
Eur. Phys. J. C (2020) 80:684
https://doi.org/10.1140/epjc/s10052-020-8262-6

Regular Article - Theoretical Physics

Fermion mass splitting in the technicolor coupled scenario

A. Doff1,a, A. A. Natale2,b

1 Universidade Tecnológica Federal do Paraná - UTFPR - DAFIS, Av. Monteiro Lobato Km 04, Ponta Grossa, PR 84016-210, Brazil
2 Instituto de Física Teórica, UNESP, Rua Dr. Bento T. Ferraz, 271, Bloco II, São Paulo, SP 01140-070, Brazil

Received: 2 March 2020 / Accepted: 20 July 2020 / Published online: 29 July 2020
© The Author(s) 2020

Abstract We discuss fermion mass generation in unified
models where QCD and technicolor (or any two strongly
interacting theories) have their Schwinger–Dyson equations
coupled. In this case the technicolor (TC) and QCD self-
energies are modified in comparison with the behavior
observed in the isolated theories. In these models the pseudo-
Goldstone boson masses are much higher than the ones
obtained in different contexts, and phenomenological sig-
nals, except from a light scalar composite boson, will be
quite difficult to be observed at present collider energies. The
most noticeable fact of these models is how the mass splitting
between the different ordinary fermions is generated. We dis-
cuss how a necessary horizontal (or family) symmetry can be
implemented in order to generate the mass splitting between
fermions of different generations; how the fermionic mass
spectrum may be modified due to GUT interactions, as well
as how the mass splitting within the same fermionic genera-
tion are generated due to electroweak and GUT interactions.

1 Introduction

The hierarchy and triviality problems related to the existence
of fundamental scalar bosons have been discussed for a long
time. The first attempts to solve these problems were pro-
posed forty years ago in the seminal papers by Weinberg
[1] and Susskind [2]. In these works the fundamental scalar
boson that would be responsible for the Standard Model (SM)
gauge symmetry breaking was substituted by a composite
scalar boson generated by a new strong interaction dubbed
as Technicolor (TC). This proposal was incorporated in the
model of Farhi and Susskind [3] together with the idea that
Nature may also have a Grand Unified Theory (GUT). These
type of models were reviewed in Refs. [4,5]. The possible
existence of composite scalar bosons and a GUT are beautiful
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and naturally expected ideas. It is worth remembering that
much that it was learned up to now about symmetry break-
ing involves a composite scalar boson (as in the QCD chiral
symmetry breaking and in the microscopic BCS theory of
superconductivity), and the SM convergence of interactions
at high energy seems to indicate the presence of a GUT.
Unfortunately, it is also known how difficult is to build a
phenomenologically viable model along these lines [6–8].

TC models continue to be studied although they present
several phenomenological problems [6,9–13,15]. Most of
these problems are related to the soft behavior of the tech-
nifermions self-energy, and they can be ameliorated if the TC
theory has a large mass anomalous dimension as proposed by
Holdom several years ago, what leads to a harder behavior for
the TC self-energy [16]. Models following this idea, called
as walking technicolor and variations, started to be investi-
gated, and this large anomalous dimension can be produced
with the introduction of a large number of fermions in a fun-
damental fermionic representation, as well as with fermions
in larger dimensional representation, or with the introduction
of an effective four-fermion interaction (a partial list of these
works appear in Refs. [17–35]).

In the models described above the necessary extended
technicolor (ETC) boson masses, that usually induce flavor
changing neutral currents, can be pushed to higher energies;
the pseudo-Goldstone boson masses are enhanced and the
composite scalar boson mass, that plays the role of the Higgs
boson, turns out to be light, what does not happen if the
TC theory has the usual dynamical behavior of an isolated
non-Abelian theory. It is interesting that recent lattice simu-
lations of SU (3) gauge theories with N f = 8 fundamental
Dirac fermions [36–40] and N f = 2 symmetric sextets Dirac
fermions [41–45] show evidence of a light scalar boson, as
predicted by TC theories with a self-energy behavior modi-
fied by a large mass anomalous dimension.

All these approaches to solve the TC problems have the
start point of an isolated strong interaction non-Abelian
gauge theory, where what is known about QCD is modified in
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order to verify how the TC self-energy changes with momen-
tum. These attempts imply theories with a large number of
technifermions or fermions in higher dimensional represen-
tations. Here we discuss a new approach consisting of models
where TC and QCD are coupled through a larger theory [46–
48], leading naturally to a theory with a light scalar boson,
where the ETC (or unified theory) gauge boson masses can
be pushed to very high energies and pseudo-Goldstone boson
masses are enhanced. All this happens without the need of a
strong increase of the number of technifermions or the intro-
duction of larger dimensional fermionic representations. In
the TC coupled scenario the necessity of having a system
located near a conformal fixed point, is not so pressing in
order to have a light composite Higgs boson as it seems to
happen in the many lattice calculations [36–45,49].

