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Abstract We study the isentropic evolution of the matter
produced in relativistic heavy-ion collisions for various val-
ues of the entropy-per-baryon ratio of interest for the ongo-
ing and future experimental searches for the critical endpoint
(CEP) in the QCD phase diagram: these includes the current
beam-energy-scan (BES) program at RHIC and the fixed-
target collisions foreseen for the near future at various facili-
ties. We describe the hot-dense matter through two different
effective Lagrangians: the PNJL (Polyakov–Nambu–Jona–
Lasinio) and the PQM (Polyakov-quark-meson) models. We
focus on quantities expected to have a direct experimental
relevance: the speed of sound, responsible for the collective
acceleration of the fireball, and the generalized susceptibili-
ties, connected to the cumulants of the distributions of con-
served charges. In principle they should affect the momen-
tum spectra and the event-by-event fluctuations of the yields
of identified particles. Taking realistic values for the initial
temperature and the entropy-per-baryon ratio we study the
temporal evolution of the above quantities looking for differ-
ences along isentropic trajectories covering different regions
of the QCD phase diagram, passing far or close to the CEP
or even intersecting the first-order critical line.

1 Introduction

The goal of relativistic heavy-ion collisions is the exploration
of the QCD phase diagram, looking for signatures of the tran-
sition from a system of colour-neutral hadrons to a decon-
fined plasma of quarks and gluons (QGP). Actually, in current
ongoing experiments at RHIC and at the LHC, the transition
occurs in the opposite direction: at very high energy, in the
collisions of two nuclei, the amount of stopped baryonic mat-
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ter is negligible, quarks and gluons are “newly” produced par-
ticles arising from the strong colour fields in the overlapping
region. Quarks and gluons form a thermalized plasma under-
going an almost adiabatic expansion during which the latter
cools down until reaching a temperature at which colour-
singlet hadrons become again the active degrees of freedom.

First-principle lattice-QCD simulations show that, at van-
ishing baryon density (i.e. at baryo-chemical potential μB =
0), the transition connecting the partonic and hadronic phases
is actually a smooth crossover [1]. This is the regime of rel-
evance for the nuclear collisions at the LHC (

√
sNN = 2.76

and 5.02 TeV) and at the highest center-of-mass energy at
RHIC (

√
sNN = 200 GeV) and this corresponds also to the

regime at which the QCD transition occurred during the ther-
mal history of the universe, around 1 µs after the Big Bang,
when the temperature reached a value around 150–160 MeV
[2].

Unfortunately, due to the sign problem which prevents
a Monte-Carlo sampling of the gauge-field configurations,
lattice-QCD simulations cannot provide definite answers on
the QCD thermodynamics and phase structure at finite baryon
density, except for sufficiently small values of μB/T where,
for instance, one can perform a Taylor expansion around
μB = 0 [3,4]. Various effective models were then employed
(see e.g. [5–7]), suggesting that at large μB the transition
should become of first order. Before turning into a crossover,
such a first-order line in the (μB, T )-plane should end with
a critical endpoint (CEP) in which the transition is of sec-
ond order, characterized by an infinite correlation length.
There are also speculations about the presence and the exper-
imental searches of a triple point in the QCD phase diagram
related to the possible existence of quarkyonic [8] or colour-
superconductive phases [9], beside the hadronic and partonic
ones.
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The study of the QCD phase-diagram in the region of
non-vanishing baryon density (for a recent review see for
instance [10]) presents then several challenges. First of all
one should provide a non-ambiguous, quantitative theoretical
answer to the question concerning the existence and location
of a CEP; so far lattice-QCD simulations tend to disfavour its
presence for μB/T � 2 [4]. Secondly, one should suggest
specific signatures of the QCD critical point to look for in
the experimental data [11,12]. Finally, one should perform
experiments able to explore the QCD matter in such a regime
of high baryon-density. This can be achieved through the
collisions of heavy nuclei at lower center-of-mass energies,
characterized by a larger stopping of the incoming nucleons.
For this purpose, experiments were performed in the past
at AGS [13] and SPS [14], the Beam-Energy-Scan (BES) is
currently ongoing at RHIC [15,16], a rich physics program is
scheduled for the present and the near future at SPS [17] and
new infrastructures like NICA [18] and FAIR [19] are under
construction. One of the difficulties in identifying unambigu-
ous experimental signatures of the presence of a CEP and/or
of the occurrence of a first-order transition in the hot QCD
matter produced in relativistic heavy-ion collisions is that –
at variance with condensed-matter experiments – one does
not have the possibility to explore the phase diagram in a
systematic way, tuning appropriate control parameters and
performing measurements during the whole evolution of the
system (except for the case of rare penetrating probes like
photons and dileptons). One can only change the center-of-
mass energy of the collisions and the nuclear species and pos-
sibly select events of different centrality; furthermore, one
can only measure hadrons after their chemical and kinetic
decoupling from the expanding fireball.

In heavy-ion collisions one produces a system which –
neglecting dissipative effects due to viscosity, heat conduc-
tion and charge diffusion – undergoes an approximate isen-
tropic expansion moved by pressure gradients along trajec-
tories of constant entropy per baryon (s/nB = const), the
higher the center-of-mass energy of the collision the higher
the s/nB ratio. Hence, in performing theoretical calculations
of experimental relevance, the quantities of physical interest
must be evaluated along the above trajectories. This is what
we plan to do in our paper, focusing in particular on two kind
of thermodynamic quantities: the speed of sound and the gen-
eralized quark-number susceptibilities. Both of them have a
deep experimental relevance. The squared speed of sound
c2
s governs the response of the system to the initial energy-

density gradients, leading to the collective acceleration of
the fireball. If, during its evolution, the system undergoes a
first-order transition during the mixed-phase the value of the
speed of sound should be very low and this should affect the
transverse-momentum distributions of the hadrons produced
in the collision. The generalized susceptibilities, on the other
hand, are related to the fluctuations of conserved charges

(baryon number, electric charge and strangeness) which can
be experimentally accessed through event-by-event measure-
ments of the unbalance of protons and anti-protons [20],
opposite-charge particles [21] and, more recently, K+ and
K− mesons [22]. They are expected to display huge oscilla-
tions and rapid changes of sign in the vicinity of a CEP, and
one hopes that this will leave observables effects in the event-
by-event measurements of identified particles produced at the
chemical freeze-out, if the latter occurs sufficiently close to
the CEP.

