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Abstract First, we obtain the plane wave solution of the lin-
earized massive conformal gravity field equations. It is shown
that the theory has seven physical plane waves. In addition,
we investigate the gravitational radiation from binary sys-
tems in massive conformal gravity. We find that the theory
with large graviton mass can reproduce the orbit of binaries
by the emission of gravitational waves.

1 Introduction

Over the years several alternative theories of gravity have
emerged in the attempt to solve some of the problems pre-
sented by the general theory of relativity, such as the dark
matter and dark energy problems. Besides solving these prob-
lems, for an alternative theory of gravity to be considered
consistent, it must also reproduce the successful predictions
of general relativity. One of these recently confirmed predic-
tions is the existence of gravitational waves [1–4].

Among the many alternative theories of gravity that have
already studied the gravitational waves phenomenology is
conformal gravity (CG). It was shown that the plane wave of
this theory is composed of the usual plane wave of general
relativity plus a plane wave that grows linearly in time [5],
which causes the energy carried by the CG plane wave to
diverges in momentum space [6].

In this paper, we intend to study the behavior of gravita-
tional waves in another alternative theory of gravity with con-
formal symmetry called massive conformal gravity (MCG)
[7]. In Sect. 2, we present an introduction of the MCG theory.
In Sect. 3, we find the plane wave solution of the linearized
MCG field equations. In Sect. 4, we discuss the energy–
momentum tensor of the MCG plane wave. In Sect. 5, we
evaluate the radiated energy from a binary system in MCG.
Finally, in Sect. 6, we provide a brief conclusion about the
results found in the paper.

a e-mail: felfrafar@hotmail.com (corresponding author)

2 Massive conformal gravity

Let us consider the total MCG action1 [8]

Stot = 1

κ2

∫
d4x

√−g

[
ϕ2R + 6∂μϕ∂μϕ

− 1

2m2C
αβμνCαβμν

]
+

∫
d4xLm, (1)

where κ2 = 32πG/3, ϕ is a scalar field called dilaton, m is
a constant with dimension of mass,

CαβμνCαβμν = RαβμνRαβμν − 4RμνRμν + R2

+2

(
RμνRμν − 1

3
R2

)
(2)

is the Weyl tensor squared, Rα
μβν = ∂βΓ α

μν + · · · is the
Riemann tensor, Rμν = Rα

μαν is the Ricci tensor, R =
gμνRμν is the scalar curvature, and Lm = Lm(gμν, Ψ ) is
the Lagrangian density of the matter field Ψ .

The variation of the total action (1) with respect to gμν

and ϕ gives the MCG field equations

ϕ2Gμν + 6∂μϕ∂νϕ − 3gμν∂
ρϕ∂ρϕ + gμν∇ρ∇ρϕ2

−∇μ∇νϕ
2 − m−2Wμν = 1

2
κ2Tμν, (3)

(
∇ρ∇ρ − 1

6
R

)
ϕ = 0, (4)

where

Wμν = ∇ρ∇ρRμν − 1

3
∇μ∇νR − 1

6
gμν∇ρ∇ρR

+2Rρσ Rμρνσ − 1

2
gμνR

ρσ Rρσ

−2

3
RRμν + 1

6
gμνR

2 (5)

1 Here we consider units in which c = h̄ = 1.
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is the Bach tensor,

Gμν = Rμν − 1

2
gμνR (6)

is the Einstein tensor, and

Tμν = 2√−g

δLm

δgμν
(7)

is the matter energy–momentum tensor.
Besides being invariant under coordinate transformations,

the field equations (3) and (4) are also invariant under the
conformal transformations

Φ̃ = Ω(x)−ΔΦ Φ, (8)

where Ω(x) is an arbitrary function of the spacetime coordi-
nates, and ΔΦ is the scaling dimension of the field Φ, whose
values are −2 for the metric field, 0 for gauge bosons, 1
for scalar fields, and 3/2 for fermions. Using the conformal
invariance of the theory, we can impose the unitary gauge
ϕ = ϕ0 = 1. In this case, the field equations (3) and (4)
becomes