The most striking point of these models is that the hierar-
chy between different ordinary fermion masses do not appear
as a consequence of different ETC boson masses, but has its
origin in the presence of a necessary horizontal (or family)
symmetry. Moreover, the coupled strong interactions also fit
naturally with the idea of a larger or grand unified theory.
Here the fermionic mass splitting is discussed in different
contexts, showing how they may be generated and which are
the advantages of the TC coupled scenario, where even the
GUT existence has deep implications in the fermionic mass
generation. In Sect. 2 we briefly review some aspects of the
TC coupled scenario. In Sect. 3 we show how the mass split-
ting between different fermionic generations are intimately
connected to the presence of a horizontal symmetry, and how
a GUT participate in the generation of the fermionic mass
spectrum. In Sect. 4 we discuss how electroweak interac-
tions may affect the mass splitting within fermions of the
same generation, as well as the existence of a GUT may also
imply isodoublets mass differences.

2 The TC coupled scenario

We would like to recall the results of Ref. [46,47] to see what
happens in the chiral symmetry breaking of coupled strong
interaction theories. In Ref. [46] we calculated numerically
the self-energy (Σ(p2)) of two coupled strong interaction
theories (QCD and a SU (2) TC theory), corresponding to the
diagrams shown in the first line of Fig. 1 for the techniquarks
(T ) coupled to the quarks (Q) by some ETC or GUT.

We verified numerically that the coupled TC self-energy
behaves as

ΣT(p2) ≈ μTC

[
1 + δ1 ln

[
(p2 + μ2

TC)/μ2
TC

]]−δ2
, (1)

where μTC is the dynamical TC mass, which should be of
the order of the Fermi scale. δ1 and δ2 are parameters that
depend on the QCD, TC and ETC theory. In the case with

Fig. 1 The coupled system of SDEs for TC (T ≡technifermion) and
QCD (Q ≡quark). This system may also include ETC and electroweak
or any other corrections, and some of these are indicated in the figure.
G (g) indicates a technigluon (gluon)

more interactions (e.g. electroweak) these parameters will
contain corrections proportional to the charges of these the-
ories. Note that Eq. (1) is the simplest interpolation of the
numerical result of Ref. [46], describing the infrared (IR)
dynamical mass proportional to μTC (or μQCD), and a loga-
rithmic decreasing function of the momentum in the ultravi-
olet (UV) region.

The behavior of Eq. (1) is not a surprise. The fact that
another interaction added to the TC one changes the self-
energy is known since the work of Takeuchi [35]. The reason
for the behavior described above is that as TC give masses
to ordinary fermions QCD also give masses to the tech-
nifermions [47], as well as other interactions may contribute
to these masses when all their Schwinger–Dyson equations
(SDE) are coupled as shown in Fig. 1. In Ref. [47] we verified
analytically that the second diagram on the right-hand side of
Fig. 1 for techniquarks and quarks modify the UV boundary
condition of the SDE in differential form exactly as happens
in the case of bare massive fermions, i.e. Eq. (1) looks similar
to the self-energy of a fermion with a bare mass. However, the
δ2 value which would be proportional to the mass anomalous
dimension of a technifermion, has now its value connected to
the QCD dynamics (that generates the technifermion mass)
as well as to the other interactions present in the unified sys-
tem. The quarks self-energies are also modified accordingly
to Eq. (1).

There is a very simple way to understand the result of
Eq. (1). Let us assume that the QCD and TC self-energies
are coupled through an ETC (or GUT) interaction with cou-
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pling constant gETC , all of them asymptotically free, and
that the effect of each strong interaction (QCD or TC) is to
proportionate an effective bare mass to each other. The UV
asymptotic behavior of the self-energies will have the fol-
lowing form

ΣUV (p2) ≈ μ

(
p2

μ2

)−Δ(g2,g2
ETC )

, (2)

where μ and g may represent QCD or TC dynamical masses
and couplings, and Δ(g2, g2

ETC ) is a function of the asymp-
totically small couplings. The self-energy UV behavior is
expected to be dominated by the ETC (or GUT) interaction,
whereas the IR behavior of the self-energy is dominated by
the strong interaction, although we should not expect a sim-
ple expression for Δ(g2, g2

ETC ). Expanding Eq. (2) for small
couplings we obtain exactly an expression similar to the one
of Eq. (1).

