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Abstract Using detailed simulations of calorimeter show-
ers as training data, we investigate the use of deep learning
algorithms for the simulation and reconstruction of single
isolated particles produced in high-energy physics collisions.
We train neural networks on single-particle shower data at
the calorimeter-cell level, and show significant improve-
ments for simulation and reconstruction when using these
networks compared to methods which rely on currently-used
state-of-the-art algorithms. We define two models: an end-
to-end reconstruction network which performs simultane-
ous particle identification and energy regression of particles
when given calorimeter shower data, and a generative net-
work which can provide reasonable modeling of calorime-
ter showers for different particle types at specified angles
and energies. We investigate the optimization of our mod-
els with hyperparameter scans. Furthermore, we demonstrate
the applicability of the reconstruction model to shower inputs
from other detector geometries, specifically ATLAS-like and
CMS-like geometries. These networks can serve as fast and
computationally light methods for particle shower simula-
tion and reconstruction for current and future experiments at
particle colliders.

a e-mail: mzhang60@illinois.edu (corresponding author)

1 Overview

In high energy physics (HEP) experiments, detectors act as
imaging devices, allowing physicists to take snapshots of
final state particles from collision “events”. Calorimeters are
key components of such detectors. When a high-energy pri-
mary particle travels through dense calorimeter material, it
deposits its energy and produces a shower of secondary par-
ticles. Detector “cells” within the calorimeter then capture
these energy depositions, forming a set of voxelized images
which are characteristic of the type and energy of the primary
particle.

The starting point of any physics analysis is the identi-
fication of the types of particles produced in each collision
and the measurement of the momentum carried by each of
these particles. These tasks have traditionally used manually-
designed algorithms, producing measurements of physical
features such as shower width and rate of energy loss for
particles traversing calorimeter layers. In the last few years,
researchers have started realizing that machine learning (ML)
techniques are well suited for such tasks, e.g. using boosted
decision trees (BDTs) on calculated features for doing ID
classification and energy regression. Indeed, ML has long
been applied to various tasks in HEP [1–3], but has recently
seen much wider application [4–9], including the 2012 dis-
covery of the Higgs boson [10,11] at the ATLAS [12] and
CMS [13] experiments at the Large Hadron Collider (LHC).

In the next decade, the planned High Luminosity Large
Hadron Collider (HL-LHC) upgrade [14] will enhance the
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experimental sensitivity to rare phenomena by increasing the
number of collected proton–proton collisions by a factor of
ten. In addition, many next-generation detector components,
such as the sampling calorimeters proposed for the ILC [15],
CLIC [16], and CMS [17] detectors, will improve physicists’
ability to identify and measure particles by using much finer
3D arrays of voxels. These and future accelerator upgrades
will lead to higher data volumes and pose a variety of techno-
logical and computational challenges in tasks, such as real-
time particle reconstruction.

In addition to actual collision data, physics analyses typ-
ically require extremely detailed and precise simulations
of collisions, generated using software packages such as
GEANT4 [18]. This simulated data is used to develop
and test analysis techniques. These simulations involve the
physics governing the interaction of particles with matter in
the calorimeters, and are generally very CPU intensive. In
some cases, such as the ATLAS experiment, simulation cur-
rently requires roughly half of the experiment’s computing
resources [19]. This fraction is expected to increase signifi-
cantly for the HL-LHC. These challenges require novel com-
putational and algorithmic techniques, which has prompted
recent efforts in HEP to apply modern ML to calorimetry
[20–23].

With this work, we aim to demonstrate the applicability of
neural-network based approaches to reconstruction and sim-
ulation tasks, looking at a real use case. To do this, we use
fully simulated calorimeter data for a typical collider detec-
tor to train two models: (i) a network for end-to-end parti-
cle reconstruction, receiving as input a calorimeter shower
from a single isolated particle and acting both as a parti-
cle identification algorithm and as a regression algorithm
for the particle’s energy; (ii) a generative adversarial net-
work (GAN) [24] for simulating particle showers, designed
to return calorimeter-cell voxelized images like those gener-
ated by GEANT4. Both models aim to preserve the accuracy
of more traditional approaches while drastically reducing the
required computing resources and time, thanks partly to a
built-in portability to heterogeneous CPU+GPU computing
environments.

This paper is a legacy document summarizing two years
of work. It builds upon initial simulation, classification, and
regression results which we presented at the 2017 Workshop
on Deep Learning for Physical Sciences at the NeurIPS con-
ference. Those results were derived using simplified problem
formulations [25]. For instance, we only used particles of a
single fixed energy for classification, and had only consid-
ered showers produced by particles traveling perpendicularly
to the calorimeter surface. The results presented in this paper
deal with a more realistic use case and supersede the results
in Ref. [25].

For the studies presented in this paper, we used two com-
puting clusters: at the University of Texas at Arlington (UTA),

and at the Blue Waters supercomputing network, located at
the University of Illinois at Urbana Champaign (UIUC). The
UTA cluster has 10 NVIDIA GTX Titan GPUs with 6 GB of
memory each. Blue Waters uses NVDIA Kepler GPUs, also
with 6 GB of memory each.

GAN models were implemented and trained using Keras
[26] and Tensorflow [27]. Reconstruction models were
implemented and trained using PyTorch [28]. The sample
generation [29] and training [30] frameworks were both writ-
ten in Python.

This document is structured as follows: In Sect. 2, we
describe how we created and prepared the data used in these
studies. Section 3 introduces the two physics problems, parti-
cle simulation and reconstruction. Sections 4 and 5 describe
the corresponding models, how they were trained, and the
performances they reached. In particular, Sect. 5 compares
our results to those of more traditional approaches, and also
extends those comparisons to simulated performances on
detector geometries similar to those of the ATLAS and CMS
calorimeters. Conclusions are given in Sect. 6.

2 Dataset

This study is based on simulated data produced with
GEANT4 [18], using the geometric layout of the proposed
Linear Collider Detector (LCD) for the CLIC accelerator
[31]. We limit the study to the central region (barrel) of
the LCD detector, where the electromagnetic calorimeter
(ECAL) consists of a cylinder with inner radius of 1.5 m,
structured as a set of 25 silicon sensor planes, segmented
in 5.1 × 5.1 mm2 square cells, alternated with tungsten
absorber planes. In the barrel region, the hadronic calorime-
ter (HCAL) sits behind the ECAL, at an inner radius of 1.7 m.
The HCAL consists of 60 layers of polystyrene scintillators,
segmented in cells with 3 × 3 cm2 area and alternated with
layers of steel absorbers.

The event simulation considers the full detector layout,
including the material in front of the calorimeter and the
effect of the solenoidal magnetic field. The inner tracker
is included in simulation, which allows particles to inter-
act before hitting the calorimeter, but in our studies we focus
only on calorimeter data. From the full data for each event
we take slices centered around the barycenter of each ECAL
energy deposit and we represent the ECAL and HCAL slices
as 3D arrays of energy deposits in the cells.

We consider four kinds of particles (electrons e, photons
γ , charged pions π , and neutral pions π0) with energies uni-
formly distributed between 2 and 500 GeV, and with inci-
dent angles uniformly distributed between a polar angle θ

between 1.047 and 2.094 radians with respect to the beam
direction (equivalently, a pseudorapidity η between −0.549
and 0.549).

123



Eur. Phys. J. C (2020) 80 :688 Page 3 of 31 688

Fig. 1 3D image of a photon (left) and neutral pion (right) shower in ECAL (bottom) and HCAL (top)

We get the barycenter of a shower by taking the 2D pro-
jection of its energy deposit on the ECAL inner surface.
This projection is taken along the z direction, which runs
perpendicular to the calorimeter surface. Then, knowing the
point of origin of the incoming particle, we use the barycen-
ter to estimate the particle’s polar and azimuthal angles θ

and φ. The estimated pseudorapidity η is then computed as
η = − log[tan

(
θ
2

)]. Each single-shower event is prepared by
taking a slice of the ECAL in a window around the shower
barycenter, as well as the corresponding HCAL slice behind.
Depending on the task (generation or reconstruction), we
take:

– GEN dataset: A 51×51×25 cell window in the ECAL,
for electrons in the energy range 100 − 200 GeV. Used
in the shower generation task.

– REC dataset: A 25×25×25 cell slice of the ECAL and
a corresponding 11 × 11 × 60 cell slice of the HCAL,
for e, γ, π, or π0 in the energy range 2 − 500 GeV
and with η from −0.524 − 0.524. Used in the particle
reconstruction task.

Examples of a photon shower and a neutral-pion shower
can be seen in Fig. 1. The incoming particles enter from the
bottom (z = 0), at the center of the (x, y) transverse plane
(x = y = 25). Both events are around 35 GeV in energy.
We can see the presence of two subtracks in the neutral pion
event, due to decay into two photons.

The window size for the GEN dataset has been defined
in order to contain as much of the shower information as
practically possible. Motivated by the need of reducing the
memory footprint for some of the classification models, we
used a smaller window size for the REC dataset. When train-
ing classification models on these data, a negligible accuracy
increase was observed when moving to larger windows, as
described in Appendix A.

