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Abstract There are increasing evidences that quantum
information theory has come to play a fundamental role in
quantum gravity especially the holography. In this paper, we
show some new potential connections between holography
and quantum information theory. Particularly, by utilizing
the multiflow description of the holographic entanglement of
purification (HEoP) defined in relative homology, we obtain
several new inequalities of HEoP under a max multiflow
configuration. Each inequality derived for HEoP has a corre-
sponding inequality of the holographic entanglement entropy
(HEE). This is further confirmed by geometric analysis. In
addition, we conjecture that, based on flow considerations,
each property of HEE that can be derived from bit threads
may have a corresponding property for HEoP that can be
derived from bit threads defined in relative homology.
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1 Introduction

The holographic essence of quantum gravity was elucidated
in [1,2], which revealed the duality between the quantum
gravity theory in a (d + 1)-dimensional space-time region
and the quantum field theory on the d-dimensional boundary
of this region. Specifically, in the AdS/CFT correspondence
[3–5], the entanglement entropy (the von Neumann entropy)
for a spatial region A on conformal boundary was shown to
be given by the area of minimal homologous surface [6,7],
i.e., the Ryu-Takayanagi (RT) formula

S(A) = area(mA)

4GN
, (1.1)

where mA is the minimal surface in the bulk homologous
to A. This reveals the deep connections between quantum
entanglement and space-time geometry.

The entanglement entropy primely characterizes the quan-
tum entanglement in pure bipartite states, and has many
known properties. For example,

(1)Araki − Lieb : |S(A) − S(B)| ≤ S(AB), (1.2)

(2)Subadditivi t y : S(AB) ≤ S(A) + S(B), (1.3)

(3)Strong Subadditivi t y 1 : S(B) + S(ABC)

≤ S(AB) + S(BC), (1.4)

(4)Strong Subadditivi t y 2 : S(A) + S(C)

≤ S(AB) + S(BC). (1.5)

It has been proved that the RT formula obeys all above prop-
erties of the entanglement entropy [8]. However, there is a
property possessed by the holographic entanglement entropy
(HEE) peculiarly [9–11], that is
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(5) Monogamy : S(A) + S(B) + S(C) + S(ABC)

≤ S(AB) + S(AC) + S(BC), (1.6)

which is not obeyed by general quantum states. It gives a con-
straint on theories that potentially have a holographic duality.
Alternatively, properties (1.2)–(1.6) of HEE can be derived
by the notion of bit thread [12], an alternative description
of the HEE. See further works related to the bit threads in
[13–24]1.

Moreover, there is a quantity called entanglement of purifi-
cation (EoP) [25], which is a measure of the classical corre-
lations and quantum entanglement for mixed bipartite states.
In [26–28], it has been conjectured that EoP is dual to the
area of the minimal cross section on the entanglement wedge
[29–31] (and some related works in [32–65]). For two non-
overlapping spatial subregions A and B on the conformal
boundary, we have

EP (A : B) = area(σmin
AB )

4GN
, (1.7)

where σmin
AB is the minimal cross section on the entangle-

ment wedge. In [20,22], the bit-thread formulation of the
holographic entanglement of purification (HEoP) was given,
and many known properties of the HEoP were proved in this
formulation. In this paper, however, we would like to go step
further and to explore some new properties of HEoP by using
bit threads.

According to the statement in [13], we can generalize the
flow description of HEE into a meaning of relative homology,
while the nesting property of flows goes through as before.
Thus, we could carry these flow-based proofs of properties
of HEE into homology case, which means we will obtain
some corresponding properties in homology case. Remember
that the flow description of HEoP in [20,22] is based on the
notion of relative homology. We will naturally obtain some
corresponding properties for the HEoP,2 as

(1) |EP (A : BC) − EP (B : AC)| ≤ EP (AB : C), (1.8)

(2) EP (AB : C) ≤ EP (A : BC) + EP (B : AC), (1.9)

(3) EP (B : ACD) + EP (ABC : D)

≤ EP (AB : CD) + EP (BC : AD), (1.10)

(4) EP (A : BCD) + EP (C : ABD)

≤ EP (AB : CD) + EP (BC : AD), (1.11)

(5) EP (A : BCD) + EP (B : ACD)

1 Alternatively, in [66] the authors interpret the RT surface as special
Lagrangian cycles calibrated by the real part of the holomorphic one-
form of a spacelike hypersurface.
2 Recently there is a work [40], where new inequalities of HEoP are
obtained from HEE, based on the wormhole geometry description of
HEoP. While we start from a flow viewpoint, and arrive at a similar
conclusion.