The ordinary fermion masses generated by Eq. (1), as
shown in Ref. [46–48], will be given by

mQ ≈ λEμTC[1 + κ1 ln(M2
E/μ2

TC)]−κ2 , (3)

where λE involves ETC couplings and a Casimir operator
eigenvalue, ME is an ETC boson mass, and the κi are also
functions of the δi in Eq. (1) as well as other possible correc-
tions (electroweak or other interactions). Frequently we will
approximate the ordinary fermion masses just by

mQ ∝ λEμTC , (4)

where we are assuming that the contribution between brack-
ets in Eq. (3) is small. Note that self-energies with such loga-
rithmic behavior (or similar integrals) have a slowly conver-
gent behavior (see, for instance, Ref. [50] or the appendix of
Ref. [51]), and have its result dominated by the factor λEμ

(where μ can be the TC or QCD dynamical mass).
In the coupled scenario the QCD self-energy has the same

behavior of Eq. (1), only changing μTC by μQCD (the QCD
dynamical mass) and respective δi coefficients. Therefore,
the infrared (IR) behavior of TC and QCD self-energies are
proportional to their respective strongly generated dynamical
masses (μTC and μQCD), while their UV behavior is the one
of “hard” dynamically generated masses, whose perturbative
anomalous dimension is dominated by the different strong
interaction than the one that determines their IR behavior.
Some consequences of such behavior are discussed in the
sequence.

2.1 A light composite scalar boson

The traditional wisdom about the composite scalar boson
mass that plays the role of the Higgs boson is that it should be
of the order of the Fermi scale. This idea appeared at the first
time in the seminal work of Nambu and Jona-Lasinio [52],

where the scalar composite mass of the strong interaction
(the σ meson)was determined as

mσ = 2μQCD . (5)

In QCD the same result for the σ meson (now known as
f0(500) [53]) was obtained in Ref. [54] through the solution
of the homogeneous Bethe–Salpeter equation (BSE). In the
TC case we should also have the same result, leading to an
expected composite Higgs mass mH = 2μTC. Once μTC is
of order of the Fermi scale, this mass would be heavy and of
order of a TeV. This high mass value is surely not the case of
the observed Higgs boson [55,56].

The result of Eq. (5) is correct if QCD (or TC) are con-
sidered as isolated theories, which are characterized by a
very soft self-energy, decreasing with the momentum as
1/p2. When the self-energy is hard, like the one of Eq. (1)1,
the scalar composite mass should be determined by the
non-homogenous BSE, which correspond to the homoge-
nous equation constrained by a normalization condition. The
importance of the normalization condition was established a
long time ago by Mandelstam [59] (see also Ref. [60]) and
in the QCD case it was discussed by Lane [61]. The effect
of the BSE normalization condition is fundamental to reduce
the scalar mass determination when the BSE wave function
decreases slowly with the momentum. The calculation of this
effect, considering a self-energy given by Eq. (1), has been
performed in Ref. [62] and imply in a decrease of the scalar
mass estimate by one order of magnitude (see also Ref. [63]).
A similar analysis using an effective potential for composite
operators and a hard self-energy corroborates with this result
[64].

2.2 Ordinary fermion and ETC gauge boson masses

The ordinary fermion masses are determined through the dia-
gram (A) of Fig. 2, where an ETC gauge boson connects the
different fermions and technifermions. The mass splitting
between different fermionic generations is usually thought
as a consequence of different ETC gauge boson masses. It
is clear from Eq. (3) that this is not the case in the coupled
scenario. The ordinary fermion masses vary logarithmically
with ME , and as proposed in Refs. [46,48] the fermion mass
splitting is induced by a horizontal (or family) symmetry,

1 When solving the SDE for the fermion mass we have two possible
solutions, one behaving as μ3/p2 that is called regular or soft, and
another behaving as μ(p2/μ2)−γ called irregular or hard, where γ is
proportional to bg2 and b is the leading coefficient of the β function.
This irregular or hard solution is similar to an explicit chiral symmetry
breaking [57], i.e. to the existence of a bare fermion mass, and this is
exactly what happens in the TC coupled case, where the extra SDE
diagrams indeed act to provide “bare” masses to the fermions. The
irregular expression expanded for small bg2, whose limit also coincides
with the nearly conformal case (i.e. small b value) leads exactly to
Eq. (1) where δ1 = bg2, as demonstrated in the appendix of Ref. [58].
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A

B

Fig. 2 The standard mass diagram in TC theories is shown in part a of
the figure. It connects ordinary fermion to technifermions through ETC
interactions. In the coupled TC scheme more diagrams are taken into
account, e.g. the techni-neutrino mass has all the contributions shown
in part b of the figure

where, at leading order, the third generation couples only to
the TC condensate and the first generation to the QCD con-
densate. The second generation results from the mixing of
the different condensates intermediated by the horizontal (or
GUT) bosons [48]. These points are going to be discussed at
lenght in the next sections.

The main result of the coupled scenario is that the differ-
ent fermionic mass scales are a consequence of the different
strong interactions. Another point, as can be verified in Refs.
[48], is that quarks are heavier than leptons due to the large
number of diagrams contributing to their masses. The ETC
gauge boson masses can be pushed to very high energies,
where the symmetry breaking of the ETC (or GUT) model
can be generated even by fundamental scalar bosons, that
may appear naturally at Planck scale. Therefore, we do not
expect large flavor changing neutral current problems asso-
ciated to ETC. Finally, the fact that technifermions couple
at leading order only to the third fermionic family will hide
much of the technicolor signals involving light quarks or lep-
tons (i.e. first or second fermionic generation).

