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Abstract Parametrizations of equation of state parameter
as a function of the scale factor or redshift are frequently
used in dark energy modeling. The question investigated in
this paper is if parametrizations proposed in the literature are
compatible with the dark energy being a barotropic fluid. The
test of this compatibility is based on the functional form of
the speed of sound squared, which for barotropic fluid dark
energy follows directly from the function for the Equation
of state parameter. The requirement that the speed of sound
squared should be between 0 and speed of light squared
provides constraints on model parameters using analytical
and numerical methods. It is found that this fundamental
requirement eliminates a large number of parametrizations
as barotropic fluid dark energy models and puts strong con-
straints on parameters of other dark energy parametrizations.

1 Introduction

Ever more precise observations of various cosmic phenom-
ena [1–6] reveal a present state of universe which cannot be
understood only in terms of General Relativity and forms
of matter known from local physics, such as radiation or
baryonic matter. Available observations point to the presently
accelerated cosmic expansion, whereas the dynamics at the
level of galaxies and clusters of galaxies, among other places,
reveals additional gravitational interaction which could be
explained by the presence of large quantities of, yet not
directly observed, dark matter. The mechanism behind the
accelerated cosmic expansion is usually attributed to a cos-
mic component with the negative pressure, called dark energy
(DE). It has been shown that the concept of dark energy can
be realized in many different ways such as cosmological con-
stant, dynamical cosmological term, quintessence, phantom
energy, k-essence or interacting dark energy [7–12]. Numer-
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ous alternatives have been proposed to both dark matter and
dark energy, frequently as a modification of gravitational
interaction at scales from galactic to cosmic [13–15]. Yet,
even if the effects such as accelerated cosmic expansion or
galactic rotation curve dynamics do not originate from cos-
mic components, concepts of dark matter and dark energy
(including their unifications) remain very useful effective
concepts. Present observational data reveal a large tension in
the value of H0 inferred from low and high redshift measure-
ments assuming the benchmark �CDM model (for a recent
review see [16]). Some of proposed solutions to this puzzle
are nontrivial dynamics of dark energy [6] and dark matter-
dark energy interaction [17].

Presently, various models of dark energy have been pro-
posed that available observational data cannot efficiently dis-
criminate. Physically very distinct DE models can produce
very similar global DE evolution and, correspondingly, very
similar history of global cosmic expansion. Without a pre-
ferred DE model, the fits to observational data have to be per-
formed for a large number of dynamically near-degenerate
models. In such a situation a number of researchers have
adopted a phenomenological approach of modeling the equa-
tion of state (EoS) parameter as a function of the scale
factor, w = w(a) (or equivalently of the cosmic redshift,
w = w(z)) [18–40]. This approach simplifies the analysis
of DE dynamics and allows the analysis of physically inter-
esting w(a) functions. Although such parametrizations may
constitute a phenomenological approach of their own to the
modeling of dark energy, their main purpose is the simplifica-
tion of the fits to the observational data. In this way a single
simple w(a) parametrization may represent the dynamical
behavior of a large number of DE models. Yet, it is important
to know to which extent the choice of some parametrization
limits its representation by some specific physical model. In
particular, it would be interesting to know if some DE mod-
els cannot be represented by some w(a) parametrization. In
this paper we particularly focus on barotropic fluid models of
dark energy and investigate which w(a) parametrizations are
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compatible with barotropic fluid DE. Here barotropic fluid is
understood as a fluid for which the fluid pressure is a function
of fluid energy density only. In determining the compatibility
we do not employ the comparison of particular parametriza-
tions with the observational data, but rely on fundamental
physical constraints on the fluid DE speed of sound.