In our paper we evaluate the above quantities starting
from two effective Lagrangians which display the same
chiral-symmetry breaking/restoration pattern of QCD and
include a simple modelling of quark confinement: the PNJL
(Polyakov–Nambu–Jona–Lasinio) model [23] and the PQM
(Polyakov-Quark-Meson) model [24]. We consider isen-
tropic trajectories of relevance for the BES undergoing at
RHIC and for future experiments at SPS, NICA and FAIR.
The corresponding values of s/nB are estimated starting from
the data provided by the STAR collaboration in [16,25]. We
study the values taken by the speed of sound and by the gen-
eralized susceptibilities during the isentropic evolution of the
system until the estimated freeze-out point, looking for dif-
ferences among cases in which the QCD transition occurs
via a smooth crossover, a first-order transition or crossing a
possible CEP.

Our paper is organized as follows. In Sect. 2 we present
the effective models employed for our calculations. In Sect. 3
we display our results for the phase diagram of the two mod-
els and for the evolution of the speed of sound and of the
generalized quark susceptibilities along very different isen-
tropic trajectories. Finally, in Sect. 4 we discuss the obtained
results and their possible experimental relevance, providing
also some perspective for future developments.

2 The PNJL and PQM models

In this section we present the two effective Lagrangians used
in our study: the PNJL and the PQM model. The two models
share some similarities, in particular in the effective imple-
mentation of quark confinement, but they differ in the way in
which the interaction among quarks is described: via a Fermi-
like four-fermion vertex in the PNJL model, via the exchange
of scalar/pseudoscalar mesons representing bosonized quark
fields in the PQM model. Both models have been already
described at length in the literature and for more details we
refer the interested reader to the original publications on the
subject [23,24].
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2.1 The Polyakov field and the effective implementation of
confinement

In QCD – for infinite quark mass – the order parameter of the
confinement/deconfinement phase transition is the Polyakov
loop, expressed in terms of the Euclidean temporal compo-
nent of the gauge field AE

4 (τ ) ≡ −i A0(t = −iτ) as follows

Φ
[
Aμ

] ≡ 1

Nc
Tr Lx = 1

Nc
Tr

{
Pexp

[
i
∫ β

0
dτ AE

4 (τ, x)
]}

.

(1)

Its expectation value is related via the equation

〈Φ〉 = e−βΔFQ (2)

to the change in free-energy occurring adding an isolated
heavy quark into the system: it vanishes in the confined phase,
where adding an isolated colour charge requires an infinite
amount of energy; it is non-zero in the deconfined phase,
where this suppression of coloured states is absent. From the
mathematical point of view 〈Φ〉 �= 0 leads to the sponta-
neous breaking of the global ZNc symmetry, related to the
transformations

Lx → zk Lx with zk = ei2πk/Nc (3)

which multiplies all the Polyakov lines Lx by the same phase
factor zk . In the pure SU (Nc) gauge theory this is an exact
symmetry of the Yang Mills action. Light dynamical quarks
introduce an explicit breaking of the ZNc symmetry (Nc =
3 in QCD), nevertheless the Polyakov loop, in light of its
physical meaning, remains a useful quantity to identify the
different phases predicted by the theory.

Both in the PNJL and in the PQM model the Polyakov loop
Φ (and Φ̄ for the antiquark sector) plays the role of a constant
background field whose value is determined looking for the
stationary points of the thermodynamic potential and whose
role is to suppress the contribution of free quarks to the ther-
modynamic quantities. In order to ensure the occurrence of a
phase transition, an effective temperature-dependent poten-
tial for the Φ and Φ̄ fields is introduced into the Lagrangian,
with the constraint of respecting the Z3 symmetry of the the-
ory. In this paper we choose it of the following polynomial
form:

UPol
(
Φ, Φ̄; T )

= T 4
{

− b2(T )

2
Φ̄Φ − b3

6
(Φ3 + Φ̄3) + b4

4
(Φ̄Φ)2

}
.

(4)

Table 1 Parameters of the Polyakov-loop potential

a0 a1 a2 a3 b3 b4

6.75 − 1.95 2.625 − 7.44 0.75 7.5

The function b2(T ) is parametrized as follow

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

(5)

and the coefficients of the potential are fitted in order to repro-
duce the lattice data for pure Yang–Mills Theory [23]: their
values are given Table 1. Concerning T0, in the case of 2+1
light dynamical quarks addressed in our paper, we set it to
182 MeV.

2.2 The PNJL and PQM Lagrangians

The PNJL and PQM Lagrangians can be written as L =
L0 + ΔL, where L0 is the piece common to both models
(including the quark kinetic term, the coupling with the back-
ground Polyakov field and the Polyakov potential), while ΔL
describes the quark interaction, either through a contact term
(in the PNJL model) or mediated by light scalar/pseudoscalar
mesons (PQM model). We start introducing the common
piece of the Lagrangian, which reads

L0 ≡ ψ̄
[
iγμ

(
Dμ− iδμ0μ̂ f

)]
ψ − UPol

(
Φ, Φ̄; T )

. (6)

In the Dirac term the covariant derivative is defined as
Dμ ≡ ∂μ − i Aμ, where one sets Aμ ≡ δμ0A0. The
strong coupling constant gs is absorbed in the definition of
Aμ(x) ≡ gsAa

μ(x) λa

2 , where Aa
μ(x) is the SUc(3) gauge

field and λa, a = 1, . . . , 8 are the Gell–Mann matrices of
the SUc(3) group. The symbol μ̂ f indicates the chemical-
potential matrix associated to the various quark flavours,
μ̂ f ≡ diag(μu, μd , μs), which are conserved by strong
interactions. Notice that the structure of the Lagrangian
entails that the background gauge field enters into the quark
propagator as a shift of the chemical potential, μ −→
μ + A0 ≡ μ + i AE

4 . Finally, the term UPol is the Polyakov-
loop potential given in Eq. (4).

It is useful to remind the relation between the quark
chemical-potentials and the ones associated to the conserved
QCD charges at the hadronic level, which are the ones of
actual experimental relevance:

⎧
⎪⎨

⎪⎩

μu = 1
3μB + 2

3μQ

μd = 1
3μB − 1

3μQ

μs = 1
3μB − 1

3μQ − μS .

(7)
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Table 2 Parameters of the NJL model

G K Λ[MeV] m0[MeV] ms0[MeV]

3.67/Λ2 −12.36/Λ5 602.3 5.5 140.7

HereμB , μQ, μS are the baryon, electric-charge and strangeness
chemical potentials.

We now discuss the interaction terms of the Lagrangian,
in which the two models differ.

We start from the PNJL model, for which we have:

ΔLPNJL = −ψ̄m̂0ψ + 1

2
G

8∑

a=0

[
(ψ̄λaψ)2 + (ψ̄iγ 5λaψ)2

]

+ K
{

det
[
ψ̄(1 + γ 5)ψ

]
+ det

[
ψ̄(1 − γ 5)ψ

]}
.

