4, the boundary
metric reads at z = ε

ds2
B = R2

ε2 [−dt2 + R2 cosh2(t/R)
(
dθ2 + sin2 θd�2

d−2

)
], (4.1)

which describes R+ ×S3. In order to interpret the boundary
metric as the cosmological one, we introduce a cosmological
time τ and Hubble constant H such that

τ = R

ε
t and H = ε

R2 , (4.2)

where the Hubble constant H has a slightly different value
from the usual 4-dimensional dS cosmology. In holography,
the overall warping factor of the AdS space contributes to
determining the Hubble constant because of the boundary dS
metric is reduced from one-dimensional higher AdS space.
Then, the boundary metric reduces to the one representing
an inflationary cosmology

ds2
B = −dτ 2 + cosh2(Hτ)

H2

(
dθ2 + sin2 θd�2

d−2

)
, (4.3)

where the scale factor is given by a(τ ) = cosh(Hτ)/H . Due
to the nontrivial scale factor, the distance travelled by light
is restricted to a finite region whose boundary by definition
corresponds to cosmic event horizon. More precisely, cosmic

event horizon in the above cosmological metric is determined
by

d(τ ) = a(τ )

∫ ∞

t

c dτ ′

a(τ ′)

=
[
π

2
− 2 arctan

(
tanh

Hτ

2

)]
cosh Hτ

H
, (4.4)

where the light speed was taken to be c = 1. In Fig. 6a, we
plot how the cosmic event horizon changes as the cosmo-
logical time τ evolves. In the early inflation era, the cosmic
event horizon decreases with time, whereas it approaches a
constant value 1/H in the late inflation era which is a typical
feature of the dS space.

The existence of cosmic event horizon indicates that the
visible universe, the inside of cosmic event horizon, is casu-
ally disconnected from the invisible universe, the outside of
cosmic event horizon [55–58]. In other words, if we are at
the center of the visible universe, we can never receive any
information from the invisible universe. Even in this situa-
tion, there can exist a nontrivial quantum correlation between
them, which can be measured by the entanglement entropy.
From the viewpoint of the entanglement entropy, cosmic
event horizon naturally plays a role of an entangling surface
which divides a system into two subsystems.

To go further, let us reexpress the cosmic event horizon
in terms of the angle appearing in the AdS space. For distin-
guishing the cosmic event horizon from the previous expand-
ing entangling surface parametrized by θo, we use a different
symbol θv which is given by a function of τ unlike θo. Assum-
ing that we are at the north pole of the three-dimensional
sphere denoted by θ = 0, our visible universe can be char-
acterized by 0 ≤ θ ≤ θv . In this case, the radius of the
entangling surface is determined from the AdS metric

l =
∫ θv

0
dθ

cosh Hτ

H
= θv cosh Hτ

H
. (4.5)

Because the radius of the entangling surface must be iden-
tified with cosmic event horizon, the comparison between
them determines θv as a function of the cosmological time

tan

(
π

4
− θv

2

)
= tanh

Hτ

2
. (4.6)

This result shows that θv start withπ/2 at τ = 0 and gradually
decreases to 0 at τ = ∞ with a fixed subsystem size l. In
the late inflation era, the cosmic event horizon becomes a
constant independent of the cosmological time, d(τ ) = 1/H .
In Fig. 6b, we plot θv relying on the cosmological time. In
the figure, θv starts from π/2 at τ = 0 and rapidly decreases
to 0 as the cosmological time goes on.

By using θv we found, it is possible to calculate holo-
graphically the entanglement entropy of the visible universe.
Before performing the calculation, it is worth noting that
the cosmological time and the Hubble constant are defined
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Fig. 5 We take ε = 1/1000,
R = 100, θo = 1/20 and G = 1

(a) (b)

Fig. 6 cosmic event horizon
relying on the cosmological
time τ where we take H = 1

(a) (b)

only at the boundary. The minimal surface corresponding to
the entanglement entropy is extended to the bulk of the dual
geometry, so that we cannot exploit the definition of τ and H
in the course of calculating the area of the minimal surface.
After the calculation, however, we can replace t and ε with
τ and H through Eq. (4.2). This is because the resulting area
of the minimal surface represents the entanglement entropy
defined at the boundary at which τ and H are well defined.