We apply a task-dependent filtering of the REC dataset,
in order to select the subset of examples for which the task
at hand is not trivial. For instance, in general distinguish-
ing a charged pion from an electron is an easy task, and
can be accomplished with high accuracy by looking at the
HCAL/ECAL energy ratio. On the other hand, a pion with
a small HCAL/ECAL ratio leaves most of its energy in the
ECAL due to charge conversion processes, and as such would
be difficult to distinguish from an electron of equal momen-
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Fig. 2 HCAL/ECAL energy ratios for electrons and charged pions,
plotted on a log scale. The last bin is an overflow bin

tum. Thus, we ignore charged-pion showers with a large
HCAL/ECAL energy ratio. To be more specific, we see in
Fig. 2 that the ratio of total ECAL energy to total HCAL
energy is very different for electrons and charged pions, with
the heavier charged pions tending to leave little energy in the
ECAL. In order to make the particle-identification task more
challenging, we only consider showers with HCAL/ECAL
< 0.1 cut. The effects are shown in Fig. 3, where we see the
fraction of events from 2 to 500 GeV that pass this selec-
tion. We can see that the selection favors mostly low-energy
charged pions, which tend to leave less energy in the HCAL
if they manage to make it through the ECAL at all. Discrim-
inating accurately between electrons and charged pions in
this range is thus crucial for physics analyses where we are
interested in decay products with low energy.

Photons and neutral pions are more difficult to distinguish.
This is because neutral pions decay preferentially into two
photons, with a branching ratio of almost 99%. A Lorentz
boost due to the motion of the pion causes the photons to
become collimated, to the point where they are only sep-
arated by a small angle. If the pion has a low energy, the
opening angle between the two photons is larger and the
shower is easily identified as originating from a neutral pion.
High-energy neutral pions produce more collimated photon
pairs, which are more easily mistaken as a single high-energy
photon. The opening angle distribution for neutral pions is
shown in Fig. 4. In order to limit the study to the most chal-
lenging case, we filter the neutral-pion dataset by requiring
the opening angle between the two photons to be smaller than
0.01 radian. The effect of this requirement on the otherwise
uniform energy distribution is shown in Fig. 5. As expected,
the selection mostly removes low-energy neutral pions.

The ECAL and HCAL 3D arrays are passed directly to our
neural networks. We also compute a set of expert features,
as described in Ref. [25]. These features are used to train

Fig. 3 Fractions of electrons and charged pions that pass a
HCAL/ECAL<0.1 cut at various particle energies (top). Mean charged
pion energy as a function of HCAL/ECAL energy ratio (bottom). We
see that if a pion makes it into the HCAL, then we tend to see a positive
relation between particle energy and the HCAL/ECAL ratio. About 1
out of 5000 events will leave no hits in the calorimeter window at all.
These events form the bump in the HCAL/ECAL=0 bin

alternative benchmark algorithms (see Appendices C and D
), representing currently-used ML algorithms in HEP.

3 Benchmark tasks

In this section, we introduce the two benchmark tasks that
we aim to solve with ML algorithms:

– Particle reconstruction: starting from raw detector hits,
determine the nature of a particle and its momentum.

– Particle simulation: starting from a generator-level infor-
mation of an incoming particle, generate the detector
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Fig. 4 Opening angle distribution for neutral pions decaying into two
photons, plotted on a log scale with an overflow bin. Plot is zoomed
in to show opening angle < 0.01. Number of equivalent ECAL cells is
shown on the top axis. This plot was generated using pions from the
full 2–500 GeV energy range

response (raw detector hits) using random numbers to
model the stochastic nature of the process.

This paper extends upon previous ML investigations in
ATLAS. Some prior classification studies on ATLAS data
can be found at [32], and work involving the generation of
electron showers at ATLAS can be found at [33,34]. Since
the CLIC datasets we use here are much more granular than
those from ATLAS data, we were able to examine more com-
plex neural architectures. Furthermore, we demonstrate the
use of a single tool which performs multiple aspects of par-
ticle reconstruction simultaneously, simply starting from a
calorimeter image.

3.1 Simulation

It is common in HEP to generate large amounts of detailed
synthetic data from Monte Carlo simulations. This simulated
data allows physicists to determine the expected outcome of a
given experiment based on known physics. Having this prior
expectation, one can reveal the presence of new phenomena
by observing an otherwise inexplicable difference between
real and simulated data. An accurate simulation of a detector
response is a computationally heavy task, currently taking
a significant fraction of the overall computing resources in
a typical HEP analysis. Thus we also investigate the use of
ML algorithms to speed up the event simulation process. In
particular, we build a generative model to simulate detector
showers, similar to those on which we train the end-to-end
reconstruction algorithm. Such a generator could drastically

Fig. 5 The fraction of neutral pions passing an opening angle < 0.01
radian selection at various particle energies (top). The mean neutral pion
energy as a function of opening angle (bottom)

reduce Monte Carlo simulation time, and turn event genera-
tion into an on-demand task.

In order to create realistic calorimetric shower data, we
train a generative adversarial network (GAN) on the GEN
dataset defined in Sect. 2. Due to training time constraints, we
have restricted the current study to ECAL showers for incom-
ing electrons with energy between 100 and 200 GeV. How-
ever, we have performed initial studies on expanded energies
from 2 to 500 GeV, and will extend on these results in future
publications. The task is to create a model that can take an
electron’s energy and flight direction as inputs and generate
a full ECAL shower, represented as a 51 × 51 × 25 array of
energy deposits along the trajectory of the incoming electron.
The advantage of using a GAN is that it’s much faster and
less computationally intense than traditional Monte Carlo
simulation, and the results may more accurately reproduce
physical behavior if the GAN is trained on real data.
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3.2 Reconstruction

At particle-collider experiments, data consist of sparse sets
of hits recorded by various detector components at beam col-
lision points. A typical analysis begins with a complex recon-
struction algorithm that processes these raw data to produce
a set of physics objects (jets, electrons, muons, etc.), which
are then used further down the line. Traditionally, the recon-
struction software consists of a set of rule-based algorithms
that are designed based on physics knowledge of the specific
problem at hand (e.g., the bending of particles in a solenoidal
magnetic field, due to the Lorentz force). Over the past decade
or so, machine-learning algorithms have been integrated into
certain aspects of particle reconstruction. One example is the
identification of electrons and photons via a BDT, taking as
input for each event a set of high-level features quantifying
the shape of the energy cluster deposited in a calorimeter
shower [35].

Event reconstruction is a challenging task, and is a
crucial part of any particle physics analysis. In order to
improve reconstruction performance beyond conventional
techniques, one could imagine using deep learning to extract
information directly from calorimetric cell-level data, with-
out first computing high-level features. Following this idea,
we investigate here an end-to-end ML model based on com-
puter vision techniques, treating the calorimeter input as a 3D
image. Using a combined architecture, the model is designed
to simultaneously perform particle identification and energy
measurement.

When dealing with particle reconstruction, one is inter-
ested in identifying a particle’s type (electron, photon, etc.)
and its momentum. An end-to-end application aiming to pro-
vide a full reconstruction of a given particle should thus
be able to simultaneously solve a multi-class classification
problem and a regression problem. In our study, we filter
the REC dataset to make the classification task non-trivial,
as described in Sect. 2. Since differentiating charged and
uncharged particles is trivial, we judged the classification of
our model on its ability to distinguish electrons from charged
pions, and photons from neutral pions.

Our reconstruction networks were thus given the follow-
ing three tasks:

– Identify electrons over a background of charged
pions: Charged pions are the most abundant particles
produced in LHC collisions. They are typically located in
jets, which are collimated sprays resulting from the show-
ering and hadronization processes of quarks and gluons.
On the other hand, electrons are rarely produced, and
their presence is typically an indication of an interesting
event occurring in the collision. A good electron identifi-
cation algorithm should aim at misidentifying at most 1 in
10,000 pions as an electron. In order to increase the diffi-

culty of our ML problem and to approach the kind of task
that one faces at the LHC, we apply the HCAL/ECAL
energy ratio cut as described in Sect. 2.

– Identify photons over a background of neutral pions:
At particle colliders, the main background to photon iden-
tification comes from neutral pions decaying to photon
pairs. In general, a generic γ /π0 classification task is rel-
atively easy, since the presence of two nearby clusters is
a clear signature of π0. Thus, we focus on events with
high π0 momentum, using the opening angle selection
described in Sect. 2.

– Energy measurement: Once the particle is identified, it
is very important to accurately determine its energy (and
by extension, its momentum), since this allows physi-
cists to calculate all the relevant high-level features, such
as the mass of new particles that generated the detected
particles when decaying. In this study, we address this
problem on the same dataset used for the classification
tasks, restricting the focus to range of energies from 2 to
500 GeV, and at various incident angles (η). Regression
results using various neural network architectures were
compared with results from linear regression, compar-
ing both resolution and bias. The models we consider are
designed to return the full particle momentum (energy,
η, and φ) of the incoming particle momentum. At this
stage, this functionality is not fully exploited and only
the energy determination is considered. An extension of
our work to include the determination of η and φ could
be the matter of future studies.

