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Abstract No! We show that the field equations of Einstein–
Gauss–Bonnet theory defined in generic D > 4 dimensions
split into two parts one of which always remains higher
dimensional, and hence the theory does not have a non-trivial
limit to D = 4. Therefore, the recently introduced four-
dimensional, novel, Einstein–Gauss–Bonnet theory does not
admit an intrinsically four-dimensional definition, in terms of
metric only, as such it does not exist in four dimensions. The
solutions (the spacetime, the metric) always remain D > 4
dimensional. As there is no canonical choice of 4 spacetime
dimensions out of D dimensions for generic metrics, the the-
ory is not well defined in four dimensions.

1 Introduction

Recently a four-dimensional Einstein–Gauss–Bonnet theory
that is claimed to propagate only a massless spin-2 graviton
was introduced as the D → 4 limit in [1] with the action

I =
∫

dDx
√−g

[
1

κ
(R − 2�0)

+ α

D − 4

(
Rαβρσ R

αβρσ − 4Rαβ R
αβ + R2

)]
, (1)

of which the field equations are [2,3]
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where the “Gauss–Bonnet tensor” reads

Hμν = 2

[
RRμν − 2Rμανβ R

αβ + Rμαβσ R
αβσ

ν − 2RμαR
α
ν

−1

4
gμν

(
Rαβρσ R

αβρσ − 4Rαβ R
αβ + R2

) ]
. (3)

For D > 4, (2) is the well-known Einstein–Gauss–Bonnet
theory which has been studied in the literature in great
detail. On the other hand, for D = 4, the Hμν tensor van-
ishes identically and hence, as per common knowledge, the
field equations (2) reduces to the Einstein’s theory. This is
because in four dimensions, the Gauss–Bonnet combina-
tion G := Rαβρσ Rαβρσ − 4Rαβ Rαβ + R2 can be written
as G = εμναβεμνσρRαβγλRγ λσρ and yields a topological
action, i.e. the Euler number which is independent of the
metric gμν . This was the state of affairs until the paper [1]
implicitly asked the question “how does the Hμν tensor go
to zero as D → 4?”. The answer is very interesting: because
if it goes to zero in the following way

Hμν = (D − 4)Yμν, (4)

where Yμν is a new tensor to be found, then the authors of
[1] argue that in the D → 4 limit, the field equations (2)
define a four-dimensional theory in the limit. So namely, the
suggested four-dimensional theory would be the following
theory in source-free case:

lim
D→4

[
1

κ

(
Rμν − 1

2
gμνR + �0gμν

)
+ α

D − 4
Hμν

]
= 0.

(5)

Let us try to understand what the suggested theory is. As
there is no intrinsically defined four-dimensional covariant
tensor that the Gauss–Bonnet tensor reduces to; namely, Yμν
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in (4) does not exist as guaranteed by the Lovelock theo-
rem [4–6] and as will be shown below, the theory must be
defined as a limit. Thus, to compute anything in this theory,
say the perturbative particle content, the maximally sym-
metric vacua, the black hole solutions, or any solution with
or without a symmetry, one must do the computation in D
dimensions and than take the D → 4 limit. Surely, for some
components of the the metric such as the spherically symmet-
ric metric, due to the nature of the the Gauss–Bonnet tensor,
this limit might make sense. But, at the level of the solutions,
namely at the level of the full metric, this limit makes no
sense at all. For example, assume that there is a solution to
the theory given locally with the D dimensional metric gμν

say which has no isometries. Then, as we need to take the
D → 4 limit, which dimensions or coordinates do we dis-
pose of, is there a canonical prescription? The answer is no!
Even for spherically symmetric solutions of Boulware and
Deser [7], studied so far, we do not have the right to dispose
any dimension we choose.

What we have just stated is actually at the foundations of
defining a gravity theory in the Riemannian geometry con-
text. The Riemannian geometry depends on the number of
dimensions, in defining a classical gravity theory based on
geometry one first fixes the number of dimensions to be some
D; and as this number changes, the theory changes. There
is no sensible limiting procedure as defined by (5); there is
of course compactification, dimensional reduction etc where
all the spacetime dimensions still survive albeit not in equal
sizes generically.