4.1 Entanglement entropy at τ = 0

For simplicity, let us first consider the entanglement entropy
at τ = 0. Using the relation in Eq. (4.2), τ = 0 implies t = 0
regardless of ε. For d = 4, the holographic entanglement
entropy formula is given by Eq. (3.26) with t = 0 and θv

instead of θo. If we alternatively take into account θ as a
function of z, the corresponding entanglement entropy in the
inflationary model can be rewritten as

SE = �2R5

4G

∫ ∞

ε

dz
sin2 θ

z3

√
R2θ̇2 + 1

1 + z2/R2 , (4.7)

where the dot indicates a derivative with respect to z. Deriving
the equation of motion from this action, it allows a specific
solution which satisfies θ̇ = 0 and furthermore θ = ±π/2.
This solution indicates an equatorial plane of S3. Performing
the above integral with this equatorial plane solution, we
finally obtain

SE = �2R5

4G

(
1

2ε2 − 1

2R2 log
2R

ε
+ 1

4R2

)
. (4.8)

If we interpret ε as the UV cut-off, this result shows the
power-law divergence together with the logarithmic diver-
gence, as expected in the entanglement entropy calculation
for d = 4. Rewriting ε in terms of H by using Eq. (4.2), we
finally obtain the following entanglement entropy at τ = 0

SE = �2R

8GH2 − �2R3

8G
log

2

HR
+ �2R3

16G
. (4.9)

4.2 Entanglement entropy in the late inflation era

In the inflationary cosmology unlike the previous expand-
ing system, the perturbative calculation of the entangle-
ment entropy is possible in the late inflation era because θv

becomes small at large t or τ . In the late inflation era we
can apply the previous perturbative expansion of z. Using
the perturbation of z, the leading contribution and the first
correction to the entanglement entropy are given by

S0 = �2R
5 cosh2(t/R)

4G∫ θv−θc

0
dθ

θ2

z3
0

√
z′20 + R2 cosh2(t/R), (4.10)

S2 = − �2R
6 cosh2(t/R)

8G

∫ θv−θc

0
dθ

θ
(
z3
0z

′2
0 + 6R2z2z

′2
0 − 2R2z0z

′
0z

′
2 + 6R4z2 cosh2(t/R)

)

z4
0R

3
√
z′20 + R2 cosh2(t/R)

.

(4.11)

Note that unlike the d = 3 case, the upper limit of the integral
range in S2 has θc. This is because we need to reintroduce θc to
regularize an additional divergence appearing in S2 ford = 4.
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Substituting the leading solution in Eq. (3.33) into S0, we
obtain the following leading contribution to the entanglement
entropy

S0 = θvR3�2

16Gθc
− �2R3

16G
log

2θv

θc
− �2R3

32G
. (4.12)

In this result, we can see that, when θc → 0, the leading
contribution leads to the expected power-law and logarithmic
divergences for d = 4.

Now, let us consider the deformation of the minimal sur-
face described by z2, which is governed by the following
differential equation

0 = z′′2 + 2

θ
z′2 − 3θ2

v(
θ2
v − θ2

)
2
z2

+
(
3θ2

v − 2θ2
)
R cosh3( t

R )√
θ2
v − θ2

. (4.13)

This equation allows us to find the following exact solution

z2 = c1 (θv − θ)2

θ
√

θ2
v − θ2

+ c2√
θ2
v − θ2

+ (θ5 − 5θ2
v θ3 − 2θ3

v θ2 − 2θ4
v θ − 2θ5

v )R cosh3(t/R)

6θ
√

θ2
v − θ2

+
{
(θv + θ) 2 log (θv + θ) − (θv − θ) 2 log (θ0 − θ)

}
θ3
v R cosh3(t/R)

2θ
√

θ2
v − θ2

,

(4.14)

where c1 and c2 are two integration constants. Imposing two
boundary condition, z2(θv) = 0 and z′(0) = 0 discussed in
the previous section, c1 and c2 are determined to be

c1 = θ3
v R cosh3(t/R)

3
,

c2 = θ4
v R cosh3(t/R)

[
5 − 6 log(2θv)

]

3
. (4.15)

Substituting the obtained solutions into S2 again and per-
forming the integral result in

S2 = −3θ2
v �2R3 cosh2(t/R)

32G
log

2θv

θc

+11θ2
v �2R3 cosh2(t/R)

64G
. (4.16)

When θc → 0, it shows that the first correction gives rise to
an additional logarithmic divergence unlike the known entan-
glement entropy. From the solutions obtained perturbatively,
θc is determined in terms of ε