4 Generative model

Generative Adversarial Networks are composed of two net-
works, a discriminator and a generator. Our model, 3DGAN,
implements an architecture inspired by the auxiliary classi-
fier GAN [36]. The generator takes as input a specific par-
ticle type, flight direction, and energy, and generates the 3D
image of an energy deposit using an auxiliary input vector
of random quantities (latent vector). The output has the same
format as the 3D array of ECAL hits in the GEN sample
(see Sect. 2). The discriminator network receives as input an
ECAL 3D array and classifies it as real (coming from the
GEANT4-generated GEN dataset) or fake (produced by the
generator).

Our initial 3DGAN prototype [25] successfully simulated
detector outputs for electrons which were orthogonally inci-
dent to the calorimeter surface. In addition, the discriminator
performed an auxiliary regression task on the input particle
energy. This task was used to cross check the quality of the
generation process.

In this study, we consider a more complex dataset, e.g.,
due to the variable incident angle of the incoming electron
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Fig. 6 3DGAN generator and discriminator network architectures

on the inner ECAL surface. To monitor this additional com-
plexity, we include more components in the loss function,
related to the regression of the particle direction and the pixel
intensity distribution (energy deposition in cells). This will
be described in more detail below.

Before training our GAN, we pre-processed the GEN
dataset by replacing each cell energy content E with Eα ,
where α < 1 is a fixed hyperparameter. This pre-processing
compensates for the large energy range (about 7 orders of
magnitude) covered by individual cell energies, and miti-
gates some performance degradation we previously observed
at low energies. After testing for different values of α, we
observed optimal performance for α = 0.85.

4.1 GAN architecture

The 3DGAN architecture is based on 3-dimensional convo-
lutional layers [37], as shown in Fig. 6. The generator takes
as input a vector with a desired particle energy and angle, and
concatenates a latent vector of 254 normally distributed ran-
dom numbers. This goes through a set of alternating upsam-
pling and convolutional layers. The first convolution layer
has 64 filters with 6 × 6 × 8 kernels. The next two convolu-
tional layers have 6 filters of 5×8×8 and 3×5×8 kernels,
respectively. The last convolutional layer has a single filter
with a 2×2×2 kernel. The first three layers are activated by
leaky ReLU functions [38], while ReLU functions [39] are
used for the last layer. Batch normalization [40] and upscal-
ing layers were added after the first and second convolutional
layers.

The discriminator takes as input a 51 × 51 × 25 array
and consists of four 3D convolutional layers. The first layer
has 16 filters with 5 × 6 × 6 kernels. The second, third, and
fourth convolutional layers each have 8 filters with 5 × 6 × 6
kernels. There are leaky ReLU activation functions in each
convolutional layer. Batch normalization and dropout [41]
layers are added after the second, third, and fourth convo-
lutional layers. The output of the final convolution layer is
flattened and connected to two output nodes: a classification
node, activated by a sigmoid and returning the probability
of a given input to be true or fake; and a regression node,
activated by a linear function and returning the input particle
energy. The 3DGAN model is implemented in KERAS [26]
and Tensorflow [27].

Aside from the architecture shown here, we also tested
the use of a Wasserstein GAN [42], but found no practical
advantage in terms of computational speed-up or training
performance.

4.2 Training and results

The 3DGAN loss function

LTot = WGLG + WPLP + WALA + WELE + WBLB (1)

is built as a weighted sum of several terms: a binary cross
entropy (LG) function of the real/fake probability returned
by the discriminator, mean absolute percentage error terms
(MAPE) related to the regression of the primary-particle
energy (LP ) , the total deposited energy (LE ) and the binned
pixel intensity distribution (LB), and a mean absolute error
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Fig. 7 GEN sample: electrons with different primary particle energies
and angles

(MAE) for the incident angles measurement (LA). The binary
cross entropy term, percentage errors and absolute error are
weighted by 3.0, 0.1 and 25 respectively. The weights W are
tuned to balance the relative importance of each contribution.
The predicted energy and incident angle provide a feedback
on the conditioning of the image. The binned pixel inten-
sity distribution loss compares the counts in different bins of
pixel intensities.

The model training is done using the RMSprop [43] opti-
miser. We alternately train the discriminator on a batch of
real images and a batch of generated images, applying label
switching. We then train the generator while freezing the
discriminator weights.

Figure 7 shows a few events from the GEN data set. The
events were selected to cover both ends of the primary-
particle energy and angle spectrum. Figure 8 presents the
corresponding generated events with the same primary parti-
cle energy and angle as the GEN events in Fig. 7. Initial visual
inspection shows no obvious difference between the original
and GAN generated images. A detailed validation based on
several energy-shape related features confirms these results.
We discuss a few examples below.

The top row in Fig. 9 shows the ratio between the total
energy deposited in the calorimeter and the primary parti-
cle energy as a function of the primary particle energy (we
refer to it as “sampling fraction”) for different angle values.
3DGAN can nicely reproduce the expected behaviour over
the whole energy spectrum. The second row in Fig. 9 shows
the number of hits above a 3 × 10−4 MeV threshold: the
GAN prediction is slightly broader than the Monte Carlo,
consistently with the slight overestimation on the shower
shapes distributions (10). Figure 9 also shows the calorimeter
shower shapes projected onto the x, y, and z axes. Here, z is
the axis pointing into the calorimeter, perpendicular to its sur-

Fig. 8 GAN generated electrons with primary energies and angles cor-
responding to the electrons showed in Fig. 7

Fig. 9 GEANT4 vs. GAN comparison for sampling fraction, number
of hits and shower shapes along x, y, z axis for different angle bins with
100–200 GeV primary particle energies

face. The agreement is very good, and in particular 3DGAN
is able to mimic the way the energy distributions changes
with incident angle. Figure 10 shows some additional fea-
tures aimed at defining the shape of the deposited energy
distribution. In particular the second moments along the x,
y and z axes are shown on the first column, measuring the
width of the deposited energy distribution along those axes.
The second column shows the way the energy is deposited
along the depth of the calorimeter, by splitting the calorimeter
in three parts along the longitudinal direction and measuring
the ratios between the energy deposited in each third and the
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Fig. 10 GEANT4 vs. GAN comparison for shower width (second
moment) in x, y, z, ratio of energy deposited in parts along direction of
particle traversal to total energy and shower shapes along x, y, z axis in
log scale for 100–200 GeV primary particle energies and 60◦ − 120◦θ

total deposited energy. Finally, the third column in Fig. 10
highlights the tails of the “energy shapes”. It can be seen
that, while the core of the distribution is perfectly described
by 3DGAN, the network tends to overestimate the amount
of energy deposited at the edges of the volume. It should be
noted however that energy depositions in those cells are very
sparse.

The 3DGAN training runs in around 1.5 h per epoch on a
single NVIDIA GeForce GTX 1080 card for 60 epochs. The
simulation time on a Intel Xeon 8180 is about 13 ms/particle
and it goes down to about 4 ms/particle on a NVIDIA
GeForce GTX 1080. For comparison GEANT4 simulation
takes about 17 s per particle on a Intel Xeon 8180 (currently
it is not possible to run a full GEANT4-based simulation
on GPUs). Thus our GAN represents a potential simulation
speedup of over 4000 times for this specific aspect of the
event simulation.

When given as input to a particle regression and recon-
struction model (see Sect. 5), this dataset produces the same
output as the original GEANT4 sample, as described in
Appendix B.

5 End-to-end particle reconstruction

This section describes the use of a deep neural network to
accomplish an end-to-end particle reconstruction task. The
model consists of a neural architecture which simultaneously
performs both particle classification and energy regression.
This combined network is trained using the ECAL and HCAL
cell arrays as well as the total ECAL energy and total HCAL
energy as inputs. The training loss function is written as the

sum of a binary cross entropy for particle identification and a
mean-square error loss for energy regression. Through exper-
imentation, we found that multiplying the energy component
of the loss function by a factor of 200 gave the best results,
as it was easier to quickly achieve low loss values for energy
regression.

We compare three different architectures for our recon-
struction model, each trained using calorimeter cell-level
information as inputs:

– A dense (i.e, fully connected) neural network (DNN).
– A 3D convolutional network (CNN).
– A network based on GoogLeNet (GN) [44], using layers

of inception modules.

In order to compare the model performance to a typi-
cal state-of-the-art particle reconstruction algorithm, we also
consider the following alternatives:

– A feature-based BDT (see Appendix C) for the classifi-
cation task.

– A linear regression for the regression task.
– A BDT for the regression task (for more info on regres-

sion baselines see Appendix D).

In a previous study [25], we compared the classification
accuracy obtained with a neural model taking as input the
energy cells, a feature-based neural models, and a feature-
based BDTs. In that context, we demonstrated that feature-
based BDTs and neural networks perform equally well, and
are both equally capable of correctly classify particles from a
small set of calculated features. We do not compare feature-
based neural networks in this paper, and use feature-based
BDTs to represent the current state-of-the-art classification
algorithms.