(8)

In the above m̂0 is the diagonal mass matrix for the quarks,
m̂0 ≡ diag(m0u,m0d ,m0s), λa (a = 1, 2, . . . , 8) are
the 3 × 3 Gell-Mann matrices of the SU f (3) group and
λ0 = √

2/3�. G and K are the coupling constant for the 4-
fermion vertex and 6-fermion vertex, with dimensions [E]−2

and [E]−5, respectively. The six-fermion term is know as ’t-
Hooft determinant and is introduced to explicitly break the
axial UA(1) symmetry, which is not a symmetry of QCD
at the quantum level, as confirmed by the high mass of the
pseudoscalar η′ meson. Due to the above interaction terms
the PNJL model in 4 space-time dimensions is not renormal-
izable and it has to be considered just a low-energy effec-
tive theory. To regularize the divergent integrals one has to
introduce a momentum cutoff Λ, representing a further free
parameter of the model together with the couplings G and K
and the quark masses: they are all summarized in Table 2. We
work in the isospin-symmetric case, withm0u = m0d ≡ m0,
setting also μu = μd ≡ μ.

Considering now the PQM model, the terms of the
Lagrangian describing the scalar and pseudoscalar mesons
and their interaction with the quark field read

ΔLPQM = −g ψ̄

[
8∑

a=0

λa (σa + i γ5πa)

]

ψ

+ k
(

det φ + det φ†
)

+ Tr
[
H

(
φ + φ†

)]

− m2 Tr
(
φ†φ

)
− λ1

[
Tr

(
φ†φ

)]2 − λ2 Tr
(
φ†φ

)2

+ Tr
(
∂μφ† ∂μφ

)
, (9)

where φ combines the scalar and pseudoscalar meson fields

φ =
8∑

a=0

Ta φa =
8∑

a=0

λa

2
(σa + i πa) , (10)

g denotes the Yukawa coupling between quarks and mesons,
k is the coefficient of the UA(1) symmetry breaking term
and H = Ta ha . The coefficients k, ha , m2, λ1 and λ2 are
the parameters of the mesonic Mexican-hat potential [26–28]
which describes the spontaneous breaking of chiral symme-
try, giving the meson fields their expectation values σ̄a . The
explicit breaking of chiral symmetry in the PQM model arises
from the tilt of the mesonic potential provided by the term
H(φ+φ†), playing the role of the −ψ̄m̂0ψ term in the PNJL
Lagrangian. The quantities used to fix the parameters of the
PQM model are summarized in Table 3.

2.3 The mean-field approximation and the thermodynamic
potential

In this section we display the equations allowing one to
study the thermodynamics of the PNJL and PQM models
in the mean field approximation, at the basis of the numeri-
cal results presented in Sect. 3. Within this setup a system of
strongly-coupled quarks is described as a collection of non-
interacting quasi-particles, endowed with effective masses
obtained through the minimization of the resulting thermo-
dynamic potential.

In the two models the effective quark mass has a different
origin. In the PQM case it arises from the Yukawa coupling
with the meson fields, which develop a non-vanishing expec-
tation value, leading to m = gσ̄ and ms = √

2gσ̄s for the
light and strange quarks, respectively [29]. In the PNJL case it
arises from the quark self-interaction and is obtained lineariz-
ing the Lagrangian given in Eq. (8) with respect to the fluctu-
ations of the composite operator ψ̄ f ψ f = 〈ψ̄ f ψ f 〉 + δ f ≡
ϕ f + δ f . One obtains:

ΔLMF
PNJL = −ψ̄m̂0ψ +

∑

i �= j,k

ψ̄i
[
4Gϕi + 2Kϕ jϕk

]
ψi

− 2G
∑

i

ϕ2
i − 4Kϕuϕdϕs (11)

and hence the effective quark masses (we assume exact
isospin symmetry, setting mu = md ≡ m) turn out to be
expressed in terms of the chiral condensates ϕ f ≡ 〈ψ̄ f ψ f 〉
of the various quark flavours

{
m = m0 − 4Gϕ − 2Kϕϕs

ms = m0s − 4Gϕs − 2Kϕ2
 .

(12)

Getting the quark masses requires the self-consistent solution
of the above system of coupled gap equations, where the mass
of quarks of flavour i depends on all chiral condensates

ϕi = −2Nc

∫ Λ d3 p

(2π)3

mi

Ei
p

[
1 − fq

(
Φ, Φ̄, Ei

p; T, μi

)
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Table 3 Values of the decay constants of pseudoscalar mesons, of the meson masses and of the constituent mass of light (up and down) and strange
quarks in the vacuum to which the parameters of the PQM model are adjusted to. These values are the same as in the PNJL model calculation

Constant fπ mπ mK m2
η + m2

η′ mσ m ms

Value [MeV] 92.4 135 497.7 514.82 + 957.82 728.9 367.7 549.5

− fq̄
(
Φ, Φ̄, Ei

p; T, μi

)]
. (13)

Here Ei
p =

√
p2 + m2

i is the energy of the dressed quark of
flavour i , and the modified Fermi distributions are given by

fq(Φ, Φ̄, Ei
p; T, μi )

≡ Φ e−β(Ei
p−μi ) +2Φ̄ e−β(Ei

p−μi ) + e−3β(Ei
p−μi )

1 + 3Φ e−β(Ei
p−μi ) +3Φ̄ e−2β(Ei

p−μi ) +e−3β(Ei
p−μi )

(14)

and

fq̄
(
Φ, Φ̄, Ei

p; T, μi

)
= fq

(
Φ̄,Φ, Ei

p; T,−μi

)
. (15)

Also the thermodynamic potential can be conveniently
written as Ω ≡ Ω0 + ΔΩ , where Ω0 is the part common to
both models, while ΔΩ includes the model-dependent terms.
At the mean field level one has

ΩMF
0 /V = UPol(Φ, Φ̄; T ) − 2Nc

∑

f

Λ∫
d3 p

(2π)3 E f
p

− 2T
∑

f

∞∫
d3 p

(2π)3

[
zq

(
Φ, Φ̄, E f

p ; T, μ f

)
+ zq̄

(
Φ, Φ̄, E f

p ; T, μ f

)]
,

(16)

having defined

zq ≡ ln
[
1 + 3Φ e−β(E f

p −μ f ) +3Φ̄ e−2β(E f
p −μ f ) + e−3β(E f

p −μ f )
]

(17)

and

zq̄ ≡ ln
[
1 + 3Φ̄ e−β(E f

p +μ f ) +3Φ e−2β(E f
p +μ f ) + e−3β(E f

p +μ f )
]
.