2.3 Pseudo-Goldstone boson masses

Unified TC models contain a large number of Goldstone
bosons that appear when the TC chiral symmetry is broken.
Most of the technifermions obtain masses due to radiative
corrections leading to quite heavy pseudo-Goldstone bosons.
As one example of how large are their masses in the TC
coupled scenario, let us consider the lightest technifermion,
which in many cases may be a techni-neutrino. This particle
will appear when technifermions are a doublet of the weak
interactions, they should be there if we want to give masses to
the charged leptons, and its mass appear due to the diagram
(B) of Fig. 2.

The diagram (a2) of Fig. 2 induces the logarithmic running
of the techni-neutrino self-energy, and the third diagram of
Fig. 2 provides a current mass (mN ) of weak origin of order
g2
wμTC ≈ O(100)GeV. Simply using the Gell-Mann-Oakes-

Renner relation m2
Π ≈ mN

〈
N̄ N

〉
2F2

Π

, with
〈
N̄ N

〉 ≈ (250)3GeV3

and FΠ ≈ 190GeV (the technipion decay constant), we
roughly obtain for the lightest pseudo-Goldstone boson mass
formed by techni-neutrinos a mass of the following order [48]

mN
Π ≈ 150 GeV . (6)

All other pseudo-Goldstone masses will be heavier than
this one, and at leading order they couple only to the third
fermionic generation what is enforced by the horizontal sym-
metry. Therefore, there is a great probability that they may
have escaped detection up to now.

3 Model building and fermion mass splittings for
different generations

A very simple fact of model building in the coupled sce-
nario is that we do not need a TC group larger than SU (2),
which is enough to produce the gauge symmetry breaking of
the electroweak group. It was usually expected that the TC
group should be larger than SU (3) just in order to condensate
at one larger scale than QCD, assuming that the TC group
emerges in a tumbling scheme [65]. As the generated masses
depend logarithmically on the ETC (or GUT) interaction,
these theories can be pushed to very high energies, and in this
case it is possible to assume that the larger group symmetry,
that contains QCD and TC, can be broken by fundamental
scalars, which may appear naturally at GUT or Planck scales
(perhaps due to the presence of supersymmetry). Therefore,
a simple SU (2) TC theory can appear at the Fermi scale in
this breaking .

As technifermions and ordinary fermions will interact
among themselves in the coupled scenario, the left-handed
techniquarks will transform as (3, 2) SM representations, i.e.
color triplets and electroweak doublets, right-handed tech-
niquarks as (3, 1), left-handed technileptons as (1, 2) and
right-handed technileptons as (1, 1). The number of tech-
nifermions (NT F ) will be

NT F = 3NQ + NL , (7)

where NQ is the number of techniquarks and NL the num-
ber of technileptons. Therefore, the smallest number of tech-
nifermions will be 8, which, if the TC group is SU (2), is a
number that implies that we are already in the walking win-
dow [16–18,66–68].

The hard self-energy behavior of the strong interactions
(TC and QCD) represented in Eq. (1) works in the direction
of smaller contributions to the S parameter [48]. Choosing a
TC group as small as SU (2) and technifermions in a small
representation of dimension d(RTC ) it is also interesting. If
we have a small number of TC doublets (ND), a SU (2)TC
group and just assuming a naive expression for the S param-
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eter

S = ND
d(RTC )

6π
. (8)

we may probably obtain this parameter within the expected
experimental limits.

In the coupled case the hierarchy of ordinary fermion
masses will not appear as a result of different ETC gauge
boson masses (see Eq. (3) and the discussion in Refs.
[46,48]), but is originated due to the presence of a discrete or
continuous horizontal (or family) symmetry. For simplicity
we can consider a simple Lie group G

G ⊃ GH × GU , (9)

whereGH is the horizontal group symmetry andGU contains

GU ⊃ GETC × SU (2)L ×U (1)Y , (10)

where

GETC ⊃ SU (N )TC × SU (3)c , (11)

contains all strongly interacting theories, as in the model of
Ref. [3]. Another possibility is that

GU ⊃ SU (N )TC × GSM (12)

where GSM is the SM group

GSM = SU (3)c × SU (2)L ×U (1)Y . (13)

These possibilities were studied in Refs. [7,8].
A more ambitious case appears when GU is an unified

group containing the TC group and the Georgi-Glashow
SU (5)GUT [69]. GU can be a SU (N ) group such that

GU ≡ SU (N )U ⊃ SU (NTC ) × SU (5)GUT . (14)

It follows that N should be equal to NTC+5 with the minimal
value N = 7, although this choice contains only two ordinary
fermion generations [3].