5.1 Deep network models

The three ML models take as input the ECAL and HCAL
3D energy arrays of the REC dataset (see Sect. 2), together
with the total energies recorded in ECAL and in HCAL (i.e.,
the sum of the values stored in the 3D arrays), as well as
the estimated φ and η angles of the incoming particle, cal-
culated using the collision origin and the barycenter of the
event. The architecture of each model is defined with a num-
ber of floating parameters (e.g. number of hidden layers),
which are refined through a hyperparameter optimization, as
described in Sect. 5.2. Each model returns three numbers.
After applying a softmax activation, two of these elements
are interpreted as the classification probabilities of the cur-
rent two-class problem. The third output is interpreted as the
energy of the particle.

Here we describe in detail the three model architectures:
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– In the DNN model we first flatten our ECAL and HCAL
inputs into 1D arrays. We then concatenate these array
along with the total ECAL energy, total HCAL energy,
estimated φ, and estimated η, for an array of total size
25 × 25 × 25 + 11 × 11 × 60 + 4 = 22889 inputs. This
array is fed as input to the first layer of the DNN, fol-
lowed by a number of hidden layers each followed by a
ReLU activation function and a dropout layer. The num-
ber of neurons per hidden layer and the dropout proba-
bility are identical for each relevant layer. The number of
hidden layers, number of hidden neurons per layer, and
dropout rate are hyperparameters, tuned as described in
the next session. Finally, we take the output from the last
dropout layer, append the total energies and estimated
angles again, and feed the concatenated array into a final
hidden layer, which results in a three-element output.

– The CNN architecture consists of one 3D convolutional
layer for each of the ECAL and HCAL inputs, each fol-
lowed by a ReLU activation function and a max pooling
layer of kernel size 2 × 2 × 2. The number of filters
and the kernel size in the ECAL convolutional layer are
treated as optimized hyperparameter (see next session).
The HCAL layer is fixed at 3 filters with a kernel size of
2 × 2 × 6. The two outputs are then flattened and con-
catenated along with the total ECAL and HCAL ener-
gies, as well as the estimated φ and η coordinates of the
incoming particle. The resulting 1D array is passed to a
sequence of dense layers each followed by a ReLU acti-
vation function and dropout layer, as in the DNN model.
The number of hidden layers and the number of neurons
on each layer are considered as hyperparameters to be
optimized. The output layer consists of three numbers,
as for the DNN model. We found that adding additional
convolutional layers to this model beyond the first had
little impact on performance. This may be because a sin-
gle layer is already able to capture important information
about localized shower structure, and reduces the dimen-
sionality of the event enough where a densely connected
net is able to do the rest.

– The third model uses elements of the GoogLeNet [44]
architecture. This network processes the ECAL input
array with a 3D convolutional layer with 192 filters, a
kernel size of 3 in all directions, and a stride size of 1. The
result is batch-normalized and sent through a ReLU acti-
vation function. This is followed by a series of inception
and MaxPool [37] layers of various sizes, with the full
architecture described in Appendix E. The output of this
sequence is concatenated to the total ECAL energy, the
total HCAL energy, the estimated φ and η coordinates,
and passed to a series of dense layers like in the DNN
architecture, to return the final three outputs. The num-
ber of neurons in the final dense hidden layer is the only
architecture-related hyperparameter for the GN model.

Due to practical limitations imposed by memory con-
straints, this model does not take the HCAL 3D array as
input. This limitation has a small impact on the model
performance, since the ECAL array carries the majority
of the relevant information for the problems at hand (see
Appendix F).

On all models, the regression task is facilitated by using
skip connections to directly append the input total ECAL
and HCAL energies to the last layer. The impact of this
architecture choice on regression performance is described in
Appendix G. In addition to using total energies, we also tested
the possibility of using 2D projections of the input energy
arrays, summing along the z dimension (detector depth). This
choice resulted in worse performance (see Appendix H) and
was discarded.

5.2 Hyperparameter scans

In order to determine the best architectures for the end-to-
end reconstruction models, we scanned over a hyperparame-
ter space for each architecture. Learning rate and decay rate
were additional hyperparameters for each architecture. For
simplicity, we used classification accuracy for the γ vs. π0

problem as a metric to determine the overall best hyperpa-
rameter set for each architecture. This is because a model
optimized for this task was found to generate good results
for the other three tasks as well, and because γ vs. π0 clas-
sification was found to be the most difficult problem.

Training was performed at each hyperparameter point ten
times, in order to obtain an estimate of the uncertainty asso-
ciated with each quoted performance value. For each scan
point, the DNN and CNN architectures trained on 400,000
events, using another sample of 400,000 events for testing.
DNN and CNN scan points trained for three epochs each, tak-
ing about seven hours each. GN trained on 100,000 events
and tested on another 100,000. Due to a higher training time,
each GN scan point only trained for a single epoch, taking
about twenty hours.

For CNN and DNN training, we used batches of 1000
events when training. However, due to GPU memory limita-
tions, we could not do the same with GN. Instead, we split
each batch into 100 minibatches of ten events each. A single
minibatch was loaded on the GPU at a time, and gradients
were added up after back-propagation. We waited until after
each batch was fully calculated to update network weights
using the combined gradients.

The best settings were found to be as follows:

– For DNN, 4 hidden layers, 512 neurons per hidden layer,
a learning rate of 0.0002, decay rate of 0, and a dropout
probability of 0.04.
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Fig. 11 Selected hyperparameter scan results for DNN (top), CNN (center), and the GoogLeNet-based architecture (bottom). In each figure, the
classification accuracy is displayed as a function of the hyperparameters reported on the two axes

– For CNN, 4 hidden layers and 512 neurons per hidden
layer, a learning rate of 0.0004, decay rate of 0, a dropout
probability of 0.12, 6 ECAL filters with a kernel size of
6 × 6 × 6.

– For GN, 1024 neurons in the hidden layer, 0.0001 learn-
ing rate, and 0.01 decay rate.

The DNN, CNN, and GN-based models had 9823774
(∼10M), 3003692 (∼3M), and 14956286 (∼15M) trainable
parameters respectively after the hyperparameter scans.

Selected hyperparameter scan slices are shown in Fig. 11.
These 2D scans were obtained setting all values besides the
two under consideration (i.e., those on the axes) to be fixed
at default values: a dropout rate of 0.08, a learning rate of
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Fig. 12 Training curves for best DNN (top), CNN (middle), and
GoogLeNet (bottom) hyperparameters, trained on variable-angle γ /π0

samples. We see that the DNN over-trains quickly and saturates at a
relatively low accuracy, while the CNN takes longer to over-train and
reaches a higher accuracy, and GoogLeNet performs best of all. Each
400 batches corresponds to a single epoch

Fig. 13 ROC curve comparisons for γ vs. π0 (top) and e vs. π± (bot-
tom) classification using DNN, CNN, BDT, and GoogLeNet (GN).
Samples include particle energies from 2 to 500 GeV, and an inclu-
sive η range

0.0004, a decay rate of 0.04, three dense layers for CNN and
DNN, and 512 neurons per hidden layer. For GN, the default
number of ECAL filters was 3, with a kernel size of 4.

After performing the hyperparameter scan, we trained
each architecture using its optimal hyperparameters for a
greater number of epochs. The evolution of the training and
validation accuracy as a function of the batch number for
these extended trainings is shown in Fig. 12.

5.3 Results

We apply the best architectures described in the previous
section separately to our electron vs. charged pion and photon
vs. neutral pion reconstruction problems.
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Fig. 14 Classification accuracy of best performing network for γ vs. π0 (top) and e vs. π± (bottom), in bins of energy (left) and η (right)

5.3.1 Classification performance

Figure 13 shows ROC curve comparisons for the two clas-
sification tasks. As expected, the electron vs. charged pion
classification problem was found to be a simple task, result-
ing in an area under the curve (AUC) close to 100%. For
a baseline comparison, the curve obtained for a BDT (see
Appendix C) is also shown. This BDT was optimized using
the scikit-optimize package [45], and was trained using high-
level features computed from the raw 3D arrays. It repre-
sents the performance of current (non-deep-learning) ML
approaches on these problems.

Our deep learning models outperform the BDT, with the
GN reaching the best classification performance on both
problems. Figure 14 shows the best-model performance as
a function of the energy and η of the incoming particle,
for the photon vs. neutral pion and the electron vs. charged
pion problems. These figures show that classification accu-
racy is maintained over a wide range of particle energies
and angles. The models appear to perform a bit worse at
higher energies for the photon vs. neutral pion case, due to the
fact that the pion to two photon decay becomes increasingly
collimated at higher energies. Similarly, the performance is

slightly worse when particles impact the detector perpen-
dicularly than when they enter at a wide angle, because
the shower cross section on the calorimeter inner surface
is reduced at 90◦, making it harder to distinguish shower
features.

5.3.2 Regression performance

Figure 15 shows the energy regression performance for
each particle type, obtained from the end-to-end reconstruc-
tion architectures. In this case, we compare against a linear
regression algorithm and a BDT (labelled as “XGBoost”)
representing the current state-of-the-art, as described in
Appendix D.