+EP (C : ABD) + EP (D : ABC)

≤ EP (AB : CD) + EP (AC : BD)

+EP (BC : AD). (1.12)

These properties of HEoP obtained from bit threads do not
follow from the known properties of EoP. In this paper, we
will derive these inequalities by using multiflow description
of HEoP defined in relative homology. A geometric analysis
is also applied and the validity of these novel inequalities is
further confirmed.

This paper is organized as follows: in Sect. 2, we will
briefly review the notion of bit threads. Then in Sect. 3, we
will have a discussion about generalized HEE defined in rel-
ative homology. In Sect. 4.1, we give a multiflow description
for HEoP in relative homology. Then in Sect. 4.2, consider-
ing tripartite and quadripartite cases, we will derive out some
properties of HEoP by using multiflows defined in relative
homology, as inequalities (1.8)–(1.12). We notice that each
property for HEoP has a corresponding property of HEE in
(1.2)–(1.6). A concluding remark is given in the last section.

2 Review of bit threads

2.1 Flow

The bit threads [12], which are a set of integral curves of a
divergenceless norm-bounded vector field v with transverse
density equal to |v|. The threads of a given vector field are
oriented and locally parallel. Consider a manifold M with
a conformal boundary ∂M , where A is a subregion on ∂M
and its complement is Ā := ∂M\A. Define a flow vAĀ with
direction from A to Ā on M , that is divergenceless and is
norm bounded by 1/4GN :

∇μv
μ

AĀ
= 0 , |vAĀ| ≤ 1

4GN
. (2.1)

As we set the direction for vAĀ flowing from A to Ā, it means
its flux given by

∫
A vAĀ is non-negative:

∫

A
vAĀ :=

∫

A

√
h nμv

μ

AĀ
≥ 0 , (2.2)

where h is the determinant of the induced metric hi j on A
and nμ is the (inward-pointing) unit normal vector. Then the
entanglement entropy between A and Ā is suggested to given
by the maximum flux through A among all flows:

S(A) = max
vAĀ

∫

A
vAĀ. (2.3)
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Fig. 1 The vector field vAĀ defined on manifold M . The entanglement
entropy SA is equal to the maximum flux from A to Ā, or equivalently
the maximum number of threads connecting A with Ā

Equivalence between (2.3) and the RT formula (1.1) is guar-
anteed by the Riemannian MFMC theorem [12]:

max
vAĀ

∫

A
vAĀ = min

m∼A

area(m)

4GN
. (2.4)

The left-hand side is a maximum of the flux over all flows v,
while the right-hand side takes a minimum of the area over
all surfaces m homologous to A (written as m ∼ A). The
flow interpretation of the holographic entanglement entropy,
unlike the minimal surface captured by RT formula jumping
under continuous deformations of region A [67–70], varies
continuously. And the subadditivity and the strong subaddi-
tivity inequalities of HEE can be proved by making use of
the properties of flows [12] (Fig. 1).

2.2 Threads

In [16], the notion of bit threads was generalized. Instead
of being oriented and locally parallel, threads are unori-
ented and can even intersect with others. The notion of
transverse densi ty is replaced by densi ty, defined at a
given point on a manifold M as the total length of the threads
in a ball of radius R centered on that point divided by the vol-
ume of the ball, where R is chosen to be much larger than the
Planck scale G1/(d−1)

N and much smaller than the curvature
scale of M . In the classical or large-N limit GN → 0, we can
neglect the discretization error between the continuous flow
v and the discrete set of threads as the density of threads is
large on the scale of M .