The layout of the paper is as follows: in Sect. 2, we recast
the D-dimensional Gauss–Bonnet tensor using the Weyl ten-
sor in such a way that it naturally splits into two parts. One
part has a formal D → 4 limit, while the other part is always
higher dimensional. In Sect. 3, we give another proof that the
theory is non-trivial only for D > 4 using the first-order for-
malism with the vielbein and the spin-connection. In Sect. 4,
we give a an explicit example in the form of a direct-product
metric where the role of the higher dimensional part is appar-
ent.

2 D → 4 limit of the field equations

To further lay out our ideas, and to show that there is no four-
dimensional definition of the theory, let us recast the Gauss–
Bonnet tensor, in such a way that we can see the limiting
behaviors. For this purpose, the Weyl tensor,

Cμανβ = Rμανβ − 2

(D − 2)
(gμ[νRβ]α − gα[νRβ]μ)

+ 2

(D − 1) (D − 2)
Rgμ[νgβ]α, (6)

becomes rather useful. Using Appendix A of [8], the Gauss–
Bonnet tensor in D dimensions can be split as

Hμν = 2(Lμν + Zμν), (7)

where the first term does not have an explicit coefficient
related to the number of dimensions and is given as

Lμν := CμαβσC
αβσ

ν − 1

4
gμνCαβρσC

αβρσ , (8)

which we shall name as the Lanczos–Bach tensor, and the
other part carries explicit coefficients regarding the number
of dimensions:

Zμν := (D − 4) (D − 3)

(D − 1) (D − 2)

[
−2 (D − 1)
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Cμρνσ R
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ρ
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(D − 2)
RμνR

+ 1

(D − 2)
gμν

(
(D − 1) Rρσ R

ρσ − D + 2

4
R2

)]
,

(9)

where we kept all the factors to see how the limiting proce-
dure might work. With the 2/ (D − 4) factor, the second part
nicely reduces to a tensor Sμν which is finite in the D → 4
limit;

Sμν := 2

D − 4
Zμν. (10)

But, the first part is rather non-trivial. In D = 4 dimensions
we have the Lanczos–Bach identity [6,9] for any smooth
metric;

CμαβσC
αβσ

ν = 1

4
gμνCαβρσC

αβρσ

for all metrics in D = 4. (11)

Thus, a cursory look might suggest that one might naively
assume the Lanczos–Bach identity in four dimensions and
set Lμν = 0 in the D → 4 limit yielding a finite intrinsically
four dimensional description of the Gauss–Bonnet tensor as

lim
D→4

(
1

D − 4
Hμν

)
= 1

3

[
− 6Cμρνσ R

ρσ − 3RμρR
ρ
ν

+2RμνR + 3

2
gμν

(
Rρσ R

ρσ − 1

2
R2

) ]
. (12)

where the right-hand side is Sμν , given in (10), calculated
at D = 4. But this is a red-herring! The H tensor or the S
tensor does not obey the Bianchi identity

∇μSμν �= 0. (13)

123



Eur. Phys. J. C (2020) 80 :647 Page 3 of 6 647

Therefore, without further assumptions, it cannot be used
in the description of a four dimensional theory. Then, this
begs the question: How does the Lμν tensor go to zero in the
D → 4 limit, that is

lim
D→4

[
1

D − 4

(
CμαβσC

αβσ
ν − 1

4
gμνCαβρσC

αβρσ

)]
=?

(14)

To save the Bianchi identity, Lμν should have the form

2

D − 4
Lμν = Tμν for D �= 4. (15)

If this is the case, then there is a discontinuity for the Gauss–
Bonnet tensor as

1

D − 4
Hμν =

{
Tμν + Sμν, for D �= 4,
0
0 , for D = 4.

(16)

Then, in the D → 4 limit, the Gauss–Bonnet tensor with an
α/D − 4 factor becomes

lim
D→4

(
1

D − 4
Hμν

)
= Tμν + Sμν, (17)

that is the Gauss–Bonnet tensor is not continuous in D at D =
4. This discontinuity in the Gauss–Bonnet tensor introduces
a problem: Let gDμν be the solution of the field equations for
D > 4, and glim