Here we shall not worry about the symmetry breaking of
the large unified groups, since we assume that this break-
ing always can be promoted by fundamental scalars once it
can occur at very high energies. The type of the horizontal
symmetry (be it global or gauge, discrete or continuous) will
also not be discussed as long as a set of anomaly free repre-
sentations is found for the G group. As the ETC (or GUT)
gauge boson masses will be very heavy we will not expect the
presence of flavor changing interactions at one undesirable
level, and we will be mostly concerned with the origin of
the fermionic mass splittings, which is the most interesting
characteristic of this type of model, where the mass differ-
ence between different fermionic generations is related to the
different strong interactions present in the theory.

In the scheme represented in Eq. (14), the case where
SU (N )U ≡ SU (7) is not realistic since it contains only two
generations, but it can be studied because is a nice example of

how the different SU (7) and SU (5)S
2 interactions generate

the mass splitting between the different fermionic genera-
tions. In this case we can assume that the SU (7) gauge sym-
metry breaking is produced by fundamental scalars bosons
at a very high unification scale, and the same happens with
the SU (5)S strong gauge group that breaks into QCD and
TC (although this last breaking could be a result of tumbling
[65]). We consider the following set of anomaly free SU (7)

antisymmetric representations

[2] = (1, 10) + (2, 5) + (1, 1),

[4] = (1, 10) + (2, 1̄0) + (1, 5̄),

[6] = (1, 5̄) + (2, 1) , (15)

as in Ref. [3], but choosing the first and third ordinary
fermionic representations in order to show how QCD and
TC act in the generation of these fermion mass scales. We
differ from Ref. [3] in the fact that the [2] representation now
is

(1, 10) =

⎛
⎜⎜⎜⎜⎝

0 t̄r −t̄y tr br
−t̄r 0 t̄b ty by
t̄y −t̄b 0 tb bb

−tr −ty −tb 0 τ̄

−br −by −bb −τ̄ 0

⎞
⎟⎟⎟⎟⎠

(2, 5) =

⎛
⎜⎜⎜⎜⎝

Dr

Dy

Db

Ē
N̄

⎞
⎟⎟⎟⎟⎠

p

, (1, 1) = ν̄τ (16)

where technifermions are represented by capital letters and
the [4] is decomposed as

(1, 10) =

⎛
⎜⎜⎜⎜⎝

0 ūr −ū y ur dr
−ūr 0 ūb uy dy
ū y −ūb 0 ub db

−ur −uy −ub 0 ē
−dr −dy −db −ē 0

⎞
⎟⎟⎟⎟⎠

, (1, 5̄) =

⎛
⎜⎜⎜⎜⎝

b̄r
b̄y
b̄b
τ

ντ

⎞
⎟⎟⎟⎟⎠

(2, 1̄0) =

⎛
⎜⎜⎜⎜⎝

0 Ur −Uy Ūr D̄r

−Ur 0 Ub Ūy D̄y

Uy −Ub 0 Ūb D̄b

−Ūr −Ūy −Ūb 0 E
−D̄r −D̄y −D̄b −E 0

⎞
⎟⎟⎟⎟⎠

p

. (17)

The representation [6] is the same as the one in Ref. [3] just
exchanging the second by the third fermionic family.

Note the particular choice of Eqs.(16) and (17). This exam-
ple is very nice because in this case we naturally couple only

2 As in Ref. [3], we assume the symmetry breaking direction SU (7) →
[SU (2)L ×U (1)Y ] × SU (5)S , where the strong SU (5)S gauge theory
acts as a extended technicolor theory (ETC) and as considered in Ref.
[3] we shall not discuss the SU (7)(or SU (5)S) symmetry breaking.
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Fig. 3 Quark masses in the coupled TC scheme of Eq. (10), for the
fermionic content given by Eqs.(16) and (17)

Fig. 4 Horizontal symmetry contribution to the b quark mass

the third generation fermions to TC while the first generation
is coupled to QCD as shown in Fig. 3.

However we still need mixing between the different gen-
erations and interactions, and this is provided by the intro-
duction of an SU (2)H horizontal interaction that may also
be broken at the SU (7) or SU (5)S scale. Note that SU (2)H
is the simplest choice to obtain the cancellation of anoma-
lies (i.e., 2A[1̄0 + 10] = 0 and 2A[5̄ + 5] = 0), and it will
generate the diagrams of Fig. 4.

Looking at Eq. (3) and neglecting the logarithmic term
between brackets we can assume that the generated fermion
masses (m f ) are proportional to

m f ≈ λiμs , (18)

where

λi = αiCi , (19)

and where αi is the coupling constant appearing in the mass
diagram, with one fermion in a group representation that has

Fig. 5 Leptonic masses in the TC coupled scenario generated in mod-
els of the type of Eq. (14)

a Casimir eigenvalue Ci , involving a strong interaction with
dynamical mass μs (which can be the QCD or TC dynamical
mass). Therefore the full mass matrix for charge 2/3 quarks
in the SU (2)H (or (u t) charge 2/3 quarks) basis is due to
the diagrams of Figs. 3 and 4 is giving by

m2/3 =
(

a b
−b c

)
, (20)

where we can identify

a ≈ μQCD(CHαH + 2C7α7) (21)

c ≈ μTCC5α5 (22)

b ≈ μTCC5CHα5αH . (23)