For region A and its complement Ā on the boundary ∂M .
Defining a vector field vAĀ, we can construct a thread con-
figuration by choosing a set of integral curves with density
|vAĀ|. The number of threads NAĀ connecting A to Ā is at
least as large as the flux of vAĀ on A:

NAĀ ≥
∫

A
vAĀ . (2.5)

Generally, this inequality does not saturate as some of the
integral curves may go from Ā to A which have negative
contributions to the flux but positive ones to NAĀ.

Consider a slab R around m, where R is much larger than
the Planck length and much smaller than the curvature radius
of M . The volume of this slab is R ·area(m), the total length
of the threads within the slab should be bounded above by
R · area(m)/4GN . Moreover, any thread connecting A to Ā
must have a length within the slab at least R. Therefore, we
have

NAĀ ≤ area(m)

4GN
. (2.6)

Particularly, for the minimal surface mA, we have

NAĀ ≤ area(mA)

4GN
= S(A) . (2.7)

Combining formulas (2.5) and (2.7), equality holds

max NAĀ = max
vAĀ

∫

A
vAĀ = S(A) . (2.8)

Thus, S(A) is equal to the maximum number of threads con-
necting A to Ā over all allowed thread configurations.

2.3 Multiflow

The multiflow or multicommodity is the terminology in the
network context [71,72]. It is a collection of flows that are
compatible with each other, existing on the same geometry
simultaneously. It was defined in Riemannian setting to prove
the monogamy of mutual information (MMI) in [16]. Con-
sider a Riemannian manifold M with boundary ∂M , and let
A1, . . . , An be non-overlapping regions of ∂M , a multiflow
is then defined as a set of vector fields {vi j } on M satisfying
the following conditions:

vi j = −v j i , (2.9)

nμv
μ
i j = 0 on Ak (k �= i, j), (2.10)

∇μv
μ
i j = 0, (2.11)

n∑

i< j

|vi j | ≤ 1

4GN
. (2.12)

There are n(n − 1)/2 independent vector fields for the given
condition (2.9). Given condition (2.10), vi j is nonvanishing
only on Ai and A j , by (2.11), their flux satisfy

∫

Ai

vi j = −
∫

A j

vi j . (2.13)
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Define a vector field

vi ī :=
n∑

j �=i

vi j . (2.14)

The flux of flow vi ī should be bounded above by the entropy
of Ai :

∫

Ai

vi ī ≤ S(Ai ) . (2.15)

The inequality will saturate for a max flow. Given vi j (i < j),
we can choose a set of threads with density |vi j |. From (2.5),
the number of threads connect Ai to A j is at least the flux of
vi j :

NAi A j ≥
∫

Ai

vi j . (2.16)

Summing (2.16) over j �= i for fixed i , we have

n∑

j �=i

NAi A j = NAi Āi
≥

∫

Ai

vi ī . (2.17)

On the other hand, (2.7) implies that the total number of
threads emerging out of Ai is bounded above by S(Ai ):

n∑

j �=i

NAi A j = NAi Āi
≤ S(Ai ) . (2.18)

Therefore, both inequalities (2.17) and (2.19) saturate for a
max flow with fixed i :

n∑

j �=i

NAi A j = NAi Āi
=

∫

Ai

vi ī = S(Ai ) . (2.19)

Furthermore, the inequality (2.16) must be individually sat-
urated:

NAi A j =
∫

Ai

vi j . (2.20)

The above discussion focuses only on the case for a fixed i .
Remarkably, it has been proved in [16] that there exists a so-
called max multiflow {vi j } saturating all n bounds in (2.15)
simultaneously. Or equivalently, there exists a so-called max
thread configuration in the language of threads, as the for-
mula (2.19) holding for all i .