Since the energy regression problem is not as complex
as the classification problem, the three architectures (DNN,
CNN, GN) perform fairly similarly, with the exception of
the GN performance on π±, which is a bit worse. The per-
formance is overall worse for π±, both with the networks
and with the benchmark baselines (linear regression and
XGBoost).

A closer look at the performance boost given by each net-
work can be obtained examining the case of particles enter-
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Fig. 15 Regression bias (left) and resolution (right) as a function of
true energy for energy predictions on the REC dataset with variable-
angle incident angle. From top to bottom: electrons, charged pions,

photons, and neutral pions. Algorithms compared are linear regression,
XGBoost (BDT), DNN, CNN, and GoogLeNet (GN)
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Fig. 16 Example of the resampling procedure used to emulate CLIC
data on a different detector geometry (the example shown here is simply
a larger grid). First, we extrapolate hit information from one geometry
to another (top). Next, we extrapolate back to the original geometry
(bottom). This allows us to emulate the rougher granularity of the second
geometry, while keeping data array sizes constant and enabling us to
use the models we have already developed for the CLIC dataset. Note
that some information is lost at the edges

ing the calorimeter inner surface at 90◦, i.e. with η = 0. 1

In this case, the problem is more constrained and both the
networks and the baseline algorithms are able to perform
accurately. The results for fixed angle samples are shown in
Appendix I.

We have also tested the result of training on one class
of particle and performing regression on another. These
results can be seen in Appendix J. In addition, we have
looked at the effect on energy regression of increasing
the ECAL and HCAL window sizes. This can be seen in
Appendix K.

5.4 Resampling to ATLAS and CMS geometries

In addition to the results presented so far, we show in this
section how the end-to-end reconstruction would perform on
calorimeters with granularity and geometry similar to those
of the ATLAS and CMS calorimeters. Since the REC dataset
(see Sect. 2) is generated using the geometry of the pro-
posed LCD detector, it has a much higher granularity than
the current-generation ATLAS and CMS detectors. To visu-
alize how our calorimeter data would look with a coarser
detector, we linearly extrapolate the contents of each event
to a different calorimeter geometry, using a process we have
termed “resampling”. To keep the resampling procedure sim-
ple, we discard the HCAL information and consider only the
ECAL 3D array.

1 For these additional fixed-angle regression plots, we did not train
GoogLeNet architectures.

Fig. 17 ROC curve comparisons for variable-angle γ /π0 classifica-
tion on data resampled to ATLAS-like (top) and CMS-like (bottom)
geometries. Algorithms compared are DNN, CNN, GoogLeNet (GN),
and BDT

A not-to-scale example of the full procedure is shown in
Fig. 16. In this example, we resample the input to a regu-
lar square grid with lower granularity than the input data.
The operation is simplified in the figure, in order to make
the explanation easy to visualize. The actual ATLAS and
CMS calorimeter geometries are more complex than a regu-
lar array, as described in Table 1.

In the resampling process, we first extrapolate each energy
value from the grid of CLIC cells to a different geometry. To
do so, we scale the content of each CLIC cell to the frac-
tion of overlap area between the CLIC cell and the cell of
the target geometry. When computing the overlap fraction,
we take into account the fact that different materials have
different properties (Moliere radius, interaction length, and
radiation length). For instance, CLIC is more fine-grained
than CMS or ATLAS detectors, but the Moliere radius of the
CLIC ECAL is much smaller than in either of those detec-
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Table 1 Detailed description of
the three detector geometries
used in this study: the baseline
CLIC ECAL [46] and the
ATLAS [12] and CMS [13]
ECALs

Parameter CLIC ATLAS CMS
1st layer 2nd layer 3rd layer

Δη 0.003 0.025/8 0.025 0.5 0.0175

Δφ 0.003 0.1 0.025 0.025 0.0175

Radiation length (cm) 0.3504 14 14 14 0.8903

Moliere radios (cm) 0.9327 9.043 9.043 9.043 1.959

Fig. 18 Bias (left) and resolution (right) as a function of true energy for energy predictions for photons, on variable-angle samples resampled to
ATLAS-like (top) and CMS-like (bottom) geometries

tors. This difference determines an offset in the fine binning.
Thus, when applying our resampling procedure we normal-
ize the cell size by the detector properties. The Moliere radius
is used for x and y re-binning, and radiation length is used for
the z direction. At this point we have a good approximation
for how the event would look in a calorimeter with the target
geometry.

To complete the resampling process, we invert the proce-
dure to go back to our original high-granularity geometry.
This last step allows us to keep using the model architec-
tures that we have already optimized. It adds no additional
information that would not be present in the low-granularity

geometry. This up-sampling also allows us to deal with the
irregular geometry of the ATLAS calorimeter by turning it
into a neat grid. With no up-sampling, it would not be pos-
sible to apply the CNN and GN models. This procedure
was validated by comparing total energies before and after
resampling, and by visually comparing resampled grids. The
energy matches for events were not exact, due to losses at
the edge of the resampling grid, and the shower resolutions
became much less granular after resampling, but overall the
energies and distributions matched before and after the pro-
cedure was applied.
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Fig. 19 Bias (left) and resolution (right) as a function of true energy for energy predictions for π0, on variable-angle samples resampled to
ATLAS-like (top) and CMS-like (bottom) geometries

The resampling procedure comes with a substantial sim-
plification of the underlying physics process. First of all, the
information at the edge of the grid is imperfectly translated
during the resampling process, leading to worse performance
than what could theoretically be achieved in the actual CMS
and ATLAS detectors. Also, this simple geometrical rescal-
ing doesn’t capture many other detector characteristics. For
example, the CMS ECAL detector has no depth information,
but being homogeneous it provides a very precise energy
measurement. Our resampling method only captures geomet-
ric effects, and would not be able to model the improvement
in energy resolution. Furthermore, we are unable to include
second-order effects such as gaps in the detector geometries.
Despite these limitations, one can still extract useful infor-
mation from the resampled datasets, comparing the classifi-
cation and regression performances of the end-to-end models
defined in Sects. 5.3.1 and 5.3.2 on different detector geome-
tries.

Comparisons of classification ROC curves between net-
work architectures and our BDT baseline are shown in Fig. 17
for ATLAS-like and CMS-like geometries. Here we can see
that the previously observed performance ranking still holds

true. The GN model performs best, followed by the CNN,
then the DNN. All three networks outperform the BDT base-
line. The effect is less pronounced after the CMS-like resam-
pling, due to the low granularity and the single detector layer
in the z direction.

Regression results are shown in Figs. 18 and 19 , for pho-
tons and neutral pions (we did not train electrons or charged
pions for this comparison). Here we have included the regres-
sion baselines, DNN networks, and CNN networks, but not
GN (which we did not train on resampled data). The results
obtained for the ATLAS-like resampling match those on the
REC dataset, with DNN and CNN matching the BDT out-
come in terms of bias and surpassing it in resolution. With the
CMS-like resampling the neural networks match but do not
improves over the BDT energy regression resolution. Once
again, this is due to the low spatial resolution in the CMS-like
geometry, especially due to the lack of z segmentation. We
are unable to model the improved energy resolution from the
actual CMS detector, so these energy regression results are
based on geometry only.
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6 Conclusion and future work

This paper shows how deep learning techniques could outper-
form traditional and resource-consuming techniques in tasks
typical of physics experiments at particle colliders, such as
particle shower simulation and reconstruction in a calorime-
ter. We consider several model architectures, notably 3D con-
volutional neural networks, and we show competitive per-
formance, matched to short execution time. In addition, this
strategy comes with a GPU-friendly computing solution and
would fit the current trends in particle physics towards het-
erogeneous computing platforms.

We confirm findings from previous studies of this kind. On
the other hand, we do so utilizing a fully accurate detector
simulation, based on a complete GEANT4 simulation of a
full particle detector, including several detector components,
magnetic field, etc. In addition, we design the network so
that different tasks are performed by a single architecture,
optimized through an hyperparameter scan.

We look forward to the development of similar solutions
for current and future particle detectors, for which this kind
of end-to-end solution could be extremely helpful.
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A Calorimeter window size

The optimal window size to store for ECAL and HCAL is an
important issue, since this impacts not only sample storage
size, but also training speed and the maximum batch sizes
which we could feed to our GPUs.

From examinations of our generated samples, we found
that an ECAL window of 25×25×25 and an HCAL window
of 11 × 11 × 60 looked reasonable. To test this hypothesis,
we performed training using the samples and classification
architectures described in our previous studies [25], but with
different-sized input samples. The architecture was altered
to accommodate larger windows simply by increasing the
number of neurons on the input layer. Results trained using
an ECAL window of size 25 × 25 × 25 and 51 × 51 × 25
are shown in Fig. 20. From the similarity of these curves,
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Fig. 20 Training history for different choices of the input 3D array zise: Accuracy (top) and loss (bottom) as a function of the training batch for
photon/neutral pion classification, using a 25 × 25 × 25 (left) and 51 × 51 × 25 (right) ECAL window size

we have decided that an expanded ECAL window size does
not contain much additional useful information, and is thus
not necessary for our problems.