μν is the solution of the limiting field equations
(17); then

lim
D→4

gDμν �= glim
μν , (18)

in general.
Incidentally, the Lμν tensor is related to the trace of the

D dimensional extension of the Bel–Robinson tensor given
in [10] which reads

Bαβλμ = CαρλσCβ
ρ

μ
σ + CαρμσCβ

ρ
λ

σ

−1

2
gαβCρνλσC

ρν
μ

σ

−1

2
gλμCαρσνCβ

ρσν + 1

8
gαβgλμCρνσηC

ρνση,

(19)

and one has

gλμBαβλμ = D − 4

2
Lαβ. (20)

To summarize, in this section, we have shown that there
is a part of the Gauss–Bonnet tensor Hμν which is always
higher dimensional even though one part of the tensor can be
made finite with the procedure of dividing by 1/ (D − 4) and

then formally assuming that the remaining indices are four
dimensional. The all important point here is that if one bluntly
drops the extra dimensional part (which we called Lμν), then
the Bianchi identity is not satisfied for the remaining four-
dimensional theory. Thus, one either has all the dimensions,
or one has four dimensions without the benefit of the Bianchi
identity. If one chooses the second option, one cannot couple
the four-dimensonal theory to conserved matter fields; or one
must impose the Bianchi identity on-shell for the solutions.

3 The field equations in first-order formulation

The authors of [1] argued that in the first-order formulation
of the Gauss–Bonnet theory a (D − 4) factor arises in the
field equations, and this factor can be canceled by introduc-
ing the α/ (D − 4) factor in the action. This claim needs
to be scrutinized carefully as we do here. Let us just con-
sider the Gauss–Bonnet part of the action without any fac-
tors or coefficients. Then, we have the D-dimensional action
in terms of the vielbein 1-form ea and the curvature 2-form
Rab := dωab + ωac ∧ ωb

c ;

IGB =
∫
MD

εa1a2···aD Ra1a2 ∧ Ra3a4 ∧ ea5 ∧ ea6 · · · ∧ eaD ,

(21)

where the Latin indices refer to the tangent frame. Then,
varying the action with respect to the spin connection yields
zero in the zero torsion case; and the rest of the field equations
are obtained by varying with respect to the vielbein. At this
stage the discussion bifurcates:1 Assume that D = 4, then
the action reduces to

∫
M4

εa1a2a3a4 R
a1a2 ∧Ra3a4 where there

is no vierbein left and one has

δea

∫
M4

εa1a2a3a4 R
a1a2 ∧ Ra3a4 = 0, D = 4. (22)

On the other hand, for generic D > 4 dimensions, variation
with respect to the vielbein yields the field equation as a
(D − 1)-form

EaD = (D − 4)εa1a2···aD Ra1a2 ∧ Ra3a4 ∧ ea5 ∧ ea6

· · · ∧ eaD−1 D > 4. (23)

Clearly the (D − 4) factor arises, but it does so only in D
dimensions: one cannot simply multiply with a α/ (D − 4)

and take the D → 4 limit! In fact, starting from the last
equation, one can get the second order, metric form of the
Gauss–Bonnet tensor Hμν , and in the process, one sees the
role played by this (D − 4) factor. To do so, instead of the

1 For D ≤ 3 the action vanishes identically and no further discussion
is needed.
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tangent frame indices we can recast it in terms of the space-
time indices as which can be written as

Eν = (D − 4)

4
εμ1μ2...μD−1νR

μ1μ2
σ1σ2 R

μ3μ4
σ3σ4dx

σ1 ...

× ∧ dxσ4 ∧ dxμ5 ... ∧ dxμD−1 . (24)

This is really a covariant vector-valued (D − 1)-form, and
the Hodge dual of this (D − 1)-form is a 1-form; and since
we have

∗ (
dxσ1 ... ∧ dxσ4 ∧ dxμ5 ... ∧ dxμD−1

)
= εσ1...σ4μ5...μD−1

μDdx
μD , (25)

the 1-form field equations read

∗ Eν = (D − 4)

4
εμ1μ2...μD−1νε

σ1...σ4μ5...μD−1
μD

Rμ1μ2
σ1σ2

Rμ3μ4
σ3σ4

dxμD , (26)

from which we define the rank-2 tensor Eνα as

∗Eν =: Eναdx
α. (27)

Explicitly one has

Eνα = (D − 4)

4
εμ1μ2...μD−1νε

σ1...σ4μ5...μD−1
αR

μ1μ2
σ1σ2

Rμ3μ4
σ3σ4

,

(28)

which can be further reduced with the help of the identity

εμ1μ2...μD−1νε
σ1...σ4μ5...μD−1

α = − (D − 5)!gβαδσ1..σ4β
μ1...μ4ν

,

(29)

where we used the generalized Kronecker delta. So, we have

Eνα = − (D − 4)