Fig. 2 The vector field v is defined on M ′, the region surrounded by
A∪B∪C∪D∪R, as we have imposed a no-flux condition on surface R.
And m̃ A, m̃B and m̃ AB are the minimal surfaces homologous to regions
A, B and AB relative to R, respectively

3 Relative homology and generalized HEE

The notion of relative homology was introduced to general-
ize the MFMC theorem in [13]. To get an intuition for the
generalized MFMC (gMFMC) theorem, we consider a man-
ifold M with a conformal boundary ∂M and A is a subregion
on the boundary. Specifically, let R be a bulk surface attached
to the boundary, for instance as Fig. 2. For region A, we can
define the surface m̃ homologous to A relative to R (writ-
ten as m̃ ∼ A rel R), where surface m̃ is allowed to begin
and end on R.3 On flow side, this corresponds to imposing a
Neumann condition (no-flux condition) on R, thereby

∇μvμ = 0 , |v| ≤ 1

4GN
, nμvμ = 0 on R. (3.1)

This means no flux through R. Therefore, the flow is
restricted within region M ′ with boundary ∂M ′ = A ∪ B ∪
C ∪ D ∪ R. Finally, we can arrive at the gMFMC theorem

max
v:

nμvμ|R=0

∫

A
v = min

m̃∼A
rel R on M

area(m̃)

4GN
= area(m̃ A)

4GN
, (3.2)

where m̃ A is the minimal surface homologous to A relative
to R on region M ′. The flow description of HEE in [12] is
specifically based on the homology relative to R = ∂A. As
proposed in [13], we will have a generalized HEE

S̃(A) := max
v:

nμvμ|R=0

∫

A
v. (3.3)

3 Here we use the notion m̃ defined on relative homology region M ′,
to distinguish from the surface m defined on original manifold M .
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This notion originates from HEE, but defined in a meaning
of general relative homology. We stress that, differing from
HEE, this quantity has no clear quantum information mean-
ing generally in holography. However, there is another quan-
tity with the form (3.3) arousing our interests in holography,
i.e. HEoP. Similar to HEE, the HEoP can also be regarded as a
special case in (3.3) with the homology relative to R = mAB

[20,22].
The formula (3.2) establishes the equivalence between the

flow objects and geometric objects in holography. We have
learned that we could derive the properties of holographic
objects from the properties of flows, such as nesting of flows.
Remember the flow-based proofs of the Araki-Lieb (AL)
inequality, the subadditivity (SA) and the strong subadditiv-
ity (SSA) for the HEE [12], also the multiflow-based proof
of the monogamy of the mutual information (MMI) [16,17].
Note that when the min cut is defined in homology relative to
a bulk boundary R, the dual flow (or multiflow) is subjected
to a no-flux boundary condition on R. The nesting property
of flows in relative homology goes through as before [13].
Thus these flow-based proofs for properties of HEE could
be carried into the relative homology cases in similar man-
ner, meanwhile what we need to do on geometric side is just
replacing with the cuts defined in relative homology. Namely,
based on the flow viewpoints, we argue that the properties
of HEE will hold for quantity S̃ generally (including HEoP
case), as

|S̃(A) − S̃(B)| ≤ S̃(AB) ≤ S̃(A) + S̃(B), (3.4)

S̃(B) + S̃(ABC) ≤ S̃(AB) + S̃(BC), (3.5)

S̃(A) + S̃(C) ≤ S̃(AB) + S̃(BC), (3.6)

S̃(A) + S̃(B) + S̃(C) + S̃(ABC)

≤ S̃(AB) + S̃(AC) + S̃(BC), (3.7)

corresponding to the inequalities (1.2)–(1.6) of HEE.4 It
seems that these inequalities could be intuitively obtained
geometrically by making use of the minimality of relative
homology surface. For example, as AB ∼ m̃ A ∪ m̃B ∼
m̃ AB rel R, due to the minimality of m̃ AB among all sur-
faces homologous to AB relative to R, we naturally obtain
|m̃ AB | ≤ |m̃ A| + |m̃B |. As to A ∼ m̃ A ∼ m̃ AB ∪ m̃B rel R,
due to the minimality of m̃ A among all surfaces homologous
to A relative to R, we have |m̃ A| ≤ |m̃ AB | + |m̃B |. In the
following, we will focus on the multiflow-based proofs of
these inequalities for HEoP.