(18)

Concerning the model-dependent contribution to the thermo-
dynamic potential, in the PNJL case one has:

ΔΩMF
PNJL/V = 2G(2ϕ2

 + ϕ2
s ) + 4Kϕ2

ϕs . (19)

For the PQM model the contribution from the expectation
value of the meson fields reads:

ΔΩMF
PQM/V = − k

2
√

2
σ̄ 2

 σ̄s − hσ̄ − hsσ̄s

+ m2

2

(
σ̄ 2

 + σ̄ 2
s

)
+ λ1 + λ2/2

4
σ̄ 4



+ λ1 + λ2

4
σ̄ 4

s + λ1

2
σ̄ 2

 σ̄ 2
s . (20)

At the mean field level the thermodynamic potential is a func-
tion of the effective quark masses and of the expectation value
of the Polyakov fields,

ΩMF = ΩMF (
m,ms, Φ, Φ̄

)
,

which have to be self-consistently determined requiring ΩMF

to be stationary under variation of the above quantities, i.e.

∂ΩMF

∂m

= ∂ΩMF

∂ms
= ∂ΩMF

∂Φ
= ∂ΩMF

∂Φ̄
= 0. (21)

The first two conditions lead to the mass-gap equations
(13), which in the PNJL model were independently obtained
expressing the chiral condensates ϕi in terms of the Hartree
quark propagators. Equivalently, the dependence on the
effective quark massesm andms can be traded for the one on
the chiral condensates ϕ and ϕs or on the expectation values
of the meson fields σ and σs . Notice that in the present MF
approximation, replacing the meson fields by their expecta-
tion values, the associated kinetic contribution in the PQM
Lagrangian in Eq. (9) vanishes.

A final comment on the UV behaviour of the two models
is in order. The second term in the RHS of Eq. (16) contains
the sum of the (negative) zero-point energies of the various
fermionic modes. It is divergent and is regularized by the
UV cutoff Λ. In the PNJL case the results depend explic-
itly on this cutoff, which – as already mentioned – has to be
viewed as a parameter of the model, fixed by matching some
zero-temperature/density observables. On the other hand, the
PQM model is renormalizable and in principle one could can-
cel the dependence on Λ of the vacuum fluctuations with the
dependence on the cutoff of the parameters of the meson
potential in Eq. (20), so that the final physical results do not
depend on the choice of the UV regulator. Here however, in
order to perform a consistent comparison, we simply regu-
larize the UV divergence through the same ultraviolet cutoff
Λ employed in the PNJL model.
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3 Results

Our results focus on the phase-diagram of the PNJL and PQM
models, on the nature of the chiral-deconfinement transition,
on the location of the critical endpoint (CEP), on the speed of
sound and on the generalized susceptibilities, the latter being
of interest since associated to the thermal fluctuations of con-
served charges. All our numerical calculations are performed
along isentropic trajectories. The comparison of the angu-
lar distributions of soft identified hadrons with the results
of hydrodynamic calculations suggests in fact a very low
value of the viscosity to entropy-density ratio, compatible
with the conjectured universal lower bound η/s = 1/(4π)

predicted by the gauge-gravity duality. Dissipative effects
are then small in the fireball produced in heavy-ion colli-
sions, which evolves along trajectories of constant entropy
per baryon: both the entropy and the baryon density get dilute
due to the expansion of the system (which has a positive pres-
sure with respect to the surrounding vacuum), but their ratio
s/nB remains constant within each fluid-cell.

In order to provide results of phenomenological relevance
we need to estimate both the entropy-per-baryon ratio S/B
and the initial entropy density of the system arising from the
heavy-ion collisions at the various nucleon-nucleon center-
of-mass energies explored in the BES at RHIC, from 7.7
to 200 GeV. We start estimating the initial entropy density
s0, assuming that its value is proportional to the measured
rapidity density of charged particles dN ch/dη. For Au-Au
collisions at

√
sNN = 200 GeV the value s0 = 84 fm−3,

once inserted in the initial condition of hydrodynamic cal-
culations, was shown to satisfactory reproduce soft-hadron
distributions [30] and, later on, it was widely employed in
the literature, e.g. [31,32]. Taking τ0 = 1 fm/c as an esti-
mate of the initial thermalization time and integrating over
the transverse plane the profile provided by a Glauber calcu-
lation one gets dS/dy ≈ 4700 for the entropy per unit rapid-
ity in central Au-Au collisions; taking into account that, for
a pion gas around the chemical freeze-out temperature, one
has S � 4N , this compares well with the observed rapidity
density of charged particles [33]. The initial entropy density
s0 at lower center-of-mass energies is obtained rescaling the
estimate at

√
sNN = 200 GeV according to the lower val-

ues of dN ch/dy [16,25]. Also the S/B ratio at the various
center-of-mass energies is estimated from the yields of iden-
tified hadrons – π±, K±, p/p – quoted in Refs. [16,25], still
assuming that each particle carries about 4 unit of entropy.
Our results for s0 and S/B are collected in Table 4, where we
also quote the values of the kinetic freeze-out temperatures
obtained in [16,25] through a blast-wave fit of the transverse-
momentum distributions of identified hadrons.

Table 4 Estimate of the initial entropy density and of the entropy per
baryon in Au-Au collisions at different center-of-mass energies. We
also quote the kinetic freeze-out temperature obtained in Refs. [16,25]
through a blast-wave-fit
√
sNN [GeV] s0 [fm−3] S/B T fo

kin

7.7 29.6 17.5 116

11.5 35.3 26.7 118

19.6 43.0 45.8 113

27.0 45.8 56.8 117

39.0 47.6 84.3 117

62.4 60.2 123.9 99

130 70 277.6 98

200 84 331.6 89

3.1 Phase diagram and isentropic trajectories

We start our analysis with the study of the phase diagram of
the two models and of the evolution of the system along isen-
tropic trajectories corresponding to values of s/nB of interest
for the ongoing BES at RHIC. We display our results both in
the μq−T and in the nq−T planes, the last case allowing one
to get a deeper physical insight when the system, during its
evolution, meets a first-order phase transition. Our findings
are shown in Figs. 1 and 2. There is a wide region in the phase
diagram in which the transition from the chirally-symmetric,
deconfined phase to the chirally-broken, confined one is actu-
ally a crossover. In this case there is no well-defined location
of the transition associated to an unambiguous order param-
eter, but there are several quantities displaying peaks in a
quite narrow range of temperatures and chemical potentials.
We decide to identify the crossover between the two phases
– shown as a black, dotted line in Figs. 1 and 2 – through the
inflection point of the effective mass of the light quarks. We
also display the isentropic trajectories followed by the sys-
tem corresponding to the s/nB values quoted in Table 4; for
each case, they are plotted starting from s0 down to the esti-
mated kinetic freeze-out temperature T fo

kin. In both the PNJL
and the PQM models, for the currently accessible values of
s/nB , the transition of the system between the two phases
occurs in the crossover region.