If we assume that the dark energy specified by some
particular w(a) (or equivalently w(z)) parametrization is
physically a barotropic fluid, an explicit expression for the
barotropic speed of sound squared can be obtained from
w(a). Inserting the definition of speed of sound squared for
barotropic fluids, c2

s = d p
d ρ

and the Equation of State (EoS)

parameter w = p
ρ

into the continuity equation

dρ + 3(ρ + p)
da

a
= 0, (1)

yields the dynamical equation for the EoS parameter

a
dw

da
= −3(1 + w)(c2

s − w). (2)

This equation can be easily rearranged to obtain the expres-
sion for c2

s in terms of w and a dw
da :

c2
s = w − 1

3(1 + w)
a
dw

da
. (3)

If a dw
da can be expressed as a function of w, then the speed

of sound squared can also be expressed as a function of w,
i.e. c2

s = c2
s (w). This line of modeling has been successfully

applied to the description of cosmological constant boundary
crossing [41] and dark energy-dark matter unification [42,
43].

The barotropic fluid speed of sound squared is physically
constrained to be nonnegative and not larger than speed of
light squared, c2. As we work in system of units where c = 1,
these requirements translate to 0 ≤ c2

s ≤ 1. For known
w(a) one can obtain c2

s (a) from (3) and model parameters for
which 0 ≤ c2

s (a) ≤ 1 is satisfied for the entire past cosmic
expansion, i.e. for the entire [0, a0] interval. In this way we
can select w(a) parametrizations which are suitable for the
description of barotropic fluid dark energy as those for which
the condition on speed of sound squared is satisfied at least
for some model parameters. The allowed region of model
parameters is further analyzed if some of its portion corre-
sponds to presently accelerating component (corresponding
to ρ + 3p < 0). This program, though physically simple,
turns out to be quite restrictive for a large number of DE
parametrization models.

The paper is organized as follows. The first section brings
the introduction and the presentation of the main idea. In the
second section we present analytical approach to determi-
nation of allowed model parameters and apply it to a one-

parameter model and elaborate general methods useful in
analytical treatment. In the third section we present numeri-
cal approaches to determination of allowed parameter values
and apply them to a large number of parametrizations avail-
able in the literature. In the following section we discuss
the obtained results and finish the paper with conclusions.
In the “Appendix” we bring the analytical solution for the
Chevallier–Polarski–Linder (CPL) model [20,21].

2 Analytical results

The feasibility of constraining the model parameters ana-
lytically crucially depends on the form of the w(a) func-
tion and constraints can be obtained analytically only in spe-
cific cases. Even in cases where the said constraints can be
obtained using analytical techniques, the very procedure can
be quite involved and the obtained results are not very trans-
parent and informative. Still, analytically tractable cases can
be very useful for the verification of more generally appli-
cable numerical approaches and they can provide additional
insights that numerical approaches do not provide. As an
illustration we describe the analytical procedure for obtain-
ing parameter constraints for a one-parameter model [25] and
a more general approach suitable for two-parameter models
such as the CPL model [20,21].

2.1 w = w0
a
a0

model

Starting from the parametrization [25]

w = w0
a

a0
, (4)

from (3) one obtains

c2
s = w0

a

a0

2 + 3w0
a
a0

3(1 + w0
a
a0

)
= w

2 + 3w

3(1 + w)
= w

(
1 − 1

3(1 + w)

)
.

(5)

The first and second derivative of c2
s with respect to w are:

dc2
s

dw
= 1 − 1

3(1 + w)2 , (6)

d2c2
s

dw2 = 2

3

1

(1 + w)3 . (7)

Stationary points of c2
s are at w1 = −1 − 1√

3
and w2 =

−1 + 1√
3

where at w1 the c2
s has a maximum and at w2 it has

a minimum. Both of these stationary points correspond to
negative values of w. At w = −1 there is a singularity in c2

s
corresponding to the crossing of the cosmological constant
boundary.
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During the cosmic expansion the EoS parameter (4) does
not change its sign, i.e. as a increases from 0 to a0, w changes
from 0 to w0 (increases for positive w0 and decreases for
negative w0).