4 We emphasize that we only lists the inequalities of S̃ corresponding
to some basic inequalities of HEE here. While our argument based on
flow viewpoints allows us to reap more once we take other inequalities
of HEE into consideration.

4 Properties of HEoP derived from bit threads

4.1 Multiflow description of HEoP as relative homology

The bit thread formulation of the HEoP has been given in
[20,22], which is based on the gMFMC theorem. In this sec-
tion, instead, we would like to apply the notion of multiflow
defined in relative homology, to give a multiflow description
for HEoP. Taking a manifold M with non-overlapping sub-
regions A1, . . . , An on boundary ∂M . Consider the entan-
glement wedge rA1A2...An with boundary ∂rA1A2...An = A ∪
mA1A2...An , where A := A1 ∪ A2 ∪· · ·∪ An . We could define
a multiflow {vi j } on the entanglement wedge, subject to a
Neumann boundary condition on mA1A2...An . Namely,

vi j = −v j i , (4.1)

nμv
μ
i j = 0 on mA1A2...An , (4.2)

nμv
μ
i j = 0 on Ak (k �= i, j), (4.3)

∇μv
μ
i j = 0, (4.4)

n∑

i< j

|vi j | ≤ 1

4GN
. (4.5)

This means no flux through mA1A2...An or no threads con-
necting to mA1A2...An . In this way, we restrict the multiflow
inside geometry rA1A2...An . All following discussions will be
based on such a multiflow configuration.

We set the direction of vi j as a flow from Ai to A j , which
means the flux

∫
Ai

vi j out of Ai (inward-pointing on Ai ) is
non-negative:

∫

Ai

vi j :=
∫

Ai

√
h nμv

μ
i j ≥ 0 , (4.6)

where h is the determinant of the induced metric on A and n is
chosen to be a (inward-pointing) unit normal vector. Given
condition (4.2) and (4.3) the fact that vi j is non-vanishing
only on Ai and A j , combining (4.1) and (4.4), we get

∫

Ai

vi j = −
∫

Ai

v j i =
∫

A j

v j i ≥ 0 . (4.7)

Similarly as before, we can define a minimal cut m̃ Ai on
rA1A2...An homologous to region Ai relative to mA1A2...An ,
which is exactly the minimal cross section σmin

Ai Āi
where Āi :=

A\Ai . Here, the quantity S̃ is just EP as proposed in [20,22].
The dual flow is defined as

vi ī :=
n∑

j �=i

vi j . (4.8)

The flux of flow vi ī should be bounded above by the area of
minimal cross section σmin

Ai Āi
. Combining with the conjecture
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of EP = EW , we have

∫

Ai

vi ī ≤ min
σAi Āi

∼Ai

rel mA1A2 ...An

area(σAi Āi
)

4GN
= EP (Ai : Āi ). (4.9)

In addition, the number of threads connect Ai to A j is at least
the flux of vi j :

NAi A j ≥
∫

Ai

vi j . (4.10)

Let us consider a max multiflow (or equivalently max thread
configuration), as introduced in Sect. 2.3, the inequality in
(4.9) saturates simultaneously for all i , thus

n∑

j �=i

NAi A j = NAi Āi
=

∫

Ai

vi ī = EP (Ai : Āi ) , (4.11)

Furthermore, all inequalities (4.10) individually saturated:

NAi A j =
∫

Ai

vi j . (4.12)

The bipartite case has been shown in [20,22]. In what
follows, we will study such a max multiflow configuration
(or equivalently max thread configuration) for tripartite and
quadripartite cases, to derive out some new inequalities of the
HEoP. As we will show that for each property (considering
only AL, SA, SSA, MMI) of HEE that can be derived from
bit threads, there is a corresponding property for HEoP.

4.2 Properties of HEoP derived from bit threads

4.2.1 Tripartite case

Consider a max multifow (or max thread configuration) for
tripartite case with completely connected phase5, as shown
in Fig. 3. By (4.11) and (4.12), we have

5 Note that there are two other disconnected phases of region rABC .
Subject to the no-flux condition on mABC , the disconnected phase
means no-flow (or no-thread) passing between disconnected regions.
Here, we just focus on completely connected case. Similar considera-
tion is adopted for quadripartite case.