The indices H , 7 and 5 are respectively related to couplings
and Casimir operators of the groups SU (2)H , SU (7) and
SU (5)S . Assuming C5α5 = O(0.1), CH

C5
= 3

4 . 10
24 ≈ 1

3 , we

can estimate CHαH ≈ O(0.1)
3 , and with naive round values

of μQCD = 0.2GeV and μTC = 1T eV we obtain

m2/3 =
(

0.047 3
−3 100

)
, (24)

which, when diagonalized, gives

mt ≈ 100GeV (25)

mu ≈ 0.1GeV . (26)

With similar mass values for the 1/3 electrically charged
quarks. These approximations are very rough but they pro-
vide a clear idea how the mass splitting of the different
fermionic families appear as a consequence of the different
strong interactions present in the theory.

It is interesting to observe how lepton masses are gener-
ated when models are building according to the scheme of
Eq. (10) or (14), in these cases the contributions of the larger
or unified theories are still important, due to the logarithmic
dependence on the masses of these interactions. For instance,
in the model just described above the electron and tau lepton
obtain masses through the diagrams of Fig. 5. We can again
see that the charged lepton of the first generation obtain mass
coupling to the QCD condensate, while the third generation
lepton obtain mass coupling directly to the technifermion
condensate, and the smallness of the leptonic masses com-
pared to quark masses appear naturally, also because leptons
have less interaction with the strong interactions.
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The discussion presented above shows how the existence
of a GUT is important to the generation of the fermionic
mass spectrum, while the horizontal symmetry is fundamen-
tal to determine the splitting of fermion masses. The choice
of the horizontal symmetry is tied to the existence of two fun-
damental strong interaction condensates: the TC and QCD
condensates. This system acts as a coupled system of two fun-
damental scalar bosons with two vacuum expectation values
of the order of QCD and TC scales. Let us make the following
association

〈qq̄〉 ↔ 〈φ〉 (27)〈
QQ̄

〉 ↔ 〈Φ〉 , (28)

where 〈qq̄〉 and
〈
QQ̄

〉
are respectively the quark and techni-

quark condensates, which have been associated to compos-
ite scalar fields φ and Φ, with vacuum expectation values of
approximately 250 MeV and 250 GeV. The fermionic hor-
izontal quantum numbers for the first and third generation
must be chosen such that the QCD condensate (or the com-
posite φ) couples only to the first generation. While the quan-
tum numbers of the third generation fermions are chosen in
order to couple only to the TC condensate (or the composite
Φ).

In a realistic scenario, containing three generations of
fermions, the horizontal symmetry (perhaps also the GUT
interaction) will be responsible for the mixing of the com-
posite fields, contributing to generate the masses of the sec-
ond fermionic generation. Examples of horizontal symme-
tries are the simple SU (2)H case discussed above and the
SU (3)H group discussed in Ref. [48]. However, we envis-
age several other possibilities because the gauge bosons of
this new interaction, or even the new fermions necessary to
render the theory anomaly free, can be made very heavy once
the symmetry breaking of the horizontal symmetry may hap-
pens at very high energies, due to the weak dependence of the
fermion masses on the horizontal (or ETC and GUT) scales
as shown in Eq. (3).

When attempting to build a concrete and realistic model
along the lines discussed here, we have to keep in mind that
all physical parameters remain the same as in standard TC
models, except that ETC (GUT) mass scales can be pushed to
high energies, and it is necessary the introduction of a fam-
ily (or horizontal) symmetry in order to generate the mass
splitting between different fermionic generations. Concern-
ing the gauge group structure of TC coupled models it is fun-
damental that QCD and TC are embedded into a larger group,
generating a system of two composite scalar bosons respon-
sible for the gauge and chiral symmetry breaking. We have
already proposed a model based on the SU (9) group plus a
family symmetry that has several of the expected properties
for a realistic model [48]. A larger group is still possible and
even semi-simple groups are allowed as long as the strong

interactions are coupled. We have also noted that it is possi-
ble to choose different family symmetries (local or global).
However, we have to say that it is quite difficult to obtain
a realistic determination of all fermion masses. What hap-
pens is that in the coupled models we must first solve a large
set of coupled Schwinger–Dyson equations in order to deter-
mine realistic TC and QCD self-energies, which is a hard
task even computing SDE with rough approximations. In a
first approach it is possible to neglect the most feeble inter-
actions in the full SDE set of equations, although these other
interactions are fundamental to generate the full mass spec-
tra. Further development along this line is necessary before
expanding the space of possible theories, as the determina-
tion of a simple method to capture the relevant behavior of
the coupled equations, otherwise it will be difficult to know
how proposed models are indeed realistic.