For negative w0 (negative vaules of w), expression (5)
reveals that c2

s is negative for − 2
3 < w < 0. Therefore,

if w0 > − 2
3 , c2

s is negative during the entire cosmic past,
whereas if w0 < − 2

3 , c2
s is negative for a from 0 to some

finite a∗ < a0. In both cases the condition c2
s ≥ 0 is violated

in the cosmic past and w0 < 0 does not correspond to viable
fluid model of dark energy.

For positive w0, there are no stationary points in the inter-
val of w between 0 and w0. The expression (6) reveals that
dc2

s
dw

is positive in the interval (0, w0) and c2
s is a growing func-

tion of w. The expression (5) shows that c2
s is positive in the

entire considered interval. Therefore, to fulfill the require-
ment 0 ≤ c2

s ≤ 1 at the entire interval, it suffices to require
that c2

s (w0) ≤ 1. Straightforward calculation shows that this
is satisfied for

0 ≤ w0 ≤ 1 + √
37

6
. (8)

As this allowed paramter range corresponds to w ≥ 0, the
parametrization from [25] is clearly unsuitable as a model of
barotropic fluid dark energy.

2.2 General analytical approach

From the condition 0 ≤ c2
s ≤ 1 it is possible to obtain general

analytical constraints between a dw
da and w [44]. In particular,

for 1 + w > 0 the condition translates to

−(1 − w)(1 + w) ≤ a

3

dw

da
≤ w(1 + w), (9)

whereas for 1 + w < 0, the condition results in

w(1 + w) ≤ a

3

dw

da
≤ −(1 − w)(1 + w). (10)

Furthermore, it is straightforward to show that the condi-
tion 0 ≤ c2

s ≤ 1 is equivalent to

c2
s (c

2
s − 1) ≤ 0, (11)

which can also be presented in the form

f (a)g(a)

9(1 + w)2 ≤ 0. (12)

Here, bearing in mind that w = w(a),

f (a) = 3w(1 + w) − a
dw

da
, (13)

and

g(a) = 3(w − 1)(1 + w) − a
dw

da
. (14)

From (12) one can determine the regions of allowed model
parameters as those for which f (a)g(a) ≤ 0 for all
a ∈ [0, a0]. In the parametrizations for which a dw

da can be
expressed as a function of w, this condition then reads as
f (w)g(w) ≤ 0. For a majority of parametrizations the deter-
mination of the regions of allowed model parameters cannot
be pursued analitically. In the “Appendix” we systematically
apply this approach for the CPL model w = w0+w1(1− a

a0
),

introduced in [20,21]. Although in this case both f and g are
(only) quadratic functions of w, the analytical calculations
require examination of a number of various cases.

3 Numerical results

The compatibility of a particular parametrization with the
barotropic fluid DE can in general be established only numer-
ically. For the studied parametrizations we determine the
allowed region of the model parametric space using two
approaches and present the results in Table 1. For models
which have a nonvanishing parameter region corresponding
to 0 ≤ c2

s ≤ 1 for the entire cosmic past these regions are
depicted in Figs. 1, 2 and 3.

The graphs in Figs. 1, 2 and 3 were made combining two
methods:

1. Shaded areas: An analytical solution was rearranged to put
one parameter on each axis (x and y) and solution space
for discrete values of a was graphed (0, a0 and one or
two points in the middle; usually, but not always, a/a0 =
0.5, depending which value created a better illustration
of the effect). The intersection of these three (or four)
areas approximates a solution for the whole range of a ∈
[0, a0].1

2. Dots: A numerical solution was computed with two
parameters laid on x and y axes. The condition 0 ≤ c2

s ≤ 1
was tested at a set of scale factor a values, where the val-
ues in the set were chosen for each model to cover the
entire cosmic past, but also to produce the best coverage
of the allowed parameter region. In most cases, one hun-
dred values of a were calculated using a = ei/10a0 with
i taking integer values from -100 to 0. This produced an
array of values for a more dense near a = 0 and more
spread out near a = a0. A point was placed on the graph
for all values of the two parameters where c2

s (a) ∈ [0, 1]
was true for all values of a ∈ [0, a0].