The crossover line ends at a critical endpoint, beyond
which the transition becomes of first order, displayed by
black solid lines in the figures. The location (μCEP

B , T CEP)

of the CEP is found to be (875, 121) MeV and (903, 118)
MeV in the PNJL and PQM model. This can be compared
with the results found in independent implementations of
the PNJL model [34]. The corresponding critical isentropes
passing through the CEP is given by values of the entropy
per baryon s/nB = 7.02 and s/nB = 6.16, respectively.
We decide then to show also a few isentropes in which the
system, during its evolution, either passes very close to the
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Fig. 1 Phase diagram of the PNJL model expressed in terms of the
chemical potential (left) and of the baryon density (right). The black,
dotted lines represent the chiral crossover, identified through the inflec-
tion point of the effective mass of light quarks. The continuous, black
curves represent the first-order transition lines. The black, dashed spin-
odal lines represent the boundaries of the regions where a homogeneous

metastable phase is possible. We also show, in different colours, the
isentropic trajectories referring to the s/nB values given in Table 4.
Each curve starts at a temperature T0 corresponding to the values of
s0 given in Table 4 and is plotted down to the corresponding kinetic
freeze-out temperature T fo. We also plot two isentropic trajectories so
far not covered by the BES and entering into the first-order region

Fig. 2 The same as in Fig. 1, but for the PQM model

CEP or meets the first-order line. This region is shown in
finer detail in Fig. 3. In this last case, along the critical line,
for a given T and μq the thermodynamic potential has two
degenerate minima. The single critical line in the μq − T
plane actually becomes the boundary of an extended region
of phase coexistence in the nq − T plane. In the coexistence
region no stable homogeneous phase can exist, but a fraction
α of the volume is occupied by the chirally-restored phase
and a fraction (1 − α) is occupied by the chirally-broken
one. They are characterized by the same pressure, tempera-
ture and chemical potential, expressing the mechanical, ther-
mal and chemical equilibrium between the two phases. For
each T and μq the value of α, which is determined through
a Maxwell construction, depends on the history and kind
of evolution of the system. Usually in thermodynamics one

considers phase transitions occurring along isothermal lines,
however in heavy-ion collisions there is no thermal bath with
which the fireball is in contact. The system follows then an
isentropic expansion at fixed s/nq (nq = nB/3) and one has

s

nq
= αsQ(T, μq) + (1 − α)sH (T, μq)

αnQ(T, μq) + (1 − α)nH (T, μq)
, (22)

where sQ/H and nQ/H are the entropy and quark-number
density in the chirally restored/broken phase. One has α = 1
when the isentrope crosses the high-density branch of the crit-
ical line and α = 0 when it crosses the low-density branch.
Hence, a given value of T and μq does not fix α: one has to
specify also the isentrope followed by the system. Notice that,
considering this kind of evolution, one is implicitly assuming
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Fig. 3 Zoom of the first-order region in the phase-diagram of the PNJL
(left panel) and PQM (right panel) model. The black, dashed lines are the
boundary of the metastable region, in which the system can be found in
a local minimum of the thermodynamic potential. The brown and purple

curves represent isentropic trajectories in which the system experiences
a first-order transition, during which it lives in a mixed phase, until all
the volume is occupied by the new stable phase. We also show a few
isentropic trajectories passing very close to the CEP

that the nucleation rate of bubbles of the low-density, chirally-
broken phase is larger than the expansion rate of the fireball
and we are not addressing the case of super-heating/cooling,
which occurs if the system remains in a metastable mini-
mum. Establishing whether this is a realistic assumption of
whether the transition occurs via a different dynamics (spin-
odal decomposition) would need a deeper study of the rate
of bubble nucleation, requiring in particular the evaluation of
the surface tension of the interface between the two phases
[35–38], which is out of the scope of the present paper. In
any case, in Figs. 1 and 2, we display the regions in which in
the two models a homogeneous metastable phase may exist,
extending from the continuous first-order line to the dashed
spinodal lines.

The phase diagram plotted in terms of the quark den-
sity rather then of the chemical potential reveals how, in
both models, the first-order coexistence region extends down
to the origin. In the low-temperature regime the behaviour
of both models is then unphysical, since they do not leave
room for the existence of a self-bound homogeneous nuclear-
matter phase, which we know to exist, but whose experimen-
tal density nB ≈ 0.16 fm−3 would lie here in the coexistence
region. Furthermore there is no room for the liquid-gas phase
transition of nuclear matter, which is a characteristic feature
of strong interactions in the low-temperature (T � 20 MeV),
high-density regime for low values of the entropy per baryon
[39–41]. This must be viewed as a shortcoming of the mod-
els due to the pure scalar/pseudoscalar interaction and to the
mean field approximation. Actually, the inclusion of a repul-
sive vector interaction in the PNJL Lagrangian was shown to
avoid this unphysical behaviour predicted by the model [42].
This affects also the location of the CEP in the phase dia-
gram and for a sufficiently large value of the vector coupling

may also lead to its disappearance, the transition remaining
a crossover also in the high-density, low-temperature regime
[43]. We expect that the inclusion of a vector interaction and
of hadrons as dynamical degrees of freedom in the confined,
chirally-broken phase (going beyond the mean field approx-
imation, as done for instance in [44]) should improve the
description of this region of the phase diagram, allowing a
more reliable estimate of the position of the CEP.

In order to assess the role of the Polyakov field in fixing
the location of the CEP in the phase diagram, in Fig. 4 we
compare the PNJL vs NJL (left panel) and PQM vs QM
models (right panel). In both cases, coupling the quark with
the Polyakov field, the CEP turns out to move to a higher
temperature and a lower baryo-chemical potential.

Finally, in Fig. 5, we show a few isothermal curves for the
two models, plotting the pressure as a function of the specific
volume 1/nB . We choose values of T either above or below
the critical value TCEP. In this last case, in which a first-order
transition occurs, we show also the Maxwell construction.
Notice that the isothermal curves with T < TCEP display
two stationary points. Between the two stationary point the
pressure is a decreasing function of the density and the system
is thus unstable. This part of the curves actually corresponds
to effective quark masses arising from the maximum of the
thermodynamic potential; this is also the region in which a
single homogeneous phase can not exist.