B End-to-end reconstruction of the ECAL showers
produced by the 3DGAN

In order to further validate the GAN image quality we run
the 3D CNN reconstruction network described in Sect. 5 on
the 3DGAN output and compare the response to the results
obtained by running the tool on Monte Carlo data. Figure 21
shows a comparison of the energy resolution obtained on
GAN and GEANT4 images. The predicted energy shows a
reasonable agreement for the mean while the resolution for
GAN images seems to be broader than for GEANT4 images.
The classification accuracy presented in Fig. 22 is very high
(close to 100%) for both GAN and GEANT4 events.

Fig. 21 Predicted vs. true particle energy for GAN and GEANT
images. Predictions were made using the reconstruction tool described
in Sect. 5. This plot was made using 2213 electron events of each type
(GAN and GEANT)

123



688 Page 20 of 31 Eur. Phys. J. C (2020) 80 :688

Fig. 22 Predicted particle type (electron vs. charge pions) for GAN
and GEANT images. There were 2213 electron events for each type

C Classification baseline

Boosted decision trees were chosen as the baseline of com-
parison for our classification task, due to their popularity
with HEP experiments. Decision trees are effective in pro-
cessing high-level features, performing complex and opti-
mized cut-based classification in the multi-dimensional space
of the input quantities. Boosted trees are further able to
increase classification accuracy and stability by aggregating
the results from multiple trees.

The features we use for our baseline BDT classification
model, introduced in Ref. [25], are commonly used to char-
acterize particle showers. One additional feature we added
is R9, which measures the largest fraction of energy con-
tained within a 3 × 3 window in a (x, y) projection of the
shower. This quantity provides a measure of the “concentra-
tion” of a shower within a small region. For values near 1,
the shower is highly collimated within a single region, as in
electromagnetic showers. Smaller values are typical of more
spread out showers, as for hadronic and multi-prong show-
ers. A comparison of R9 values between photons and neutral
pions can be seen in Fig. 23, with examples of events with
different R9 values being shown in Fig. 24. After training,
the discriminating power of various features can be seen in
Fig. 25.

Fig. 23 Comparison of R9 distributions between photon and neutral
pion events. Photons tend to have more centralized energy deposition

Fig. 24 (Top) (x, y) projection of an event with R9 = 0.42. (Bottom)
(x, y) projection of an event with R9 = 0.75
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Fig. 25 Feature importances for inputs used in BDT training. Values
shown are gini importances [47]

D Energy regression baseline

We use linear regression with ECAL and HCAL total energy
as one of our baseline methods to compare to machine learn-
ing results (seen in Eq. 2).

E = a · EECAL + b · EHCAL + c (2)

Updated results for each of the particle types are shown
in Fig. 26. Each point in the plot represents the mean bias
or resolution within an energy bin. In all the resolution plots
shown, the points have been fitted with the expected resolu-
tion function of Eq. 3, and the fitted function is plotted as a
line.

σ(ΔE)

Etrue
= a√

Etrue
⊕ b ⊕ c

Etrue
(3)

It is already typical for basic ML methods like BDTs to be
used for energy regression in the LHC experiments, in cases
where the best resolution is critical (e.g., to study H →
γ γ decays). We tried a BDT with a few summary features
as input to form an improved baseline for comparing more
advanced ML techniques. The XGBoost package was used
in python, with the following hyperparameters.

– maximum 1000 iterations, with early stopping if loss
doesn’t improve on the test set in 10 iterations

– maximum tree depth of 3
– minimum child weight of 1 (default)
– learning rate η = 0.3 (default)

Varying the hyperparameters led to either worse results or
negligible changes.

Fig. 26 Bias (top) and resolution (bottom) as a function of true energy
for linear regression predictions of particle energy for the different par-
ticle types, trained on fixed-angle samples

The following features gave good performance for elec-
trons, photons, and π0:

– total ECAL energy
– total HCAL energy
– mean z coordinate of the ECAL shower

Adding the mean z coordinate to the ECAL and HCAL
total energies improved the energy resolution for all energy
values, but in particular at high energy. This is shown in
Fig. 27 for electrons.

For π±, adding the following variables gave an improved
result:

– RMS in the x direction of the ECAL shower
– RMS in the (x, y) plane of the HCAL shower
– mean z coordinate of the HCAL shower
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Fig. 27 Bias (top) and resolution (bottom) as a function of true energy
for the XGBoost regression predictions of particle energy, using differ-
ent input features for electrons

In addition, for π±, around 0.5% of events were found to
have almost no reconstructed energy in the selected calorime-
ter window. Including these events adversely affected the
algorithm training, so they were removed for all the results
shown in this and the following sections. Specifically, the
raw ECAL+HCAL energy is required to be at least 30% of
the true generated energy.

The results of the XGBoost baseline are shown in Fig. 28,
where they are compared to linear regression results. The per-
formance of XGBoost on electrons, photons, and π0 is simi-
lar, achieving relative resolutions of about 6–8% at the lowest
energies and 1.0–1.1% at the highest energies. Compared to
the baseline linear regression, the resolution improves by a
factor of about two at low energy and three to four at high
energy. For π±, the resolution after XGBoost regression
ranges between 20 and 5.4%, with a relative improvement
over linear regression of up to 40% at high energy.

Fig. 28 Bias (top) and resolution (bottom) as a function of true energy
for linear regression and XGBoost predictions of particle energy for the
different particle types

One drawback of using a BDT algorithm in a real-world
setting is that it can not be used for energy values outside
the range of the training set. That is, most tree algorithms do
not perform extrapolation. This is an inherent disadvantage
of the BDT when compared with the neural networks we
present in this paper.

E GoogLeNet model architecture details

In our GoogLeNet architecture, we use inception modules.
In these modules, inputs go through four separate branches
and are then concatenated together. For an inception layer
denoted as Inception (A, B, C, D, E, F, G) the branches are
defined as follows:
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– Branch 1: A simple 1×1×1 convolution, taking A input
channels to B output channels. This is followed by a batch
normalization and a ReLU activation function.

– Branch 2: A 1×1×1 convolution followed by a 3×3×3
convolution. The first convolution takes A input channels
to C output channels, followed by batch normalization
and ReLU. This then goes to the next convolution layer,
which outputs D channels using a kernel of size 3×3×3.
This is again followed by batch normalization and ReLU.

– Branch 3: A 1×1×1 convolution followed by a 5×5×5
convolution. The details are the same as for the other
branches, but the first convolution takes A input channels
to E output channels, and the next convolution outputs F
channels.

– Branch 4: A max pool of kernel size 3×3×3 is followed
by a convolution of kernel size 1 × 1 × 1 that takes A
input channels to G output channels. This is followed
once again by batch normalization and ReLU.

Here are full details for each layer of the GoogLeNet-
based architecture:

– Apply instance normalization to ECAL input.
– Convolution with 3D kernel of size 3, going from 1 input

channel to 192 channels, with a padding of 1. This is
followed by batch normalization and ReLU.

– Inception (192, 64, 96, 128, 16, 32, 32)
– Inception (256, 128, 128, 192, 32, 96, 64)
– Max pooling with a 3D kernel of size 3, a stride of 2, and

padding of 1.
– Inception (480, 192, 96, 208, 16, 48, 64)
– Inception (512, 160, 112, 224, 24, 64, 64)
– Inception (512, 128, 128, 256, 24, 64, 64)
– Inception (512, 112, 144, 288, 32, 64, 64)
– Inception (528, 256, 160, 320, 32, 128, 128)
– Max pooling with a 3D kernel of size 3, a stride of 2, and

padding of 1.
– Inception (832, 256, 160, 320, 32, 128, 128)
– Inception (832, 384, 192, 384, 48, 128, 128)
– Average pooling with a 3D kernel of size 7 and a stride

of 1.
– The output array is flattened and concatenated with input

φ, η, total ECAL energy, and total HCAL energy.
– A densely connected layer with 1024 outputs, followed

by ReLU.
– The output array is once again concatenated with the

same input values.
– A final densely connected layer outputs 5 values, as in

the architectures of the other two models.

The full architecture is shown in Fig. 29.

Fig. 29 GoogLeNet-based architecture (top) and component inception
architecture (bottom)

F Use of HCAL in classification

Since the GoogLeNet architecture was quite large and
required significant memory usage and computational power,
we decided to investigate the possibility of leaving out HCAL
cell-level information, since most of the particle shower
occurs in the ECAL. Using our best-performing DNN archi-
tecture, we ran ten training sessions with HCAL information,
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Fig. 30 Accuracy and loss curves for electron/charged pion classifica-
tion, with and without HCAL cells, using best DNN architecture

and ten training sessions without HCAL. Averaged training
curves from these runs are shown in Figs. 30 and 31. These
studies demonstrated that including the HCAL caused little
to no improvement in classification accuracy. For memory
purposes, we thus kept HCAL cell-level information out of
our GN architecture. Summed HCAL energy was still fed
as an input to the combined classification-regression net, for
use in energy regression.

We must note here that though HCAL information is use-
ful for particle reconstruction in general, the reason we do
not see much use for it here is because we are mostly look-
ing at events where the majority of energy is deposited in
the ECAL. This is particularly true due to the HCAL/ECAL
ratio we have applied to electron/charged pion events.