Gμν − m−2Wμν = 1

2
κ2Tμν, (9)

R = 0. (10)

Taking the trace of (9) and comparing with (10), we
find that MCG couples only with matter whose energy–
momentum tensor is traceless, which is a feature of con-
formally invariant theories. This is the case of the standard
model of particle physics without a Higgs mass term, for
instance. For simplicity, we consider the conformally invari-
ant matter Lagrangian density [9]

Lm = −√−g

[
S2R + 6∂μS∂μS + λS4

+ i

2

(
ψγ μDμψ − Dμψγ μψ

) + μSψψ

]
, (11)

where S is a scalar Higgs field, λ and μ are dimensionless
coupling constants, ψ = ψ†γ 0 is the adjoint fermion field,
Dμ = ∂μ + [γ ν, ∂μγν]/8 − [γ ν, γλ]Γ λ

μν/8, and γ μ are the
general relativistic Dirac matrices, which satisfy the anticom-
mutation relation {γ μ, γ ν} = 2gμν .

Before proceeding, it is worth noting that both the coor-
dinate and the conformal symmetries of the theory allow the
introduction of a quartic self-interaction term of the dilaton
field in the gravitational part of the total MCG action (1). The
reason why we do not consider such a term is that its inclu-
sion makes the flat metric no longer a solution of the vacuum
field equations, which invalidates the usual S-matrix formu-
lation. Additionally, we can include a coupling between the
dilaton and the Higgs fields in the matter Lagrangian density
(11). However, we neglect this coupling because it leads to a
nonvanishing trace of the matter energy–momentum tensor,

as we can see by considering the variation of the modified
Lm with respect to ϕ on the right side of (4) and comparing
the resulting field equation with the trace of (3).

The variation of (11) with respect to ψ and ψ gives the
field equations

iγ μDμψ + μSψ = 0, (12)

i Dμψγ μ − μSψ = 0. (13)

Substituting (11) into (7), and using (12) and (13), we obtain
the matter energy–momentum tensor

Tμν = 2gμν∇ρS∇ρS − 8∇μS∇νS + 4S∇μ∇νS

−4gμνS∇ρ∇ρS + 2S2Gμν + T f
μν − gμνλS

4, (14)

where

T f
μν = i

4

(
ψγμDνψ − Dνψγμψ + ψγνDμψ − Dμψγνψ

)
(15)

is the fermion energy–momentum tensor.
Considering that, at scales below the electroweak scale,

the Higgs field acquires a spontaneously broken constant
vacumm expectation value S0, we find that (14) reduces to

Tμν = 2S2
0Gμν + T f

μν − gμνλS
4
0 . (16)

Taking the trace of (16) and substituting into the trace of (9),
we obtain

− R = 1

2

(
−2S2

0 R + T f − 4λS4
0

)
, (17)

where T f = gμνT f
μν . The additional use of (10) then gives

the relation

λS4
0 = 1

4
T f . (18)

Finally, substituting this relation back into (16), we arrive at

Tμν = 2S2
0Gμν + T T

μν, (19)

where

T T
μν = T f

μν − 1

4
gμνT

f (20)

is the traceless part of the fermion energy–momentum tensor.

3 Plane gravitational waves

In order to find the MCG gravitational wave equations, we
must perturb the metric according to

gμν = ημν + hμν, (21)

where ημν = diag(−1,+1,+1,+1) and |hμν | � 1. Then,
using (19), we find that up to first order in the perturbation
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hμν , the field equations (9) and (10) become2

G(1)
μν − m−2W (1)

μν = 1

2
κ2T (0)

μν , (22)

R(1) = 0, (23)

where

T (0)
μν = 2S2

0G
(0)
μν + T T (0)

μν = T f (0)
μν − 1

4
ημνT

f (0) (24)

is the zero-order matter energy–momentum tensor,

W (1)
μν = �R(1)

μν − 1

3
∂μ∂νR

(1) − 1

6
ημν�R(1) (25)

is the first-order Bach tensor,

G(1)
μν = R(1)

μν − 1

2
ημνR

(1) (26)

is the first-order Einstein tensor,

R(1)
μν = 1

2

(
∂μ∂ρhρν + ∂ν∂

ρhρμ − �hμν − ∂μ∂νh
)

(27)

is the first-order Ricci tensor, and

R(1) = ∂μ∂νhμν − �h (28)

is the first-order scalar curvature, with � = ∂μ∂μ and h =
ημνhμν .