1 We acknowledge the use of Desmos graphics tool https://www.
desmos.com/.
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Table 1 Overview of studied models, their w(a) (or w(z)) parametrizations and allowed regions of parameters

Formula for w(a) Refs. 0 ≤ c2
s ≤ 1 for

0 ≤ a ≤ a0

Allowed parameter region

One-parameter models

w(a) = w0
a0
a [25] Yes w0 ∈ [0, 1

6 +
√

37
6 ]

w(a) = w0
a0
ae

1− a
a0 [25] Yes w0 ∈ [0, 1]

w(a) = −1 +
2α
3

a
a0

(1− a
a0

)

1+α(1− a
a0

)2 [38] No

Two-parameter models

w(a) = w0 + waln
a
a0

[18] No

w(a) = w0 + wa(
a0
a − 1) [19] No

w(a) = w0 + w1(1 − a
a0

) [20] [21] Yes Figure 1a

w(a) = w0
1−waln

a
a0

[23] Yes Figure 1b

w(a) = w0(
1−l0ln

a
a0

)2
[23] Yes Figure 1c

“Sqrt model”, w(a) = w0 + wa

a0
a −1√

1+(
a0
a −1)2

[37] Yes Figure 1d

w(a) = w0 + w1

a0
a

(
a0
a −1

)
1+

(
a0
a −1

)2 [28] Yes Figure 1e

w(a) = w0 − w1
a
a0
ln a

a0
[40] Yes Figure 1f

w(a) = w0 + wa
a
a0

(1 − a
a0

) [30] Yes Figure 2a

w(z) = w0 + wa
( ln(2+z)

1+z − ln2
)

[31] No

w(a) = w0 + w1

(
a
a0

sin
( a0
a

) − sin 1
)

[31] No

w(a) = −1 + c1

(
2 − a

a0

)
+ c2

(
2 − a

a0

)2
[32] Yes Figure 2b for c2 = w0 − c1 + 1

w(a) = w0 + w1

a0
a −1

1+(
a0
a −1)2 [33] Yes Figure 2c

w(a) = w0 + w1
(
a0
a −1)2

1+(
a0
a −1)2 [33] Yes Figure 2d

w(z) = w0 + wa
( ln√

1+z2−ln
√
z

1+z + ln
√

2
)

[34] Noa

w(a) = w1 + 1
3

a0
a

w2+ a0
a

[36] Yes Figure 2e for w1 = w0 − 1
3

1
w2+1

Three-parameter models

w(a) = w0 + wa
( ln(ξ+ a0

a )

ξ+ a0
a −1

− ln(ξ+1)
ξ

)
[34] Nob

w(a)=w0+ w1−w0
z∗ ( a0

a −1), a>a∗ w(a)=w1, a<a∗ [27] Yes Figure 2f for a∗ = a0/3

w(a) = w0 + w1

(
1 − a

a0

) (
a
a0

)n−1
[29] Yes Figure 3a for n = 3

“Generalised CPL” w(a) = w0 + w1(1 − a
a0

)n [29] [37] Yes Figure 3b for n = 3

w(z) = a1+3(�m0−1)−2a1z−a2(z2+2z−2)

3(1−�m0+a1z+2a2z+a2z2)
[26] No

w = w0+(w0+wa )(
a0
a −1)

1+(1+wb)(
a0
a −1)

[35] Yes Figure 3c for w0 = −0.6

w(a) = w0+w1 ln a
a0

1+w2 ln a
a0

[35] No

Four-parameter models

w(a) = wawb
( a
a0

)p+(
as
a0

)p

wb(
a
a0

)p+wa (
as
a0

)p
[22] Yes Figure 3d for p = 1, w0 = −0.6 ( asa0

)p = wb
wa

wa−w0
w0−wb

w(a) = wa
wb(

a
a0

)p+(
ac
a0

)p

( a
a0

)p+(
ac
a0

)p
[24] Yes Figure 3e for p = 1, w0 = −0.6 ( aca0

)p = wawb−w0
w0−wa

w(a) = wa + wb(
wc+wd (

a0
a −1)