3.2 The speed of sound

When the high temperature of a system allows the continuous
creation/annihilation of particle-antiparticle pairs with m �
T the mass density in no longer a meaningful concept and the
Newtonian definition of speed of sound has to be accordingly
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Fig. 4 The effect on the phase diagram and on the isentropic trajecto-
ries of the Polyakov field. Going from the NJL to the PNJL (left panel)
and from the QM to the PQM model (right panel), the CEP moves to

higher temperatures and lower chemical potentials. The red/blue curves
are the transition lines with/without the coupling between the quarks
and the Polyakov field

Fig. 5 Pressure vs specific volume for a few isothermal transforma-
tions in the PNJL (left panel) and PQM (right panel) models. We
plot curves both above and below the critical isothermal TCEP passing
through the CEP. In the case of a first-order transition we also display the

Maxwell construction. The stationary points of the isothermal curves
lie on top of the spinodal lines: between them the system is unstable
and cannot be found in a homogeneous phase

generalized. One can show that the relativistic squared speed-
of-sound c2

s is then given by the following derivative of the
pressure with respect to the energy density at constant entropy
per particle (baryon in the case of strong interactions):

c2
s = ∂p

∂ε

∣∣∣∣
s/n

. (23)

The speed of sound maps then a density gradient into a
pressure gradient, which – if the evolution of the system can
be described by hydrodynamics – is responsible for the accel-
eration of the fluid. Having already evaluated the various
isentropic trajectories at s/nB = const, the above quantity
is simply obtained via a numerical finite-difference method.

Results for c2
s corresponding to the values of s/nB considered

in this work are shown in Figs. 6 and 7, plotted as a func-
tion of temperature T and time τ . In mapping T into τ we
assume a simple Bjorken-like inviscid longitudinal expan-
sion, for which one has sτ = s0τ0. The curves are plotted
down to the kinetic freeze-out temperatures T fo

kin provided by
the experimental blast-wave fits and quoted in Table 4. Since
– in the mean-field approximation – as active degrees of free-
dom in the low-temperature/density phase both models have
dressed quarks suppressed by their large effective mass and
by their coupling with the Polyakov field, a kinetic freeze-
out temperature T fo

kin ≈ 120 MeV corresponds to a very small
value of the entropy density, much smaller than the one of
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Fig. 6 The squared speed of sound c2
s evaluated in the PNJL model along the isentropic trajectories of Fig. 1 plotted as a function of temperature

(left panel) and time τ (right panel). The different behaviour between a first-order transition (s/nB = 2, 5) and a smooth crossover is clearly visible

Fig. 7 The same as in Fig. 6, but for the PQM model

a hadron-resonance gas; hence, in order to reach the exper-
imental T fo

kin, we have to follow the evolution of the system
up to unrealistically large values of time τ . Having a more
realistic description of the chirally-broken phase within the
two models would require to include as dynamical degrees of
freedom the set of scalar/pseudoscalar mesons arising from
the quark-antiquark interaction contained in the Lagrangian.
We leave this issue for future work.

In Figs. 6 and 7 one can appreciate the very different
behaviour of the speed of sound depending whether, dur-
ing the isentropic evolution, the transition from the chirally
restored to the broken phase occurs via a smooth crossover
(curves with s/nB ≥ 17.5) or via a first-order change of state
(curves with s/nB = 2, 5). For the s/nB values of experi-
mental relevance in both models the transition occurs in the
crossover region and the speed of sound displays a rapid
but continuous drop for temperatures around the inflection
point of the light chiral condensate. Notice that there is no
qualitative difference in the behaviour of the curves corre-

sponding to the various center-of-mass energies explored at
RHIC, although – at a quantitative level – for all values of
time the speed of sound for low s/nB is significantly lower
than the one for large s/nB : this should have an impact on
the final momentum distributions of soft hadrons.

On the other hand if, during its evolution, the system meets
a first-order transition the speed of sound suddenly drops
(almost) to zero. Such a soft equation of state (EoS) should
translate into a very small acceleration of the fluid during this
stage, leaving its signatures in the final momentum distribu-
tions of the hadrons decoupling from the fireball.

More quantitative considerations would require inserting
the above EoS into a full hydrodynamic code including also
the evolution of baryon density [45], allowing one to simulate
the expansion of the fireball and the continuous decoupling
of light hadrons.
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3.3 Generalized susceptibilities

In this section we evaluate higher-order cumulants of the dis-
tributions of conserved charges (in particular, baryon num-
ber) provided by the PNJL and the PQM models. For the
sake of consistency, here we remind the basic definitions.
In statistical mechanics cumulants are expressed in terms
of derivatives of the pressure with respect to the chemical
potential, i.e [46].

〈N̂ n〉c ≡ ∂n(−Ω/T )

∂(μ/T )n

∣
∣∣∣
T

= ∂n(P/T )

∂(μ/T )n

∣
∣∣∣
T
V, (24)

where N̂ is the conserved charge and μ the associated chem-
ical potential. In heavy-ion collisions the relevant conserved
charges are baryon number, strangeness and electric charge,
however here we simply focus on baryon-number fluctua-
tions. The first few cumulants of a distribution are given by
(δ N̂ ≡ N̂ − 〈N̂ 〉)

〈N̂ 〉c = 〈N̂ 〉, 〈N̂ 2〉c = 〈δ N̂ 2〉,
〈N̂ 3〉c = 〈δ N̂ 3〉, 〈N̂ 4〉c = 〈δ N̂ 4〉 − 3(〈δ N̂ 2〉)2 (25)

and allow one to define its mean M , its variance σ 2, its skew-
ness S and kurtosis κ

M ≡ 〈N̂ 〉c, σ 2 ≡ 〈N̂ 2〉c, S ≡ 〈N̂ 3〉c
〈N̂ 2〉3/2

c

and

κ ≡ 〈N̂ 4〉c
〈N̂ 2〉2

c

. (26)

In particular, skewness and kurtosis of a distribution quan-
tify how asymmetric and peaked/broad the latter is with
respect to a Gaussian, for which 〈N̂ n〉c = 0 for n ≥ 3 and
hence S = κ = 0.

Why is the study of higher order cumulants of interest
for heavy-ion collisions? A first motivation comes from the
search of the CEP in the QCD phase-diagram, where – if
present – the transition is of second order and hence charac-
terized by an infinite correlation length of the order param-
eter, in this case the chiral condensate (ψ̄ψ). One finds that
higher order cumulants display a stronger sensitivity to such a
quantity [11] and this is of relevance for experimental studies,
in which the finite size and the expansion rate of the produced
medium – far from the thermodynamic limit in which a phase
transition is rigorously defined – would prevent one from
observing any actual divergence of a correlation length. Sec-
ondly, the experimental measurement of higher-order fluc-
tuations of conserved charges in heavy-ion collisions and
the comparison with theory results provided by lattice-QCD
simulations and Hadron-Resonance Gas model calculations
allow one to get an independent estimate of the chemical
freeze-out point [47–49], besides the usual one based on the

average yields of the various hadronic species. Finally, vari-
ous combinations of cumulants of conserved charges, allow
one to extract information on the nature of charge carriers,
and hence of the active degrees of freedom (hadrons or quarks
in the case of QCD), in the medium: for a comprehensive
review see Ref. [46].