θc = ε2

2θvR2 cosh2(t/R)
+ ε4

8θ3
v R

4 cosh4(t/R)

+ ε4

48θvR4 cosh2(t/R)

− ε4

4θvR4 cosh2(t/R)
log

2θvR cosh(t/R)

ε

+O
(
ε6

)
. (4.17)

Using this relation, the resulting entanglement entropy leads
to

SE = RA2(t)

8G
− �2R3

16G
log

4A2(t)

�2R2 − �2R3

16G

+θ2
v �2R3 cosh2(t/R)

G

(
1

6
− 1

16
log

4A2(t)

�2R2

)
,

(4.18)

where the area of cosmic event horizon is given by

A2(t) = θ2
v R

4�2 cosh2(t/R)

ε2 . (4.19)

Replacing t and ε by τ and H by using Eq. (4.2), θv and the
area of cosmic event horizon in the late inflation era (Hτ �
1) are approximated by

θv ≈ 2e−Hτ , and A2(τ ) ≈ �2

H2 . (4.20)

As a result, the entanglement entropy of the visible universe
in the late inflation era leads to the following expression

SE ≈ �2R

8GH2 − �2R3

4G
log

2

RH
+ 5�2R3

48G
. (4.21)

This result shows that the entanglement entropy of the visi-
ble universe in the late inflation era is time-independent and
determined by the Hubble constant and the area of cosmic
event horizon. This is because cosmic event horizon remains
as a constant in the late inflation era. The change of the entan-
glement entropy during the inflation era is given by

�SE ≡ SE (∞) − SE (0)

= −�2R3

8G
log

2

RH
+ �2R3

24G
, (4.22)

where the result in Eq. (4.9) was used. Since HR = ε/R �
1, �SE always becomes negative. This indicates that the
quantum correlation between the visible and invisible uni-
verses decreases with time. In Fig. 7, we plot how the entan-
glement entropy of the visible universe changes as the cos-
mological time goes on. As expected by the perturbative
and analytic calculation, the entanglement entropy gradu-
ally decreases and finally approaches a constant value after
an infinite time.

5 Discussion

In this work, we have studied the quantum entanglement
entropy of the expanding system and the inflationary uni-
verse. In order to take into account the expanding system
and universe holographically, we considered an AdS space
whose boundary is given by a dS space. Because of the time-
dependence of the background geometry, we have taken into
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Fig. 7 We take ε = 1, R = 1 and G = 1 for simplicity

account the covariant formulation instead of the RT formula.
In general, the minimal surface in the covariant formulation is
governed by more complicated equations of the holographic
and time directions. We showed that the RT formula with
a fixed time can give rise to the leading contribution to the
covariant formulation. We also showed that, when we apply
the RT formula to the time-dependent geometry, the resulting
entanglement entropy has a nontrivial time dependence due
to the expansion of the entangling region.

In this work, we took two different subsystems. In Sect.
3, we considered an expanding system where the subsystem
size is determined by the parameter θo. In this case, since the
volume of the boundary space increases with the cosmologi-
cal time, the subsystem size also increases. In the early time
era, we found that the entanglement entropy of an expanding
system increases by t2 regardless of the dimensionality of the
system. In the late time era, when the d-dimensional bound-
ary space expands by eHτ , the increase of the entanglement
entropy is given by e(d−2)τ which is proportional to the area
of the entangling surface. This fact, intriguingly, indicates
that the leading entanglement entropy even in the expanding
universe satisfies the area law.

For a dS space discussed in Sect. 4, there is an important
length scale called cosmic event horizon. If an observer is
at the center of the subsystem, he cannot see the outside of
cosmic event horizon even after the infinite time evolution. In
other words, the observer at the center of the subsystem can
never get any information from the outside of cosmic event
horizon. This is similar to the black hole case. From the quan-
tum information viewpoint, there may exists a nonvanishing
quantum correlation between two classically disconnected
regions. In this case, the cosmic event horizon like the black
hole horizon plays a role of the entangling surface dividing
a total system into two subsystems. In the present model,
the cosmic event horizon starts with θv = π/2 at τ = 0
and eventually approaches θv = 0 at τ = ∞ with a fixed
θveHτ . In the late inflation era, the cosmic event horizon is
given by the inverse of the Hubble constant, d(∞) = 1/H .
We showed that the entanglement entropy of the visible uni-

verse in the inflationary cosmology decreases continuously
with time and that it finally approaches a finite value after an
infinite time.
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