4
(D − 5)!gβαδσ1..σ4β

μ1...μ4ν
Rμ1μ2

σ1σ2
Rμ3μ4

σ3σ4

= − (D − 4)!
4

gβαδσ1..σ4β
μ1...μ4ν

Rμ1μ2
σ1σ2

Rμ3μ4
σ3σ4

. (30)

Observe that the (D − 4) factor turned into (D − 4)! which
does not vanish for D = 4. Since one also has

gβαδσ1..σ4β
μ1...μ4ν

Rμ1μ2
σ1σ2

Rμ3μ4
σ3σ4

= −8Hνα, (31)

whereHνα is the Gauss–Bonnet tensor we defined above, we
get

Eνμ = 2 (D − 4)!Hνα (32)

Thus, the moral of the story is that one either has an explicit
(D − 4) factor in front of the field equations when they are
written in terms of the vielbeins and the spin connection
where the dimensionality of the spacetime is explicitly D >

4 as counted by the number of vielbeins; or, one does not

have an explicit (D − 4) factor in the field equations in the
metric formulation. There is no other option. In the metric
formulation, we have shown in the previous section that a
(D − 4) does not arise for generic metrics in all parts of the
field equations.

4 Direct-product spacetimes

To see the alluded problems explicitly in an example, let
us consider the direct-product spacetimes for which the D-
dimensional metric has the form

ds2 = gABdx
Adx B = gαβ

(
xμ

)
dxαdxβ

+gab
(
xc

)
dxadxb, (33)

where A, B = 1, 2 . . . , D; α, β = 1, 2, 3, 4; and a, b =
5, 6, · · · , D. Here, gαβ depends only on the four-dimensional
coordinates xμ, and gab depends only on the extra dimen-
sional coordinates xc. Then, for the Christoffel connection,

�A
BC = 1

2
gAE (∂BgEC + ∂CgEB − ∂EgBC ) , (34)

it is easy to show that the only nonzero parts are

D�α
βμ =4�

α
βμ = 1

2
gαε

(
∂βgμε + ∂μgβε − ∂εgβμ

)
, (35)

D�a
bc =d�

a
bc = 1

2
gae (∂bgce + ∂cgbe − ∂egbc) , (36)

where the subindex d denotes the (D − 4)-dimensional. Due
to this property, we have the following nonzero components
of the Riemann tensor, RA

BCE , and Ricci tensor, RAB ;

DR
α
βμε =4 Rα

βμε, DR
a
bce =d Ra

bce,

DRαβ =4 Rαβ, DRab =d Rab. (37)

In addition, the scalar curvature splits as

DR =4R + d R. (38)

The nonzero components of the Weyl tensor CABEF are

DCαβεν =4Cαβεν + (D − 4)

(D − 2)

(
gα[ε 4Rν]β − gβ[ε 4Rν]α

)

− (D − 4) (D + 1)

3 (D − 1) (D − 2)
4Rgα[εgν]β

+ 2

(D − 1) (D − 2)
d Rgα[εgν]β, (39)

DCabef =dCabe f + 8

(D − 2) (D − 6)

× (
ga[e d R f ]b − gb[e d R f ]a

)
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− 8 (2D − 7)

(D − 1) (D − 2) (D − 5) (D − 6)
d Rga[eg f ]b

+ 2

(D − 1) (D − 2)
4Rga[eg f ]b, (40)

DCαbaβ = 1

(D − 2)

(
gαβ d Rab + gab 4Rαβ

)

− 1

(D − 1) (D − 2)
(4R + d R) gαβgab, (41)

in addition to DCαbβa = −DCbαβa = DCbαaβ = −DCαbaβ .
If the d-dimensional internal space is flat as

ds2 = gABdx
Adx B = gαβ

(
xμ

)
dxαdxβ + ηabdx

adxb,

(42)

then one has

DR
a
bce = 0, DRab = 0, DR = 4R, (43)

and nonzero components of the Weyl tensor given in (39-41)
become

DCαβεν =4Cαβεν + (D − 4)

(D − 2)

(
gα[ε 4Rν]β − gβ[ε 4Rν]α

)