Being the cumulants extensive quantities it is often conve-
nient to take ratios of the latter, so to cancel the dependence
on the volume V in Eq. (24), which can be poorly known: in
particular, in the case of relativistic heavy-ion collisions, the
only indirect information on the size of the medium comes
from the multiplicity of produced particles and from HBT
correlations. Furthermore one prefers dealing with dimen-
sionless quantities, in which the trivial T 4 dependence of
the pressure of a relativistic plasma is factorized. Ratios of
cumulants (here, simply of the baryon-number distribution)
are then defined in terms of ratios of the following general-
ized susceptibilities:

χ B
n ≡ ∂n(P/T 4)

∂(μB/T )n

∣∣∣
∣
T

. (27)

Due to the smaller experimental uncertainties the first ratio
considered in the literature was χ2/χ1 for baryon number,
electric charge and strangeness, which was employed to
extract information on the chemical freeze-out temperature
of the various hadronic species [49,50]. Here, as indepen-
dently done in the literature (see e.g. [51]), we focus instead
on the following two interesting ratios of cumulants, directly
related to the skewness and the kurtosis of the baryon-number
distribution:

χ B
3

χ B
1

= S
σ 3

M
and

χ B
4

χ B
2

= κσ 2. (28)

For the sake of simplicity in the following, with abuse of
language, we often refer to the above ratios as normalized
skewness and kurtosis. Their interest is first of all related
to their behaviour around the chiral transition. The second
order cumulant χ B

2 displays a ridge structure in the μB − T
plane along the crossover line [46]. Hence, we expect that
χ B

3 changes sign and χ B
4 stays negative around the location

of the chiral crossover. This is what one actually observes in
Figs. 8, 9, 10 and 11, where χ B

3 /χ B
1 and χ B

4 /χ B
2 are plotted

along the isentropic trajectories corresponding to values of
s/nB of interest for the ongoing BES at RHIC. There is in
fact a rich experimental activity aiming at finding a non-
monotonic behaviour of the skewness and kurtosis of net-
proton, kaon and charge distributions as one varies the center-
of-mass energy of the collision [20,21], although no definite
conclusions can be drawn so far.

As already mentioned, ratios of higher-order cumulants
allows one to get information on the nature of the active
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Fig. 8 PNJL results for the normalized skewness of the baryon-number distribution plotted as a function of temperature (left panel) and time τ

(right panel) along the isentropic trajectories shown in Fig. 1. The evolution always starts at time τ0 = 1 fm/c, corresponding to the entropy densities
s0 given in Table 4

Fig. 9 The same as in Fig. 8, but for the PQM model

Fig. 10 PNJL results for the normalized kurtosis of the baryon-number distribution plotted as a function of temperature (left panel) and time τ

(right panel) along the isentropic trajectories shown in Fig. 1. The evolution always starts at time τ0 = 1 fm/c, corresponding to the entropy densities
s0 given in Table 4
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Fig. 11 The same as in Fig. 10, but for the PQM model

degrees of freedom in the medium under the different condi-
tions of temperature and density. Consider first the classical
limit, in which for the (quasi-)particles of the medium the
condition Ep − μ  T holds. In this case

P ∼ m2T 2

2π2 eμ/T K2

(m
T

)
(29)

From Eq. (24) it follows that particles obey a Poissonian
distributions, with all cumulants equal to the mean, 〈Nn〉c =
M . Considering the fluctuations of conserved charges in a
relativistic gas one is actually interested in the distribution
of the net number of particles (particles minus antiparticles).
One gets then the difference of two Poissonian, i.e. a Skellam
distribution, for which one has:

〈Nn
net〉c = 〈N 〉 + (−1)n〈N 〉, (30)

where the factor (−1)n comes from the multiple derivatives
with respect to the chemical potential of the antiparticles,
entering with a minus sign. Consider now the following ratio
of higher-order cumulants of the net baryon number:

〈Nn+2
B,net〉c

〈Nn
B,net〉c

= Bn+2[〈NB〉 + (−1)n〈N B〉]
Bn[〈NB〉 + (−1)n〈N B〉] = B2, (31)

where B is the baryon charge carried by the elementary active
degrees of freedom. We expect this ratio to be 1 in the con-
fined, chirally-broken phase, where baryon number is carried
by particles – the baryons – with B = 1. In Figs. 8, 9, 10
and 11 we show that in the low-temperature/density phase
χ B

3 /χ B
1 and χ B

4 /χ2
2 actually approach 1 both in the PNJL

and PQM models. From Eqs. (17) and (18) one can see that
this arises from the role of the Polyakov field, which imple-
ments in an effective way colour-confinement suppressing
the contribution to the pressure from single-quark (B = 1/3)

and two-quark (B = 2/3) clusters, leaving unquenched only
the one from states with three quarks of different colours and
total baryon number B = 1. We stress that, if the effective
valence quarks, with B = 1/3, were active degrees of free-
dom one would get a much lower value for this ratio, close
to 1/9: this is what actually happens in the standard NJL and
QM models, which do not implement quark confinement.
Notice however that, both in the PNJL and PQM models, in
the high-temperature/density limit in which baryon number
is carried by quarks, χ B

3 /χ B
1 and χ B

4 /χ2
2 saturate to a very

low value, even smaller than the classical result 1/9 given by
Eq. (31), due to the effect of quantum statistics.

4 Discussion and perspectives

In this paper we explored the thermodynamics of strongly-
interacting matter through two effective Lagrangians devel-
oped in the literature to describe the spontaneous break-
ing of Z3 (confinement/deconfinement transition) and chiral
symmetry: the PNJL and the PQM models. We performed
our study in the mean-field approximation, describing the
system as a gas of quarks endowed with effective masses
and coupled to the Polyakov fields. Both the effective quark
masses and the expectation value of the Polyakov fields are
obtained requesting the thermodynamic potential to be sta-
tionary under variations of the above quantities. Our aim
was to obtain very general qualitative information on the
phase-diagram of strong interactions and on the behaviour
of matter in the different regions of the μB − T plane, not
accessible by lattice-QCD simulations, limited to the case
of vanishing or very small baryon density. Our phenomeno-
logical motivation was to provide a theoretical guidance for
the rich ongoing and future experimental programs at RHIC,
SPS, NICA and FAIR, in which heavy-ion collisions at low
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center-of-mass energy (will) allow the exploration of the chi-
ral/deconfiment transition in the high-density region of the
QCD phase-diagram.