Fig. 31 Accuracy and loss curves for photon/neutral pion classifica-
tion, with and without HCAL cells, using best DNN architecture

G Skip connections for regression

A design choice that improved convergence time, and
improved performance for the CNN, is including “skip con-
nections” for the total ECAL and HCAL energies in the net-
work. In addition to the individual cell energy values, the
total ECAL and HCAL energy values are given as inputs to
both the first dense layer and to the last output layer. The
weights for these energy values are initialized to 1, as linear
regression with coefficients near 1 is observed to reasonably
reproduce the true energy values. The impact of adding skip
connections on performance using a CNN architecture for a
fixed number of 5 training epochs is shown in Fig. 32.
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Fig. 32 Bias (top) and resolution (bottom) as a function of true energy
for CNN energy predictions for electrons, with or without skip connec-
tions in the architecture

H Training for regression using energy summed in z

For regression, we tried using only the energy summed in lay-
ers in the z direction, instead of the full array of cell energies,
as the mean z coordinate was seen to be the most important
additional feature in the XGBoost baseline. The performance
is better than the XGBoost baseline at high energies but worse
than using the full cell-level information, as shown in Fig. 33.

Fig. 33 Bias (top) and resolution (bottom) as a function of true energy
for DNN energy predictions for electrons, using as input either the
energy summed in layers of z, or the full cell information

I Energy regression at fixed angles

In Fig. 34 we show energy regression results when particles
impact the calorimeter inner surface at a fixed angle of 90◦.
All neural architectures and baseline algorithms are able to
perform with great accuracy in this regime.

Furthermore, in Fig. 35 we summarize performance
results on fixed-angle samples for all particle types with the
XGBoost baseline and the CNN model.
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Fig. 34 Regression bias (top) and resolution (bottom) as a function of true energy for energy predictions on the REC dataset with fixed incident
angle (90◦). From top to bottom: electrons, charged pions, photons, and neutral pions
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Fig. 35 Regression bias (top) and resolution (bottom) as a function of
true energy for all particles, comparing the XGBoost baseline with the
best CNN model on fixed-angle samples

J Regression performance training on a different
particle type

All the tests so far have assumed that we know exactly what
type of particle led to the reconstructed energy deposits. In a
real world situation, the particle identities are not known with
complete confidence. To see how the algorithms above would
cope with that situation, we tried training each algorithm on
an input sample of electron events, and then we used the
trained algorithm to predict the energies for other particle
types.

The results are shown in Fig. 36 for predicting photon
energies and Fig. 37 for predicting π0 energies, and are

Fig. 36 Bias (top) and resolution (bottom) as a function of true energy,
for electrons and photons. The particles used to train and test each
algorithm are given in the legend

compared to algorithms that are both trained and tested on
the same particle type. In each case, a DNN or CNN trained
on electrons is able to achieve the same resolution as a CNN
trained on photons or π0. The bias is slightly larger in some
cases.

Models trained on electrons, photons, or π0 were found
to not describe π± well at all. This is not surprising given
that π± have a hadronic shower, with a large fraction of
energy deposited in the HCAL, compared to the other parti-
cles depositing almost all of their energy in the ECAL.

We also checked whether the energy regression was differ-
ent for photons that have converted into an e+e− pair through
interaction with the detector material. These conversion pho-
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Fig. 37 Bias (top) and resolution (bottom) as a function of true energy,
for electrons and π0. The particles used to train and test each algorithm
are given in the legend

tons comprise about 9% of the photon sample. We tried
training and/or evaluating regression models separately on
converted photons compared to all photons (which are domi-
nated by unconverted). The results are shown for XGBoost in
Fig. 38 and for CNN/DNN models in Fig. 39. Worse resolu-
tion is seen in each case for converted photons below around
100 GeV, which can be attributed to the subsequent elec-

Fig. 38 Bias (top) and resolution (bottom) as a function of true energy,
for photons using XGBoost regression. We look at the photon sample
when split up by conversions

trons forming two showers instead of one in the calorimeter.
With XGBoost, the resolution remains the same for converted
photons when training on the full sample, while for CNN or
DNN, the resolution is worse below around 100 GeV. The
bias is also worse for converted photons at lower energy when
training on all photons.
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Fig. 39 Bias (top) and resolution (bottom) as a function of true energy,
for photons using CNN or DNN regression. We look at the photon
sample when split up by conversions

K Regression studies with large sample windows

The studies in this section were performed using the full
large window samples, of size 51 × 51 × 25 in ECAL and
11×11×60 in HCAL. The samples consist of approximately
800,000 events for each particle type. 2/3 of the events were
used for training and 1/3 of the events were used for testing.

The most important design choice found for the DNN/CNN
networks is the size of the window used as input. For both
DNN and CNN, to achieve the best performance for energies
above 150 GeV, a minimum (x, y) size of 25 × 25 in the
ECAL and 5 × 5 in the HCAL is needed. For energies below
150 GeV, the optimal performance is observed for a window
size of 51 × 51 in the ECAL and 11 × 11 in the HCAL.

Fig. 40 Bias (top) and resolution (bottom) as a function of true energy
for DNN energy predictions for electrons, with varying input window
sizes

This is presumably due to wider showers at low energy. The
impact of the choice of window size is shown for DNN in
Fig. 40, with the results for CNN being similar. Drawbacks
to the larger window size, however, include larger files, more
memory usage, and that training takes about 5 times longer
per epoch.

Showers for π± were observed to be wider than the other
particle types, especially at low energies, and so we compare
the effect of the calorimeter window size choice for π± in
Fig. 41. The wider window of 51 × 51 in (x, y) in the ECAL
and 11×11 in the HCAL gives better performance, especially
at the lowest energies where the resolution is improved by
a factor of about 2 over the smaller window size (25 × 25
ECAL, 5 × 5 HCAL).
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Fig. 41 Bias (top) and resolution (bottom) as a function of true energy
for energy predictions for π±, comparing calorimeter window sizes for
the CNN and DNN models

References

1. Bruce H. Denby, Neural networks and cellular automata in experi-
mental high-energy physics. Comput. Phys. Commun. 49, 429–448
(1988). https://doi.org/10.1016/0010-4655(88)90004-5

2. Carsten Peterson, Track finding with neural networks. Nucl.
Instrum. Methods. A 279, 537 (1989). https://doi.org/10.1016/
0168-9002(89)91300-4

3. P. Abreu et al., Classification of the hadronic decays of the z0 into
b and c quark pairs using a neural network. Phys. Lett. B 295,
383–395 (1992). https://doi.org/10.1016/0370-2693(92)91580-3

4. P. Baldi, K. Bauer, C. Eng, P. Sadowski, D. Whiteson, Jet substruc-
ture classification in high-energy physics with deep neural net-
works. Phys. Rev. D (2016). https://doi.org/10.1103/PhysRevD.
93.094034

5. P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, D. Whiteson, Param-
eterized neural networks for high-energy physics. Eur. Phys. J. C
(2016). https://doi.org/10.1140/epjc/s10052-016-4099-4

6. P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic particles
in high-energy physics with deep learning. Nat. Commun. (2014).
https://doi.org/10.1038/ncomms5308

7. L. M. Dery, B. Nachman, F. Rubbo, A. Schwartzman, Weakly
supervised classification in high energy physics. J. Phys. Conf.
Ser. (2018). https://doi.org/10.1088/1742-6596/1085/4/042006

8. P.T. Komiske, E.M. Metodiev, M.D. Schwartz, Deep learning in
color: towards automated quark/gluon jet discrimination. JHEP
(2017). https://doi.org/10.1007/JHEP01(2017)110

9. G. Louppe, K. Cho, C. Becot, K. Cranmer, Qcd-aware recursive
neural networks for jet physics. J. High Energy Phys. (2019).
https://doi.org/10.1007/JHEP01(2019)057

10. Georges Aad et al., Observation of a new particle in the search for
the standard model higgs boson with the atlas detector at the lhc.
Phys. Lett. B 716, 1–29 (2012). https://doi.org/10.1016/j.physletb.
2012.08.020

11. Serguei Chatrchyan et al., Observation of a new boson at a mass
of 125 gev with the cms experiment at the lhc. Phys. Lett. B 716,
30–61 (2012). https://doi.org/10.1016/j.physletb.2012.08.021

12. The ATLAS Collaboration, The atlas experiment at the cern large
hadron collider. JINST 3, S08003 (2008). https://doi.org/10.1088/
1748-0221/3/08/S08003

13. The CMS Collaboration, The cms experiment at the cern lhc.
JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/08/
S08004

14. G. Apollinari, I. Béjar Alonso, O. Brüning, P. Fessia, M. Lam-
ont, L. Rossi, L. Tavian, High-Luminosity Large Hadron Col-
lider (HL-LHC): Technical Design Report V. 0.1. CERN Yellow
Reports: Monographs. CERN, Geneva (2017). https://doi.org/10.
23731/CYRM-2017-004