)2 [39] Yes Figure 3f for w0 =−0.6, wa =w0− wb
w2
c

and wb =−1

ac2
s < 0 for small values of a ( a

a0
< 10−8 or less, depending on parameters), bc2

s < 0 for small values of a ( a
a0

< 10−8 or less, depending on parameters).
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Fig. 1 The allowed parameter regions for two-parameter models [20,
21] in plot (a), [23] (model 1) in plot (b), [23] (model 2) in plot (c), [37]
(model 1) in plot (d), [28] in plot (e) and [40] in plot (f). In all plots the

symbol w0 on the axis denotes the present value of the w(a) function,
whereas the other symbols refer to parameters in the corresponding
w(a) parametrizations
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Fig. 2 The allowed parameter regions for two-parameter models [30]
in plot (a), [32] in plot (b), [33] (model 1) in plot (c), [33] (model 2) in
plot (d), [36] in plot (e) and three-parameter model [27] for a∗ = a0/3 in

plot (f). In all plots the symbol w0 on the axis denotes the present value
of the w(a) function, whereas the other symbols refer to parameters in
the corresponding w(a) parametrizations
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Fig. 3 The allowed parameter regions for three-parameter models [29]
(model 1) for n = 3 in plot (a), [37] (model 2) and [29] for n = 3 in
plot (b) and [35] for w0 = −0.6 in plot (c) and four-parameter mod-
els [22] for p = 1, w0 = −0.6 and ( asa0

)p = wb
wa

wa−w0
w0−wb

in plot (d),

[24] for p = 1, w0 = −0.6 and ( aca0
)p = wawb−w0

w0−wa
in plot (e) and [39]

w0 = −0.6 and wb = −1 in plot (f). In all plots the symbol w0 on the
axis denotes the present value of the w(a) function, whereas the other
symbols refer to parameters in the corresponding w(a) parametrizations
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Fig. 4 The allowed paremeter regions for conditions 0 ≤ c2
s ≤ 1 (dots)

and 0 ≤ c2
s (dots + crosses) for models: [20,21] in plot (a), [27] for

a∗ = a0/3 in plot (b), [30] in plot (c) and [37] (model 1) for n = 3 in

plot (d). In all plots the symbol w0 on the axis denotes the present value
of the w(a) function, whereas the other symbols refer to parameters in
the corresponding w(a) parametrizations

Following the initial test for c2
s (a) ∈ [0, 1], this condition

was loosened to only c2
s (a) ≥ 0 without the c2

s (a) ≤ 1
condition. As expected, the (w0, w1) space expanded with
the following restrictions:

1. If the favourable area under the condition c2
s (a) ∈ [0, 1]

existed only for values w0 > 0, the expansion happened
solely in the direction w0 > 0.

2. If the favourable area existed for values w0 < 0, but did
not reach w0 = −1, it expanded towards w0 = −1, but
did not cross to w0 < −1.

For a number of parametrizations the allowed parameter
regions for the condition c2

s ≥ 0 are presented in Fig. 4.
Plots in Figs. 1 and 2 present the two-parameter models

with nonvanishing allowed regions of parameters. In all these
plots the parameter at the x axis is w0, corresponding to

the present value of the EoS parameter w(a0) (or w(z =
0)). It is interesting to observe which models allow w0 <

−1/3 values (which can in principle serve as accelerating
components). In Fig. 1 this condition is satisfied for models
in plots (a) [20,21], (d) [37] and (e) [28]. In Fig. 2 presently
accelerating component is possible for the model [32] in plot
(b) and the model [27] in plot (f).

For three-parameter and four-parameter models, pre-
sented in Fig. 3, all models presented may describe barotropic
fluid dark energy. The plots demonstrate that for the selected
values of w0 = w(a0) there are nonvanishing allowed
regions of other model parameters. This fact shows that the
capability of these models to represent baryonic DE model
is not the result of some contrived combinations of model
parameters, but a generic feature of these models.