It is not difficult to see that both (22) and (23) are invariant
under the coordinate gauge transformation

h′
μν = hμν + ∂μξν + ∂νξμ, (29)

where ξμ is an arbitrary spacetime dependent vector field.
By imposing the gauge condition

∂μhμν − 1

2
∂νh = 0, (30)

which fix the coordinate gauge freedom up to residual gauge
parameter satisfying the subsidiary condition

�ξμ = 0, (31)

and using (23), we find that (22) reduces to
(
m−2� − 1

)
�hμν = κ2T (0)

μν . (32)

The simplest physical solution to (32) in vacuum (T (0)
μν =

0) is the plane wave

hμν = aμν cos(kρx
ρ) + bμν cos(qρx

ρ), (33)

where aμν and bμν are symmetric wave polarization tensors,
and kμ and qμ are wave vectors, which satisfies

kρkρ = 0, qρqρ = −m2. (34)

2 From now on the indexes (i) indicate the order of the expansion in
hμν .

By substituting (33) into (23) and (30), and using (34), we
obtain

kμaμν = 1

2
kνa, qμbμν = 0, b = 0, (35)

where a = ημνaμν and b = ημνbμν .
The symmetry of the polarization tensors aμν and bμν

means that each of them has ten independent components.
The conditions (35) reduce the independent components of
aμν to six and of bμν to five. In addition, we can choose a
solution of (31) to impose four more conditions on aμν . For
instance, choosing

ξμ = εμ sin(kρx
ρ), (36)

and substituting into (29) together with (33), we arrive at

a′
μν = aμν + kμεν + kνεμ. (37)

Since εμ is arbitrary, we can select it to impose four more
conditions on aμν . In particular, we can choose εμ such that

a0i = 0, δi j ai j = 0, (38)

which reduce the independent components of aμν to just two.
Thus, we conclude that the MCG plane gravitational wave
(33) has seven propagating degrees of freedom, represented
by the two independent components of aμν and the five inde-
pendent components of bμν , which is consistent with recent
results obtained in the literature [8,10].

4 Gravitational energy–momentum tensor

We can see from (32) that the total linearized MCG
Lagrangian density is dynamically equivalent to

Ltot = − 1

4κ2

(
m−2�hμν�hμν + ∂ρhμν∂ρhμν

)

+1

2
hμνT (0)

μν . (39)

Inserting the gravitational part of (39) into the canonical
energy–momentum tensor [11]

tμν =
〈 [

∂ρ

∂L
∂(∂μ∂ρhαβ)

− ∂L
∂(∂μhαβ)

]
∂νhαβ

− ∂L
∂(∂μ∂ρhαβ)

∂ν∂ρhαβ + ημνL
〉
, (40)

integrating by parts, and using (32) in vacuum, we obtain

tμν = 1

2κ2

〈
2m−2∂μ∂νh

αβ�hαβ + ∂μh
αβ∂νhαβ

〉
, (41)

where the angle brackets denote the average over a macro-
scopic region.

The substitution of the plane wave (33) into (41) gives

tμν = 1

2κ2

[(
aαβaαβ

)
kμkν − (

bαβbαβ

)
qμqν

]
, (42)
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where we used (34). We can see from (42) that the ener-
gies of the waves with the two physical polarizations aμν are
positive, while those of the ones with the five physical polar-
izations bμν are negative. Since these waves do not interact
with each other, energy cannot flow between them so that
there is no violation of energy conservation.