15. T. Behnke, J.E. Brau, B. Foster, J. Fuster, M. Harrison, J.M. Pater-
son, M. Peskin, M. Stanitzki, N. Walker, H. Yamamoto, The inter-
national linear collider technical design report - volume 1: executive
summary. 6 (2013)

16. L. Linssen, A. Miyamoto, M. Stanitzki, H. Weerts. Physics and
detectors at CLIC: CLIC conceptual design report. 2 (2012). https://
doi.org/10.5170/CERN-2012-003

17. D. Contardo, M. Klute, J. Mans, L. Silvestris, J. Butler, Technical
proposal for the phase-II upgrade of the CMS detector. 6 (2015)

18. S. Agostinelli et al., Geant4: a simulation toolkit. Nucl.
Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/
S0168-9002(03)01368-8

19. Roland Jansky on behalf of the ATLAS collaboration, The atlas fast
monte carlo production chain project. J. Phys. Conf. Ser. (2015)

20. L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartz-
man. Jet-images—deep learning edition. JHEP (2016). https://doi.
org/10.1007/JHEP07(2016)069

21. L. de Oliveira, M. Paganini, B. Nachman, Learning particle physics
by example: location-aware generative adversarial networks for
physics synthesis. Comput Softw Big Sci. (2017). https://doi.org/
10.1007/s41781-017-0004-6

22. M. Paganini, L. de Oliveira, B. Nachman, Calogan: simulating
3d high energy particle showers in multi-layer electromagnetic
calorimeters with generative adversarial networks. Phys. Rev. D
(2018). https://doi.org/10.1103/PhysRevD.97.014021

23. J. Cogan, M. Kagan, E. Strauss, A. Schwarztman, Jet-images:
computer vision inspired techniques for jet tagging. JHEP (2015).
https://doi.org/10.1007/JHEP02(2015)118

24. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, Y. Bengio. Generative adversarial
networks. NIPS’14: Proceedings of the 27th international confer-
ence on neural information processing systems (2014). https://doi.
org/10.5555/2969033.2969125

25. F. Carminati, G. Khattak, M. Pierini, S. Vallecorsafa, A. Farbin, B.
Hooberman, W. Wei, M. Zhang, B. Pacela, Vitorial, M. Spiropulu,
J. Vlimant, Calorimetry with deep learning : Particle classification
, energy regression , and simulation for high-energy physics. In:
Workshop on deep learning for physical sciences (DLPS 2017),
NIPS 2017 (2017)

123

https://doi.org/10.1016/0010-4655(88)90004-5
https://doi.org/10.1016/0168-9002(89)91300-4
https://doi.org/10.1016/0168-9002(89)91300-4
https://doi.org/10.1016/0370-2693(92)91580-3
https://doi.org/10.1103/PhysRevD.93.094034
https://doi.org/10.1103/PhysRevD.93.094034
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1088/1742-6596/1085/4/042006
https://doi.org/10.1007/JHEP01(2017)110
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.5170/CERN-2012-003
https://doi.org/10.5170/CERN-2012-003
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1007/JHEP02(2015)118
https://doi.org/10.5555/2969033.2969125
https://doi.org/10.5555/2969033.2969125


Eur. Phys. J. C (2020) 80 :688 Page 31 of 31 688

26. Francois Chollet et al. Keras. https://github.com/fchollet/keras
(2015)

27. M. Abadi et al. Tensorflow: Large-scale machine learning on het-
erogeneous systems. Software available from www.tensorflow.org.
(2015)

28. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, L. Antiga, A. Lerer, Automatic differentiation in pytorch.
In NIPS-W, Alban Desmaison (2017)

29. M. Zhang, D. Olivito, W. Wei. Calosamplegeneration: v1.0, 2020.
https://doi.org/10.5281/zenodo.3889059

30. M. Zhang, J. Liu, D. Olivito, M. Liu, D. Belayneh, W. Wei, Triforce:
v1.0 (2020). https://doi.org/10.5281/zenodo.3889046

31. P. Lebrun, L. Linssen, A. Lucaci-Timoce, D. Schulte, F. Simon,
S. Stapnes, N. Toge, H. Weerts, J. Wells, The CLIC programme:
Towards a staged e+e- linear collider exploring the terascale: CLIC
conceptual design report. CERN Yellow Reports: Monographs.
CERN, Geneva (2012). https://doi.org/10.5170/CERN-2012-005

32. Luke De Oliveira, Benjamin Nachman, Michela Paganini, Elec-
tromagnetic showers beyond shower shapes. Nucl. Instrum. Meth-
ods A 951, 162879 (2020). https://doi.org/10.1016/j.nima.2019.
162879

33. ATLAS Collaboration. Deep generative models for fast shower
simulation in atlas. Technical Report ATL-SOFT-PUB-2018-001,
CERN, Geneva (2018)

34. Luke de Oliveira, Michela Paganini, Benjamin Nachman, Control-
ling physical attributes in gan-accelerated simulation of electro-
magnetic calorimeters. J. Phys. Conf. Ser. 1085, 11 (2017). https://
doi.org/10.1088/1742-6596/1085/4/042017

35. N. P. Perez, Electron identification using machine learning in the
atlas experiment with 2016 data (2017)

36. A. Odena, C. Olah, J. Shlens, Conditional image synthesis with
auxiliary classifier gans. Proc. Mach. Learn. Res. (2017)

37. Yann LeCun, Yoshua Bengio, Convolutional Networks for Images,
Speech, and Time Series, page 255–258 (MIT Press, Cambridge,
1998)

38. A.L. Maas, A.Y. Hannun, Y.N. Andrew, Rectifier nonlinearities
improve neural network acoustic models. In: ICML workshop on
deep learning for audio, speech and language processing (2013)

39. V. Nair, G.E. Hinton, Rectified linear units improve restricted boltz-
mann machines. In: Proceedings of the 27th international confer-
ence on international conference on machine learning, ICML’10,
(2010)

40. S. Ioffe, C. Szegedy, Batch normalization: accelerating
deep network training by reducing internal covariate shift.
arXiv:abs/1502.03167 (2015)

41. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, Ruslan Salakhutdinov, Dropout: a simple way to pre-
vent neural networks from overfitting. J. Mach. Learn. Res. 15(1),
1929–1958 (2014)

42. M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adver-
sarial networks. In: Doina Precup and Yee Whye Teh, editors, Pro-
ceedings of the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning Research, pp.
214–223 (2017)

43. G. Hinton, N. Srivastava, K. Swersky, Lecture 6a overview of
mini–batch gradient descent (2012). https://www.cs.toronto.edu/
~tijmen/csc321/slides/lecture_slides_lec6.pdf

44. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convo-
lutions. In: 2015 IEEE conference on computer vision and pattern
recognition (CVPR), pp. 1–9 (2015)

45. T. Head et al., Scikit-optimize: v0.5.2 (2018). https://doi.org/10.
5281/zenodo.1207017

46. N.A. Tehrani, J.-J. Blaising, B. Cure, D. Dannheim, F.D. Ramos,
K. Elsener, A. Gaddi, H. Gerwig, S. Green, C. Grefe, D. Hynds, W.
Klempt, L. Linssen, N. Nikiforou, A.M. Nurnberg, J.S. Marshall,
M. Petric, S. Redford, P.G. Roloff, A. Sailer, F. Sefkow, E. Sicking,
N. Siegrist, F.R. Simon, R. Simoniello, S. Spannagel, S.K. Sroka,
L.R. Strom, M.A. Weber, The post-CDR CLIC detector model,
CLICdet (2017)

47. Friedman Breiman, Classification and Regression Trees (Taylor &
Francis, London, 1984)

123

https://github.com/fchollet/keras
www.tensorflow.org
https://doi.org/10.5281/zenodo.3889059
https://doi.org/10.5281/zenodo.3889046
https://doi.org/10.5170/CERN-2012-005
https://doi.org/10.1016/j.nima.2019.162879
https://doi.org/10.1016/j.nima.2019.162879
https://doi.org/10.1088/1742-6596/1085/4/042017
https://doi.org/10.1088/1742-6596/1085/4/042017
http://arxiv.org/abs/abs/1502.03167
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.5281/zenodo.1207017
https://doi.org/10.5281/zenodo.1207017

	Calorimetry with deep learning: particle simulation and reconstruction for collider physics
	Abstract 
	1 Overview
	2 Dataset
	3 Benchmark tasks
	3.1 Simulation
	3.2 Reconstruction

	4 Generative model
	4.1 GAN architecture
	4.2 Training and results

	5 End-to-end particle reconstruction
	5.1 Deep network models
	5.2 Hyperparameter scans
	5.3 Results
	5.3.1 Classification performance
	5.3.2 Regression performance

	5.4 Resampling to ATLAS and CMS geometries

	6 Conclusion and future work
	Acknowledgements
	A Calorimeter window size
	B End-to-end reconstruction of the ECAL showers produced by the 3DGAN
	C Classification baseline
	D Energy regression baseline
	E GoogLeNet model architecture details
	F Use of HCAL in classification
	G Skip connections for regression
	H Training for regression using energy summed in z
	I Energy regression at fixed angles

	J Regression performance training on a different particle type

	K Regression studies with large sample windows

	References