Fig. 3 The max thread configuration for tripartite case. Threads are
unoriented and can intersect with others. The number of threads con-
necting to each single region reaches its maximum value

EP (A : BC) =
∫

A
vA(BC) =

∫

A
vAB

+
∫

A
vAC = NAB + NAC ,

EP (B : AC) =
∫

B
vB(AC) =

∫

B
vBA

+
∫

B
vBC = NBA + NBC ,

EP (C : AB) =
∫

C
vC(AB) =

∫

C
vCA

+
∫

C
vCB = NCA + NCB .

(4.13)

Then from (4.13) we obtain

EP (A : BC) + EP (B : AC) − EP (AB : C)

= 2
∫

A
vAB = 2NAB,

EP (AB : C) − (EP (A : BC) − EP (B : AC))

= 2
∫

B
vBC = 2NBC ,

EP (AB : C) − (EP (B : AC) − EP (A : BC))

= 2
∫

A
vAC = 2NAC ,

(4.14)

where the relations (4.7) are used. Due to the non-negativity
of the number of threads, we immediately get the inequalities

|EP (A : BC) − EP (B : AC)| ≤ EP (AB : C)

≤ EP (A : BC) + EP (B : AC). (4.15)
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The first inequality can also be obtained from the second
inequality by alternating labels A, B and C. The inequalities
(4.15) exactly correspond to the inequalities (3.4) for HEoP
case, i.e. the AL inequality and the SA. This property of
HEoP has already been derived in [20,40]. It does not follow
by the known properties of EoP.

Moreover, this can also be intuitively obtained from geo-
metric side by comparing with the cuts defined in relative
homology, as shown in Fig. 3. As AB ∼ σmin

A(BC) ∪σmin
B(AC) ∼

σmin
(AB)C ∼ C rel mABC , due to the minimality of σmin

(AB)C
among all surfaces homologous to AB relative to mABC ,
we naturally obtain the area relation |σmin

(AB)C | ≤ |σmin
A(BC)| +

|σmin
B(AC)|, that is, EP (AB : C) ≤ EP (A : BC) + EP (B :

AC) by HEoP conjecture. Similarly, as A ∼ σmin
A(BC) ∼

σmin
B(AC) ∪ σmin

(AB)C ∼ BC rel mABC , due to the minimal-

ity of σmin
A(BC) among all surfaces homologous to A rela-

tive to mABC , we get the inequality |σmin
A(BC)| ≤ |σmin

B(AC)| +
|σmin

(AB)C |, that is, EP (A : BC) ≤ EP (B : AC) + EP

(AB : C).

4.2.2 Quadripartite case

Consider a max multifow (or max thread configuration) for
quadripartite case as sketched in Fig. 4. From (4.11) and
(4.12), we have

EP (A : BCD) =
∫

A
vA(BCD) =

∫

A
vAB +

∫

A
vAC

+
∫

A
vAD = NAB + NAC + NAD,

EP (B : ACD) =
∫

B
vB(ACD) =

∫

B
vBA +

∫

B
vBC

+
∫

B
vBD = NBA + NBC + NBD,

EP (C : ABD) =
∫

C
vC(ABD) =

∫

C
vCA +

∫

C
vCB

+
∫

C
vCD = NCA + NCB + NCD,

EP (D : ABC) =
∫

D
vD(ABC) =

∫

D
vDA +

∫

D
vDB

+
∫

D
vDC = NDA + NDB + NDC .