4 Mass splitting within the same fermionic generation

4.1 Electroweak mass splitting

In Ref. [47] we transformed the ESD coupled system into
a differential equation. Applying the boundary conditions to
the resulting equation it is possible to verify that the UV
asymptotic behavior of the coupled system is given by

Σ(p2 → ∞) ∝ aμ

(
p2

μ2

)−Δ(κ,ε)

, (29)

where Δ(κ, ε) ≈ ε
2 − κ

8 assuming asymptotic linear super-
position of the different interactions, in the expression above
a is a constant and μ can be either the TC or QCD dynam-
ical mass, κ is proportional do the ETC (or GUT) coupling
constant and in the limit when this coupling is zero

Δ(κ, ε) = ε

2
= 3Cα

4π
, (30)

where C and α = g2/4π are respectively the Casimir opera-
tor eigenvalue and coupling constant of the strong interaction
dominating the self-energy solution of the coupling system
(TC or QCD).

In the UV region we assume that Eq. (29) may be expanded
as function of the coupling constant of the strong interaction,
therefore assuming Δ(κ, ε) ∝ bg2 we may perform the fol-
lowing expansion

Σ(p2 → ∞) ∝ μ

[
1 + bg2ln

(
p2

μ2

)]− Δ(κ,ε)

bg2

, (31)

which is one expression consistent with Eq. (1). Assuming
that we are in the deep UV region this last expression can be
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Fig. 6 Coupled SDE system of two fermions, indicated by 1 = U and
2 = D, considering also the electromagnetic interaction (3rd diagram)

reduced to

ΣUV (p2) ∝ μ
(
bg2

)− Δ(κ,ε)

bg2
[
ln

(
p2

μ2

)]− Δ(κ,ε)

bg2

, (32)

which has exactly the form A[ln(p2/μ2)]−B that we used
in Ref. [46] to fit the numerical solution of the coupled SDE
system. The above expressions will allow us to obtain a sim-
ple evaluation of how the splitting of fermion masses within
the same generation may appear.

In Fig. 6 we show a simplified coupled system where two
fermions, indicated by 1 = U and 2 = D obtain masses.

Besides the ETC and TC diagrams generating masses for
the fermionsU and D in Fig. 6, we also include the diagrams
involving the electromagnetic interaction (a3, b3). If we con-
sider only the first two contributions in Fig. 6 (a1, a2, b1, b2),
we can assume for the solution of these diagrams that the
variable Δ(κ, ε) of Eqs.(31) or (32) can be approximated by

ΔE (κ, ε) ≡ Δ1(κ, ε) = Δ2(κ, ε) = ε

2
− κ

8
(33)

in such a way that the masses of the fermions U and D,
respectively indicated by M1 and M2 will have the following
ratio

M1

M2
=

(
ln

(
M2

E

μ2

)) ε
2 − κ

8 −( ε
2 − κ

8 )

bg2

= 1 . (34)

in the above equation the index E means that we considered
the coupled system only with the ETC contribution, i.e. the
system is coupled only due to the ETC interaction (diagrams
a2 and b2).

If the diagrams containing the electroweak interaction are
included we could expect a modification of the variables

Δ1(κ, ε) and Δ2(κ, ε) in the following form

Δ1(κ, ε) = ΔE (κ, ε) + δ1
γ (κ)

Δ2(κ, ε) = ΔE (κ, ε) + δ2
γ (κ). (35)

Assuming that the electric charge of the fermions U and D
differ by a factor of 2, i.e. |Q1| = 2|Q2|, and it is the square
of the charge that enter in these coefficients we can write

Δ1(κ, ε) = ΔE (κ, ε) + 4δ2
γ (κ)

Δ2(κ, ε) = ΔE (κ, ε) + δ2
γ (κ) , (36)

we can now see that the mass ratio will now behave as

M1

M2
≈

(
ln

(
M2

E

μ2

)) 3δ2
γ (κ)

bg2

> 1 . (37)

Note that this ratio is basically dependent on the UV behavior
of the generated mass. The IR behavior is dominated by the
strong interaction and is identical for both fermions and dom-
inated by the diagrams (a1, b1) of Fig. 6. The mass splitting
comes from ETC(GUT) , γ,W, Z ... interactions that mod-
ify the parameters Δi (κ, ε), although it is important to see
that the factor bg2 coming from the strong interaction also
controls the scale of the masses and intervene in the splitting.

Considering Eq. (37) we can make a naive estimate: Sup-
pose we have as TC group SU (3)TC with n f = 6. Assuming
also the MAC hypothesis we can approximate bg2 = 0.44,
that ME is at the GUT scale, α ≈ αE = 0.032 and CE = 1
we obtain δ2

γ (κ) ∼ 0.032, with

M1

M2
≈

(
ln

(
M2

E

μ2

))0.22

. (38)

With ME = ΛETC = ΛGUT = 1016GeV = 1013T eV and
μ = 1T eV we obtain

M1

M2
=

(
ln

(
M2

E

μ2

))0.22

≈ 2.5. (39)

The values of couplings and other constants used in this eval-
uation are the same ones used in our numerical solution of
the coupled SDE in Ref. [46].