5 Gravitational waves from a binary system

In order to analyze the gravitational waves created from
binary systems, we need to solve the fourth-order differen-
tial equation (32) in the presence of matter (T (0)

μν �= 0). For
simplicity, we can split hμν according to

hμν = Aμν + Bμν, (43)

where Aμν and Bμν obey the second-order differential equa-
tions

�Aμν = −κ2T (0)
μν , (44)(

� − m2
)
Bμν = κ2T (0)

μν . (45)

In the frequency domain, the field equations (44) and (45)
become(

∇2 + ω2
)
Ãμν(ω, x) = −κ2T̃ (0)

μν (ω, x), (46)(
∇2 + ω2 − m2

)
B̃μν(ω, x) = κ2T̃ (0)

μν (ω, x), (47)

where ∇2 is the Laplacian, ω is the frequency of the wave, and
the tilde denotes the Fourier transform. The general solutions
to (46) and (47) are given by

Ãμν(ω, x) = −κ2
∫

d3x′G̃ A(ω, r)T̃ (0)
μν (ω, x′), (48)

B̃μν(ω, x) = κ2
∫

d3x′G̃B(ω, r)T̃ (0)
μν (ω, x′), (49)

where the frequency domain Green functions G̃ A(ω, r) and
G̃B(ω, r) are defined by
(
∇2 + ω2

)
G̃ A(ω, r) = √

8πδ(3)(r), (50)(
∇2 + ω2 − m2

)
G̃B(ω, r) = √

8πδ(3)(r), (51)

with r = x − x′ being the difference between the positions
of the observer (x) and the source (x′).

It follows from (50) that

G̃ A(ω, r) = − eiω|r|

4π |r| , (52)

and from (51) that

G̃B(ω, r) = −eikω|r|Θ(ω − m) + c.c.Θ(−ω − m)

4π |r| (53)

for m2 < ω2, and

G̃B(ω, r) = −e−km |r|Θ(m − |ω|)
4π |r| (54)

for m2 > ω2, where c.c. is the complex conjugate of the
exponential function, Θ is the Heaviside step function, kω =√

ω2 − m2, and km = √
m2 − ω2.

Substituting (52) into (48), transforming back to real
space, and using the far zone approximation (|x| ≈ |x− x′|),
we can write the spatial components of Aμν in the form

Ai j (t, r) = κ2

8πr

[∫ +∞

−∞
dω

2π
e−iω(t−r)

]
ω2 Q̃i j (ω), (55)

where r = |x| is the distance between the observer and the
source, and Q̃i j (ω) is the Fourier transform of the reduced
quadrupole moment

Qi j (t) =
∫

d3r
(
xi x j − 1

3
δi j r

2
)
T (0)

00 (t, r). (56)

Following the same steps for Bμν , but now with the substi-
tution of (53) and (54) into (49) , we obtain

Bi j (t, r) = − κ2

8πr

[ ∫ ∞

m

dω

2π
e−iωt eikωr

+
∫ −m

−∞
dω

2π
e−iωt e−ikωr

]
ω2 Q̃i j (ω) (57)

for m2 < ω2, and

Bi j (t, r) = − κ2

8πr

[∫ m

−∞
dω

2π
e−iωt e−kmr

]
ω2 Q̃i j (ω) (58)

for m2 > ω2.
In the case of a circular binary system formed by a pair of

masses m1 and m2, separated by a distance d, orbiting each
other in the xy-plane with frequency ωs = ω/2, we have
T f (0)

μν (t, x) = μδ0
μδ0

νδ
3(x). The substitution of this value

into (24) gives

T (0)
00 (t, r) = 3

4
μδ3(r), (59)

where μ = m1m2/(m1 +m2) is the reduced mass. By insert-
ing (59) and the relative coordinates

x1 = −d sin(ωs t), x2 = d cos(ωs t), x3 = 0, (60)

into (56), and taking the Fourier transform, we find

Q̃11(ω) = 3πμd2

8
[δ(ω) − δ(ω + 2ωs) − δ(ω − 2ωs)] ,

(61)

Q̃22(ω) = 3πμd2

8
[δ(ω) + δ(ω + 2ωs) + δ(ω − 2ωs)] ,

(62)

Q̃12(ω) = 3πμd2

8i
[δ(ω − 2ωs) − δ(ω + 2ωs)] , (63)
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where we omitted the term proportional to δi j in (56) because
it does not contribute to the radiated energy.