− (D − 4) (D + 1)

3 (D − 1) (D − 2)
4Rgα[εgν]β, (44)

DCabe f = 2

(D − 1) (D − 2)
4Rηa[eη f ]b, (45)

DCαbaβ = 1

(D − 2)
ηab 4Rαβ − 1

(D − 1) (D − 2)
4Rgαβηab,

(46)

in addition to DCαbβa = −DCbαβa = DCbαaβ = −DCαbaβ .
With the above results, let us provide a clear example of

where the limit

lim
D→4

LAB = lim
D→4

[
1

D − 4

(
CAEFGC

EFG
B

− 1

4
gABCEFGHC

EFGH
)]

, (47)

fails. Consider the Lab components of the Lanczos–Bach
tensor,

Lab = CaEFGC
EFG

b − 1

4
ηabCEFGHC

EFGH . (48)

These components can be written as

Lab =
(

DCaef g DC
ef g

b + 2 DCaε f γ DC
ε f γ

b

)

− 1

4
ηab

(
DCαενγ DC

αενγ + DCaef g DC
aef g

+4 DCαeγ f DC
αeγ f

)
. (49)

By using (44–46), the Lab components of the Lanczos–Bach
tensor can be calculated in terms of the four-dimensional and
d-dimensional quantities as

Lab = −1

4
ηab

(
4Cενγ η 4C

ενγ η

+2
(
D2 − 6D + 4

)
(D − 2)2 4Rεν 4R

εν

−
(
D3 − 5D2 + 2D − 16

)
3 (D − 1) (D − 2)2 4R

2
)

. (50)

Then, the D → 4 limit for this term in the form,

lim
D→4

[
− ηab

4 (D − 4)

(
4Cενγ η 4C

ενγ η

+2
(
D2 − 6D + 4

)
(D − 2)2 4Rεν 4R

εν

−
(
D3 − 5D2 + 2D − 16

)
3 (D − 1) (D − 2)2 4R

2
)]

, (51)

is undefined, and this fact indicates that in general, there is
no proper D → 4 limit for the field equations for the direct-
product spacetimes.

5 Conclusions

Recently [1], contrary to common knowledge and to the
Lovelock’s theorem [4–6], a novel four-dimensional Einstein–
Gauss–Bonnet theory with only a massless spin-2 gravi-
ton degree of freedom was suggested to exist. A four-
dimensional gravity theory should have four-dimensional
equations: here, we have shown that this is not the case.
Namely, we have shown that the novel Einstein–Gauss–
Bonnet theory in four dimensions does not have an intrinsi-
cally four-dimensional description in terms of a covariantly-
conserved rank-2 tensor in four dimensions. We have done
this by splitting the Gauss–Bonnet tensor (2) into two parts as
(7): one is what we called the Lanczos–Bach tensor (8) which
is related to the trace of the D-dimensional Bel–Robinson
tensor which does not have an explicit (D − 4) factor, and
the other part (9) is a part that has an explicit (D − 4) fac-
tor in front. The Lanczos–Bach tensor vanishes identically
in four dimensions; however, it cannot be set to identically
zero in that dimensions since in the absence of it, the Gauss–
Bonnet tensor does not satisfy the Bianchi Identity. Thus,
the theory must be defined in D > 4 dimensions to be non-
trivial which is in complete agreement with the Lovelock’s
theorem. But, once the theory is defined in D dimensions, it
will have all sorts of D dimensional solutions and in none
of these solutions one can simply dispose of (D − 4) dimen-
sions or coordinates as such a discrimination among space-
time dimensions simply does not make sense. We gave an
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explicit example in the form of a direct product. In the first-
order formulation with the vielbein and the spin connection,
there is an explicit (D − 4) factor in front of the field equa-
tions, but this factor only arises in D > 4 dimensions not in
four dimensions. What we have shown here for the Gauss–
Bonnet tensor in its critical D = 4 dimensions is also valid
for the other Lovelock tensors in their critical dimensions. As
a final remark, let us note that following the D → 2 formal
limit of Einstein’s gravity as was done in [11], if one carries
out a D → 4 construction in the EGB theory, one finds [12–
14], complementing our arguments, that the ensuing theory is
not only a theory of massless spin-2 gravitons but additional
scalar fields (of the Horndeski or Galileon type) appear.
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