Note that mass splittings of an order of magnitude can
also be obtained, particularly if we consider unified models
like the ones proposed in the beginning of the section which
may originate several diagrams contributing to the mass of
one specific fermion. It is also clear that in this very simple
estimate the number of fermions also enters into account. For
example, if we consider the walking limit for the SU (3)TC
theory, and instead of n f = 6 we use n f = 12 the bg2 esti-
mate in Eq. (37) will be modified and a larger mass splitting
than the one of Eq. (39) can be obtained.
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4.2 GUT mass splitting

Mass splitting for fermions within the same generation can be
obtained, without large weak isospin violation, if we put the
chiral components (LH and RH) of a given fermion member
of an electroweak doublet in different ETC representations
[70,71]. For instance, let us consider how a large mass dif-
ference between the top and bottom quark can be generated.
We assume the following group structure

G = SU (3)ETC × G ′ (40)

where G ′ = SU (3)C × SU (2)L × SU (2)R ⊗U (1)S . We also
consider that the gauge group G ′ is embedded in a SO(12)

gauge group [72]. Under the ETC interaction the G group
fermionic content can be decomposed as:

ψ3ETC
=

⎛
⎝
T1

T2

t

⎞
⎠

L ,R

,

⎛
⎝

B1

B2

b

⎞
⎠

L

∼ (3, 1) (41)

ψ
3̄ETC

=
⎛
⎝

B1

B2

b

⎞
⎠

R

∼ (3̄, 1) (42)

where we are putting the LH and RH chiral components of
the top quark in the same ETC representation, but these com-
ponents for the botton quark are in different ETC represen-
tations. Observing the Feynman rules for this theory we can
verify that the bottom quark couples to the top quark at one
loop through the intermediation of a heavy SO(12) gauge
boson, and also at two loops due to the interaction with right
and left-handed weak gauge bosons. The bottom mass turns
out to be

mb ∝ λ12mt , (43)

where the diagram that generates this mass is similar to the
last diagram shown in Fig. 3, with the exchange u→t, d→b
and SU (7) → SO(12). The coefficient λ12 is proportional
to the coupling and other constants of the SO(12) theory,
and the mass difference between these quarks can certainly
be of one order of magnitude or larger.

The above example show to us how a GUT plays an impor-
tant role in the mass splitting of ordinary fermions in the
coupled scenario, since any very large gauge boson mass
dependence does not affect strongly the value of the gen-
erated mass. However we cannot forget that the necessary
horizontal interactions may also induce a mass splitting for
fermions in the same generation, which will depend on the
particularities of the chosen horizontal group.

5 Conclusions

In this work we discuss unified models based on the TC cou-
pled scenario. In these models the QCD and TC Schwinger–
Dyson equations are coupled due to ETC or GUT interac-
tions. One theory provides mass to the other and their self-
energies vary logarithmically with the momentum. In this
case the generated fermion masses are weakly dependent on
the ETC or GUT gauge boson masses, and the fermionic
mass splitting is not generated due to these different gauge
boson masses. Some of these points are briefly reviewed in
Section II. The fermionic masses will be generated due to
the presence of a horizontal (or family) symmetry, and this
is the most noticeable characteristic of these models.

In Section III we discussed a very simple unified model
with only two generations. The model is a variation of the
model of Ref. [3] where by construction the first fermionic
generation receives mass coupling only to QCD condensates,
while the third generation couples only to the TC condensate.
Even in this model we verify that a horizontal symmetry
must be introduced in order to reproduce the mixing between
families. The existence of a GUT also increase the number
of diagrams contributing to one specific mass.

A series of possible unified models along this line have
also been discussed. In the coupled scenario the QCD and
TC are responsible for the hierarchy of fermion masses, i.e.
this hierarchy is intimately connected to the different scales
of strongly interacting theories. There shoud be a variety
of horizontal symmetry groups that can lead to an approxi-
mate estimate of the known fermion mass spectrum, but more
specifically the horizontal quantum numbers of fermions and
technifermions must be chosen such that QCD and TC con-
densates (or composite scalars) couple respectively to the first
and third fermionic generation. Horizontal (ETC or GUT)
mass scales can be pushed to high energies due to the small
dependence of the fermion masses on these scales, and the
choice of anomaly free representations of the horizontal sym-
metry should not hamper model building.

In Section IV we show how an estimate of the mass split-
ting within the same fermionic generation can be obtained.
A very simple estimate of electroweak effects is presented,
where it appears without the introduction of many fermions
(or walking behavior). However, it is also possible to see
that the walking limit certainly increases the inter-generation
mass splitting. We also discuss how a GUT can also induce
a large mass splitting for the same iso-doublet.

The few aspects discussed here show that models along
the line of coupled strong interactions may open way for
the construction of realistic theories of dynamical symmetry
breaking.
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