The insertion of (61)–(63) into (55) gives

A11(t, r) = −A22(t, r) = 2μd2ω2
s

r
cos (2ωs tret), (64)

A12(t, r) = A21(t, r) = 2μd2ω2
s

r
sin (2ωs tret), (65)

where tret = t − r is the retarded time. In the same way,
substituting (61)–(63) into (57) and (58), we arrive at

B11(t, r) = −B22(t, r) = −2μd2ω2
s

r
cos (2ωs tm), (66)

B12(t, r) = B21(t, r) = −2μd2ω2
s

r
sin (2ωs tm), (67)

for m2 < 4ω2
s , and

B11(t, r) = −B22(t, r) = −2μd2ω2
s

r
e−kmr cos (2ωs t),

(68)

B12(t, r) = B21(t, r) = −2μd2ω2
s

r
e−kmr sin (2ωs t), (69)

for m2 > 4ω2
s , where tm = t − vmr is the travel time, with

vm = √
1 − m2/(4ω2

s ) being the speed of the massive grav-
itational wave.

The rate of energy loss from a source, in the far field limit,
is given by

Ė = −r2
∫

∂V
dΩ t0i ni , (70)

where the dot is the derivative with respect to time, dΩ =
sin θdθdφ is the differential solid angle, ∂V is the surface of
a spherical shell with volume V centered around the source,
and ni are the components of the spatial unit vector pointing
from the source to the observer.

By substituting (43) into (41), integrating by parts, and
using (44) and (45) in vacuum, we obtain

t0i ni = 1

2κ2 ni
〈
∂0Aαβ∂ i Aαβ − ∂0Bαβ∂ i Bαβ

〉
. (71)

We can see from (64) and (65) that

∂i Aαβ ≈ −ni∂0Aαβ, (72)

and from (66)–(69) that

∂i Bαβ ≈ −nivm∂0Bαβ (73)

for m2 < 4ω2
s , and

∂i Bαβ ≈ −ni km Bαβ (74)

for m2 > 4ω2
s , where we neglected terms of order 1/r2. In

addition, considering the conservation and the traceless con-
dition of T (0)

μν , and the traceless condition of Qi j , it follows

from (48), (49), (55), (57) and (58) that Aμν and Bμν obey
the traceless-transverse conditions

∂ i Ai j = 0, A0i = 0, δi j Ai j = 0, (75)

∂ i Bi j = 0, B0i = 0, δi j Bi j = 0. (76)

By using the combination of (72)–(76), and nini = 1, we
can write (71) as

t0i ni ≈ 1

2κ2 Λi jkl
〈
∂0A

i j∂0A
kl − vm∂0B

i j∂0B
kl 〉 (77)

for m2 < 4ω2
s , and

t0i ni ≈ 1

2κ2 Λi jkl
〈
∂0A

i j∂0A
kl − km B

i j∂0B
kl 〉 (78)

for m2 > 4ω2
s , where

Λi jkl = Pik Pjl − 1

2
Pi j Pkl (79)

is the Lambda tensor, with

Pi j = δi j − nin j (80)

being the traceless-transverse projection operator.
Inserting (77) and (78) into (70), and using the surface

integral∫
∂V

dΩΛi jkl = 2π

15

(
11δikδ jl − 4δi jδkl + δilδ jk

)
, (81)

we find

Ė ≈ −3r2

40

〈
∂0A

i j∂0Ai j − vm∂0B
i j∂0Bi j

〉
(82)

for m2 < 4ω2
s , and

Ė ≈ −3r2

40

〈
∂0A

i j∂0Ai j − km B
i j∂0Bi j

〉
(83)

for m2 > 4ω2
s .