123



Eur. Phys. J. C (2020) 80 :629 Page 9 of 12 629

4 Discussion and conclusions

In total, of the three one-parameter models studied in this
paper, two have a nonvanishing parameter space consistent
with the requirement 0 ≤ c2

s ≤ 1, but none of the allowed
parameters corresponds to the presently accelerating compo-
nent. For the 16 two-parameter models we analyzed, 11 of
them have a nonvanishing parameter space consistent with
0 ≤ c2

s ≤ 1, but only four of these can describe a presently
accelerating component. For ten of the three-parameter and
four-parameter models, seven of them satisfy the requirement
0 ≤ c2

s ≤ 1 and are compatible with the barotropic fluid dark
energy.

One can observe that virtually none of studied models
allows values of w0 very close to −1. This fact may be
attributed to the term ∼ 1

1+w
in the expression (3) for c2

s
which diverges when w → −1, which correspondingly
blows up the value of c2

s . A natural question arising is which
of two requirements (c2

s ≥ 0 or c2
s ≤ 1) is responsible for

such a behavior. Indeed, if the cs ≤ 1 requirement is relaxed,
the allowed values of w0 are much closer to −1, as is evident
from Fig. 4.

As one could expect, the larger the number of model
parameters, it is easier to find their combination for which
the model may be represented as a barotropic fluid DE in the
entire cosmic past. For the studied single parameter mod-
els it is found that none of them can satisfy the requirement
on c2

s and presently have a sufficiently negative w. For two-
parameter models, only four out of 16 models are capable
of representing the barotropic fluid dark energy. For three-
parameter and four-parameter models seven of the ten studied
models fit the requirement of baryonic fluid dark energy.

It is important to notice (possibly even somewhat sur-
prising) that these strong restrictions have been obtained on
purely theoretical, but fundamental grounds. The parametriza-
tions w(a) that are found to be able to represent a barotropic
fluid DE by the studied requirements on c2

s still need to be
compared against the available observational data which will
further constrain the parametric space obtained in this paper.

The results of this paper indicate that the suitability of
a phenomenological parametrization w(a) to describe some
physically motivated dark energy model need not come auto-
matically. Internal theoretical features of a chosen phys-
ical DE models may constrain, or even eliminate some
phenomenological parametrizations. Possible situations in
which this kind of argumentation might be applicable, apart
from the barotropic fluid DE models, comprise k-essence
DE models or effective DE description of modified gravity
theories.
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Appendix

In this Appendix we elaborate the analytical determination
of the allowed region of model parameters for the CPL model
[20,21], starting from the formalism developed in Sect. 2.2.
For the CPL model the functions f (w) and g(w) are second
order polynomials in w in particular

c2
s ≥ 0 : f (w) = 3w2 + 2w + w0 + w1

and

c2
s ≤ 1 : g(w) = 3w2 − w + w0 + w1 − 3.

Their zeros are

f (w) = 0 : w0± = −1

3
±

√
1 − 3(w0 + w1)

3
,

for 1 − 3(w0 + w1) ≥ 0 and

g(w) = 0 : w1± = 1

6
±

√
37 − 12(w0 + w1)

6
.

for 37 − 12(w0 + w1) ≥ 0.
The next step in the procedure is determination of con-

ditions for both f (w) and g(w) being ≥ 0 or ≤ 0. We
denote respective conditions by the letter S and correspond-
ing indices as they will translate into regions of the w0 − w1

plane.
The condition

f (w) ≥ 0

can be realized in two subcases. If the function f (w) has no
zeros the condition is

S01 : 1 − 3(w0 + w1) < 0 ⇒ w ∈ 〈−∞,+∞〉 ,

whereas if f (w) has zeros the condition reads

S02 : 1 − 3(w0 + w1) ≥ 0 ⇒ w ∈ 〈−∞, w0−] ∪ [w0+,+∞〉 .
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The requirement

f (w) ≤ 0

translates to

S03 : 1 − 3(w0 + w1) ≥ 0 ⇒ w ∈ [w0−, w0+].
The condition

g(w) ≥ 0

has two subcases. If the function g(w) has no zeros the con-
dition leads to

S11 : 37 − 12(w0 + w1) < 0 ⇒ w ∈ 〈−∞,+∞〉,
while if g(w) has zeros the condition translates to

S12 : 37 − 12(w0 + w1) ≥ 0 ⇒ w ∈ 〈−∞, w1−] ∪ [w1+,+∞〉.