(4.16)

Noting that for a max multifow configuration, the flux
through the union regions AB, AC and BC (or equivalently
the number of threads emerging from these union regions)
cannot reach its maximum value in general. Thus

EP (AB : CD) ≥
∫

AB
v(AB)(CD)

=
∫

A
vAC +

∫

A
vAD +

∫

B
vBC +

∫

B
vBD

= NAC + NAD + NBC + NBD ,

EP (AC : BD) ≥
∫

AC
v(AC)(BD)

=
∫

A
vAB +

∫

A
vAD +

∫

C
vCB +

∫

C
vCD

= NAB + NAD + NCB + NCD,

EP (BC : AD) ≥
∫

BC
v(BC)(AD)

=
∫

B
vBA +

∫

B
vBD +

∫

C
vCA +

∫

C
vCD

= NBA + NBD + NCA + NCD . (4.17)

Now from (4.16) and (4.17), and combining with relations
(4.7), we obtain the inequality

EP (AB : CD) + EP (BC : AD)

− EP (B : ACD) − EP (ABC : D)

≥
∫

AB
v(AB)(CD) +

∫

BC
v(BC)(AD)

−
∫

B
vB(ACD) −

∫

ABC
v(ABC)D

= 2
∫

A
vAC = 2NAC ≥ 0,

(4.18)

and the inequality

EP (AB : CD) + EP (BC : AD)

− EP (A : BCD) − EP (C : ABD)

≥
∫

AB
v(AB)(CD) +

∫

BC
v(BC)(AD)

−
∫

A
vA(BCD) −

∫

C
vC(ABD)

= 2
∫

B
vBD = 2NBD ≥ 0.

(4.19)

Furthermore, we obtain that

EP (AB : CD) + EP (AC : BD) + EP (BC : AD)

− EP (A : BCD) − EP (B : ACD)

− EP (C : ABD) − EP (D : ABC)

≥
∫

AB
v(AB)(CD) +

∫

AC
v(AC)(BD) +

∫

BC
v(BC)(AD)

−
∫

A
vA(BCD) −

∫

B
vB(ACD) −

∫

C
vC(ABD)

−
∫

D
vD(ABC) = 0. (4.20)
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Fig. 4 The max thread configuration for quadripartite case. Threads
are unoriented and can intersect with others. The number of threads
connecting to each single region reaches its maximum value

Here we obtain the inequalities (4.18), (4.19) and (4.20) by
multiflows, which respectively corresponds to (3.5), (3.6) and
(3.7) for HEoP case. As far as we know, these properties of
the HEoP are also new, and are out of the known properties of
the EoP [25]. It is worth to explore whether these properties
are held by EoP for generic quantum states, or only valid for
the holographic quantum states that have classical gravity
duality.

Again, we can verify these properties from the geomet-
ric side. To do this, let us compare with these cuts defined
in relative homology. First, we divide the union surface
σmin

(AB)(CD) ∪ σmin
(BC)(AD) into four parts (p1q), (p2q), (p3q)

and (p4q), as shown in Fig. 4. Since B ∼ σmin
B(ACD) ∼

(p1q) ∪ (p2q) and D ∼ σmin
(ABC)D ∼ (p3q) ∪ (p4q) rela-

tive to mABCD , and considering the minimality of σmin
B(ACD)

and σmin
(ABC)D , we have

|σmin
B(ACD)| + |σmin

(ABC)D| ≤ |(p1q)| + |(p2q)|
+|(p3q)| + |(p4q)| = |σmin

(AB)(CD)| + |σmin
(BC)(AD)|,

(4.21)

which is corresponding to the inequality (4.18) by HEoP
conjecture. Similar analysis leads to inequality (4.19).

As to inequality (4.20), we notice that σmin
(AC)(BD) =

min{σmin
A(BCD) ∪σmin

C(ABD), σ
min
B(ACD) ∪σmin

(ABC)D} for opposite-

position regions. We then can choose that |σmin
A(BCD)| +

|σmin
C(ABD)| ≤ |σmin

B(ACD)| + |σmin
(ABC)D|. In the end we obtain

|σmin
(AB)(CD)| + |σmin

(AC)(BD)| + |σmin
(BC)(AD)| − |σmin

A(BCD)|
−|σmin

B(ACD)| − |σmin
C(ABD)| − |σmin

(ABC)D|
= |σmin

(AB)(CD)| + |σmin
(BC)(AD)|

−|σmin
B(ACD)| − |σmin

(ABC)D|. (4.22)

Thus the area relation will reduce to the case for inequal-
ity (4.18) or (4.19), which we have proved in the previous
paragraph. Finally, we finish the proofs from geometric side.