Finally, substituting (64)–(69) into (82) and (83), we arrive
at

Ė ≈ 3

8

(
1 −

√
1 − m2

4ω2
s

)
ĖGR (84)

for m2 < 4ω2
s , and

Ė ≈ 3

8
ĖGR (85)

for m2 > 4ω2
s , where

ĖGR = −32Gμ2d4ω6
s

5
(86)

is the standard energy loss of general relativity.
Experiments on the inverse square law of the MCG grav-

itational potential of a point particle with a mass M , which

123
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is given by [8]

φ(r) = −GM

r

(
1 − e−mr ) , (87)

constrain the graviton mass to the ranges m < 10−22 eV
for m2 < 4ω2

s and m > 10−2 eV for m2 > 4ω2
s [12]. In

particular, considering the orbital frequency ωs ≈ 1.3 ×
10−20 eV of the binary system PSR J1012 + 5307 formed
by a neutron star and a white dwarf in quasi-circular motion
[13–15], we have that m2/4ω2

s < 10−5 for m2 < 4ω2
s . By

substituting this value into (84), we find

Ė � 10−6 ĖGR (88)

for m2 < 4ω2
s .

The energy loss of the binary system results in a decay of
its orbital period P , which can be written as

Ṗ

P
= ḋ

2d
− φ̇′

2φ′ , (89)

where φ′(d) = μ−1∂dU (d) is the derivative of the gravita-
tional potential φ with respect to d, with U being the gravi-
tational potential energy. It follows from (87) that

U (d) = −Gm1m2

d

(
1 − e−md

)
. (90)

Substituting this result into (89), we find

Ṗ

P
≈ −3

2

|Ė |
|EGR| (91)

for both m2 < 4ω2
s and m2 > 4ω2

s , where |EGR| =
Gm1m2/2d and we considered m2d2 � 1 for m2 < 4ω2

s .
The insertion of (88) and (85) into (91) then gives

Ṗ

P
� 10−6 ṖGR

PGR
(92)

for m2 < 4ω2
s , and

Ṗ

P
≈ 3

8

ṖGR

PGR
(93)

for m2 > 4ω2
s , where ṖGR/PGR = −3|ĖGR|/2|EGR|. We

can see from (92) that the MCG decay of the orbital period
for m2 < 4ω2

s is several orders of magnitude smaller than
in general relativity, which rules out the theory with a small
graviton mass (m < 10−22 eV). On the other hand, the dis-
crepancy seen in (93) between the MCG decay of the orbital
period for m2 > 4ω2

s and the general relativity result disap-

pears if we include the first-order term 2S2
0G

(1)
μν in the matter

energy–momentum tensor (24) as done in Ref. [16] to CG.3

3 It is worth noting that CG with ε = +1 considered in Ref. [16] is
different from MCG because the condition R = 0 does not hold in it
[17]. Although this condition is irrelevant for the gravitational wave
solutions from a binary system, it should leads to different results in
other solutions such as the cosmological ones.

Taking this into account, the theory with a large graviton
mass (m > 10−2 eV) can explain the decrease of the orbital
period of binary systems.

6 Final remarks

Here we have shown that the MCG plane wave has seven
propagating degrees of freedom, two of which are massless
and carry positive energies and the other five are massive and
carry negative energies. Despite the presence of the waves
with negative energies, the lack of interaction between them
and the waves with positive energies means that the energies
of all the seven MCG plane waves do not diverge.

The study on the radiated energy from a binary system
restricts the MCG to large graviton mass, which give rise
to a modification of general relativity only at high energies
and small distances. Although this modification is the cause
of MCG being renormalizable [18,19], it makes the theory
unable to explain galaxy rotation curves without dark matter.
However, the conformal symmetry of the matter part of MCG
allows us to consider that the Higgs mass is generated by the
symmetry breaking of an extra scalar field, which may be a
good candidate for dark matter. Further studies are needed to
figure this out.
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