On the other hand, the condition

g(w) ≤ 0

leads to

S13 : 37 − 12(w0 + w1) ≥ 0 ⇒ w ∈ [w1−, w1+].
The additional requirement is that all values that w(a)

acquires in the interval [0, a0] (interval between w(0) =
w0+w1 and w(a0) = w0) have to be contained in the allowed
intervals of w obtained in the consideration of f (w) and g(w)

functions. Further elaboration depends on the sign of w1. We
assume w1 �= 0, since w1 = 0 leads to a trivial case w = w0.

S+ : w1 > 0

The interval of variation of w is

w ∈ [w0, w0 + w1]
Individual conditions for nonnegative f (w) then read

S+
01 : 1 − 3(w0 + w1) < 0

and

S+
02 : [w0, w0 + w1] ⊆ 〈−∞, w0−] ∪ [w0+,+∞〉

which leads to

1 − 3(w0 + w1) ≥ 0 ∩ ((w0 + w1 ≤ w0−) ∪ (w0 ≥ w0+)).

The condition for nonpositive f (w) reads

S+
03 : [w0, w0 + w1] ⊆ [w0−, w0+]

resulting in

1 − 3(w0 + w1) ≥ 0 ∩ (w0 ≥ w0−) ∩ (w0 + w1 ≤ w0+).

The conditions for nonnegative g(w) are

S+
11 : 37 − 12(w0 + w1) < 0

and

S+
12 : [w0, w0 + w1] ⊆ 〈−∞, w1−] ∪ [w1+,+∞〉

which leads to

37 − 12(w0 + w1) ≥ 0 ∩ ((w0 + w1 ≤ w1−) ∪ (w0 ≥ w1+)).

The condition for nonpositive g(w) gives

S+
13 : [w0, w0 + w1] ⊆ [w1−, w1+]

resulting in the condition

37 − 12(w0 + w1) ≥ 0 ∩ (w0 ≥ w1−) ∩ (w0 + w1 ≤ w1+).

S− : w1 < 0

The interval of variation of w is

w ∈ [w0 + w1, w0] .

The conditions for nonnegative f (w) are

S−
01 : 1 − 3(w0 + w1) < 0

and

S−
02 : [w0 + w1, w0] ⊆ 〈−∞, w0−] ∪ [w0+,+∞〉

resulting in

1 − 3(w0 + w1) ≥ 0 ∩ ((w0 ≤ w0−) ∪ (w0 + w1 ≥ w0+)).

The condition for nonpositive f (w) leads to

S−
03 : [w0 + w1, w0] ⊆ [w0−, w0+]

which reads

1 − 3(w0 + w1) ≥ 0 ∩ (w0 + w1 ≥ w0−) ∩ (w0 ≤ w0+).

The conditions for nonnegative g(w) are

S−
11 : 37 − 12(w0 + w1) < 0

and

S−
12 : [w0 + w1, w0] ⊆ 〈−∞, w1−] ∪ [w1+,+∞〉

resulting in

37 − 12(w0 + w1) ≥ 0 ∩ ((w0 ≤ w1−) ∪ (w0 + w1 ≥ w1+)).

The condition for nonpositive g(w) is

S−
13 : [w0 + w1, w0] ⊆ [w1−, w1+]

leading to

37 − 12(w0 + w1) ≥ 0 ∩ (w0 + w1 ≥ w1−) ∩ (w0 ≤ w1+).