5 Entropy cone for HEoP

Section 3 suggests a correspondence between the properties
of the HEE and the ones of the HEoP. On the other hand, the
work in [73], which defines the holographic entropy cone of
all entanglement entropy vectors for the holographic quan-
tum states (see [74–79] for more recent progress), reminds
us to discuss the possibility to define an entropy cone for
the holographic entanglement of purification. Particularly,
we can likewise define an entropy cone for HEoP in terms
of these inequalities (1.8)–(1.12) derived in this paper. We
notice that each inequality obtained for HEoP has the same
form as the corresponding inequality of HEE. Thus the
entropy cone of HEoP defined here will have the same struc-
ture as the one of HEE, except that it is defined in the entropy
space of entanglement of purification.

For a tripartite stateρABC , we choose {EP (A : BC), EP (B :
AC), EP (AB : C)} as the basis of the entropy space. And
the extreme ray of the HEoP cone is

(EP (A : BC), EP (B : AC), EP (AB : C)) = (1, 1, 0)

(5.1)

up to the permutation symmetry. It reduces to the case ofC2 of
HEE when ρABC is pure, as EP (A : BC) = S(A), EP (B :
AC) = S(B), EP (AB : C) = S(AB).

For a quadripartite state ρABCD , after choosing the follow-
ing basis, the extreme ray (up to the permutation symmetry)
then is given by

(EP (A : BCD), EP (B : ACD), EP (C : ABD),

EP (D : ABC); EP (AB : CD),

EP (AC : BD), EP (BC : AD)) = (1, 1, 1, 1; 2, 2, 2).

(5.2)

It reduces to the case of C3 of HEE when ρABCD is pure, as
these HEoP sets are equal to HEE sets.

Furthermore, as stating in Sect. 3, we can further argue
that, for each inequality of HEE there always exists a corre-
sponding inequality for HEoP, as it can be likewise proved by
bit threads in the relative homology case. If this is the case,
it will help us define the entropy cone of HEoP for more par-
tite cases by considering other inequalities of HEE. More-
over, besides these inequalities expected from HEE accord-
ing to our argument, there are also other known inequalities
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for HEoP [26–28]. Further study is needed to show whether
these inequalities could together define a tighter entropy cone
for HEoP to make constraints on the allowable holographic
quantum states. We leave this discussion for the future work.

6 Conclusion

In this paper, we obtain some new properties (1.8)–(1.12)
of the HEoP that corresponds, respectively, to AL, SA, SSA
and MMI by utilizing the multiflow description of the HEoP.
Thus, starting from flow viewpoints, we arrive at a simi-
lar conclusion as in [40], and we give the multiflow-based
derivations of these new inequalities. Note that there are sev-
eral other quantum counterparts relating to the EW , such as
logarithmic negativity [37,54], odd entropy [38], reflected
entropy [51] and R-correlation [55,58]. These new inequali-
ties of HEoP should be also valid for other feasible counter-
parts, and make some constraints on these feasible candidates
of EW . Intuitively, these inequalities can also be obtained
from geometric side by comparing with the cuts defined in
relative homology for tripartite and quadripartite cases. But
usually it could be more complicated and less obvious to find
the inequalities of HEoP hiding in more partite cases from
geometric side.

We can even go further, and conjecture that: For each
property of HEE that can be derived from bit threads, there
always exists a corresponding property for HEoP that can
be obtained from bit threads defined in relative homology.
The opposite is not true. We explain that all the flow-based
proofs of the properties of HEE, can be carried into the rela-
tive homology cases in a similar manner, while on geometric
side we just need to replace with the cuts defined in relative
homology. Thus we could finally obtain some correspond-
ing properties for HEoP. This is remarkable if it is true. As
it allows one to explore much more constraints of EW by
associating with the contents of holographic entropy cone.
We leave the proof of this conjecture as a challenge for the
future.
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