The strongest motivation of the above experimental pro-
gram is the search for the possible critical endpoint in the
QCD phase-diagram, were the sharper and sharper crossover
would turn into a first-order transition. Hence, we started our
analysis identifying the crossover/first-order transition line in
the μB − T plane and establishing the location of the CEP:
for (μCEP

B , T CEP) we obtained the values (875, 121) MeV
and (903, 118) MeV in the PNJL and PQM models, respec-
tively. It is of interest to check how close/far these values
are from the region currently explored in beam-energy scan
ongoing at RHIC. QCD conserves baryon number; further-
more, if dissipative effects are small, entropy production is
negligible during the expansion of the fireball arising from
the heavy-ion collisions. Hence, the evolution of the medium
produced in the collision occurs along trajectories of con-
stant entropy-per-baryon. We estimated the S/BB values of
relevance for the BES at RHIC starting from the measured
yields of charged particles (assuming S ∼ N ch) and net pro-
tons, obtaining values ranging from 17 to 330 at the lowest
(
√
sNN = 7.7 GeV) and highest (

√
sNN = 200 GeV) center-

of-mass energy respectively. For comparison, in the PNJL
and PQM models, the critical isentropes passing through the
CEP correspond to values of (s/nB)crit of 7.02 and 6.16. If
the above estimates are realistic one should conclude that
at RHIC we have not yet reached conditions close to the
CEP of the QCD phase-diagram. Due to its conceptual and
possibly phenomenological importance, in our analysis we
explored also the first-order transition region, where two dif-
ferent phases can coexist in equilibrium or – if the evolution
of the system is rapid enough compared to the bubble nucle-
ation rate – the system can remain for long in a metastable
phase. Hence, in our figures, we also plotted the correspond-
ing spinodal curves predicted by the two models, boundaries
of the metastability regions.

If, even at the lowest center-of-mass energy explored in
the BES at RHIC, the transition might occur far from the
first-order region, are there experimental signatures sensi-
tive to the steeper and steeper crossover as the baryon den-
sity increases? We started our investigation considering the
speed of sound, whose evolution was studied along the dif-
ferent isentropes. The qualitative behaviour of all the curves
referring to the crossover case looks very similar, however –
at the quantitative level – at any given time the value of c2

s in
collisions at lower center-of-mass energies is always much
lower than the one at higher

√
sNN. Since c2

s maps energy-
density gradients into pressure gradients, responsible for the
fluid acceleration, such a sizeable softening of the EoS at
lower values of

√
sNN should strongly affect the flow of the

medium. Experimental signatures of the softening of the EoS
can be looked for in the transverse-momentum distributions

of the produced hadrons. The average transverse mass 〈m⊥〉
of pions, kaons and protons as a function of

√
sNN was studied

in nucleus-nucleus collisions at AGS, SPS, RHIC and LHC.
One found 〈m⊥〉 − m ≈ 0.2 GeV at the low AGS energies
[52], a flat plateau around a higher value at SPS [14] and at
the lowest energies of the BES at RHIC [16] and an increas-
ing trend starting from

√
sNN ≈ 60 GeV up to LHC energies.

These findings look compatible with the combined effect of
the softening of the EoS and of the milder energy-density gra-
dients as

√
sNN gets lower. Actually, people suggested that

the flat plateau of 〈m⊥〉 at SPS energies might be due to the
coexistence of the hadronic and deconfined phases typical of
a first-order transition. However, more solid conclusions can
only be drawn solving the full set of hydrodynamic equa-
tions for finite baryon density and with a realistic EoS, with
a steeper and steeper crossover eventually turning into a first-
order transition.

If the speed of sound mainly affects the momentum dis-
tribution of the produced hadrons, the fluctuations of their
yields – more precisely the ones associated to conserved
quantities, like net protons, kaons and charged particles – are
related to the higher-order susceptibilities of baryon-number,
strangeness and electric charge. Accordingly, we addressed
their evaluation starting from the mean-field thermodynamic
potential of the PNJL and PQM models, focusing in this paper
only on baryon-number fluctuations. At the CEP the order
parameter (the σ field or chiral condensate) is characterized
by an infinite correlation length ξ leading to a divergence of
its cumulants and of all the cumulants of quantities coupled
to the latter, like the baryon number. Notice that in heavy-ion
collisions, due to the finite size and lifetime of the medium,
one would not observe any actual divergence of the correla-
tion length and it is thus necessary to focus on higher-order
cumulants, which display a stronger sensitivity on ξ . Hence,
we studied the ratios of the generalized baryon-number sus-
ceptibilities χ B

3 /χ B
1 and χ B

4 /χ B
2 along lines of fixed s/nB of

interest for the BES at RHIC, finding that for the trajectories
passing closer to the CEP – for which the crossover is steeper
– the above quantities display sizeable oscillations and rapid
changes of sign in the transition region. Clearly, one aims
at finding signatures of the above non-trivial behaviour in
the proximity of the CEP in the experimental fluctuations of
conserved charges (baryon number, strangeness and electric
charge), looking for deviations from a trivial Skellam statis-
tics, although how far the chemical freeze-out point lies from
the chiral transition plays a crucial role. For the moment the
above higher-order cumulants were used for a less ambitious
purpose, namely to get an independent estimate of the chem-
ical freeze-out point in the μB − T plane, besides the usual
one based on the average yields of identified hadrons.

Our work has to be considered just as a first step towards
the aim of providing solid theoretical qualitative guidance
within chiral effective models for the experimental explo-
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ration of the phase-diagram of strongly-interacting matter.
We plan to improve our models in various aspects. First of
all we plan to go beyond the present mean-filed approxima-
tion, largely employed in the literature, but unable to provide
a realistic picture of the hadronic phase, where pions, kaons,
protons …are important degrees of freedom contributing to
the thermodynamics. Notice that mesons (and also baryons)
can be obtained in the PNJL model as solutions of a Bethe–
Salpeter equation [53–55], but one should go one step further
and add self-consistently their contribution to the thermody-
namic potential [56]. Secondly, we plan to add to the mod-
els a vector interaction. We should get then a more realistic
description of the phase diagram, where presently the value of
the nuclear-matter density nB ≈ 0.16 fm−3 lies in the phase-
coexistence region, representing an unphysical feature of the
two models. Finally, we plan to carry out a deeper study of the
first-order transition, investigating aspects like the interface
energy between the two phases, the rate of bubble/droplet
nucleation and the possible occurrence of spinodal instabil-
ities under the experimental conditions. We leave the above
items for forthcoming publications.
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