The overall condition determining the allowed region of
model parameters can be expressed as

S+ ∩
([

(S+
01 ∪ S+

02) ∩ S+
13

] ∪ [
(S+

11 ∪ S+
12) ∩ S+

03

])
∪

123
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S− ∩
([

(S−
01 ∪ S−

02) ∩ S−
13

] ∪ [
(S−

11 ∪ S−
12) ∩ S−

03

])
.

However, this can be simplified. Let us investigate some
parts of this solution. Firstly, let us consider

S̃+ = S+ ∩ [
(S+

11 ∪ S+
12) ∩ S+

03

]
,

which can be written as

(S+ ∩ S+
11 ∩ S+

03) ∪ (S+ ∩ S+
12a ∩ S+

03) ∪ (S+ ∩ S+
12b ∩ S+

03),

where

S+
12a = 37 − 12(w0 + w1) ≥ 0 ∩ w0 + w1 ≤ 1 − √

37 − 12(w0 + w1)

6
,

S+
12b = 37 − 12(w0 + w1) ≥ 0 ∩ w0 ≥ 1 + √

37 − 12(w0 + w1)

6
.

We immediately see that w0+w1 > 37
12 from S+

11 is incom-
patible with w0 + w1 ≤ 1

3 from S+
03. This leads to

S+ ∩ S+
11 ∩ S+

03 = ∅.

Next, it can be shown that S+
12a is equvalent to

w0 + w1 ≤ −1.

Now, S+
12a means w1 > 0 which also leads to w0 +w1 > w0.

Combining it with the second part of S+
03 yields

3(w0 + w1) + 1 > −√
1 − 3(w0 + w1)

which can be shown to be equivalent to

w0 + w1 > −1.

This is an obvious contradiction, so

S+ ∩ S+
12a ∩ S+

03 = ∅.

Finally, it can easily be shown that the third part of S+
03 is

equivalent to

w0 + w1 ≤ 0,

meaning:

w0 < 0.

However, the second part of Sb12 says that

w0 ≥ 1

6
+

√
37 − 12(w0 + w1)

6
.

so this also ends in contradiction, meaning that

S+ ∩ S+
12b ∩ S+

03 = ∅.

These results together lead to S̃+ = ∅.
Next, we use the equivalent procedure to examine

S̃− = S− ∩ [
(S−

11 ∪ S−
12) ∩ S−

03

]
,

which can be written as

(S− ∩ S−
11 ∩ S−

03) ∪ (S− ∩ S−
12a ∩ S−

03) ∪ (S− ∩ S−
12b ∩ S−

03),

where

S−
12a = 37 − 12(w0 + w1) ≥ 0 ∩ w0 ≤ 1 − √

37 − 12(w0 + w1)

6
,

S−
12b = 37 − 12(w0 + w1) ≥ 0 ∩ w0 + w1 ≥ 1 + √

37 − 12(w0 + w1)

6
.

As in the previous section, S−
11 leads to w0 + w1 > 37

12
which is in contradiction with w0 +w1 ≤ 1

3 from S−
03 so that

S− ∩ S−
11 ∩ S−

03 = ∅.

Regarding the second term, the second part of S−
03 leads

to w0 + w1 ≥ −1, meaning also w0 > −1. However, this
leads to contradiction with the second part of S−

12a :

w0 ≤ 1 − √
37 − 12(w0 + w1)

6

resulting in

S− ∩ S−
12a ∩ S−

03 = ∅.

Finally, the second part of S−
12b leads to w0 + w1 ≥ 1 which

is in contradiction with w0 + w1 ≤ 1/3, resulting in

S− ∩ S−
12b ∩ S−

03 = ∅.

These results together lead to S̃− = ∅.
Therefore, the overall allowed region of model parameters

is

(
S+ ∩ [

(S+
01 ∪ S+

02) ∩ S+
13

]) ∪
(
S− ∩ [

(S−
01 ∪ S−

02) ∩ S−
13

])
.

This set of conditions fully corresponds with the numeri-
cally obtained allowed parameter region presented in plot (a)
of Fig. 1.
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